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Weighted Markov and Bernstein type inequalities are established for generalized 
non-negative polynomials and generalized polynomial weight functions. The 
novelty of the results lies in the fact that in these estimates only the generalized 
degrees of the generalized polynomial and the generalized polynomial weight func- 
tion, respectively, and a multiplicative absolute constant show up. To prove such 
inequalities was motivated by studying systems of orthogonal polynomials 
simultaneously, associated with generalized Jacobi weight functions. ‘(” 1992 
Acadamc Press, Inc 

1. INTRODUCTION 

The well-known Markov-Bernstein inequality [ 10, pp. 39-411 asserts 
that 

for every polynomial p E Z7,, where Z7, denotes the set of all real algebraic 
polynomials of degree at most n. Markov and Bernstein type inequalities in 
weighted spaces play a significant role in proving inverse theorems of 
approximation and have their own intrinsic interest. The magnitudes of 

max -1SSSl If’(x) w(x)1 
(1.2) max ~ 1 s rs 1 If(x) w(x)1 ’ 

If’(Y) W(Y)l 
max-14xs1 If(x) 4xX 

(-l<y<l) (1.3) 

and their corresponding L, analogues, respectively, for polynomials f~ I7,, 
and generalized Jacobi weight functions w were examined by a number of 
authors [l, pp. 90-1111, [S, 9, 11, 13, 141, [12, pp. 161-1641, but a multi- 
plicative constant depending on the weight function appears in these 
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estimates. In the next section we introduce generalized polynomials and 
examine the magnitudes of (1.2) and (1.3), when both f and w are the 
absolute values of generalized polynomials (in other words both f and w 
are generalized non-negative polynomials; see the remark at the end of Sec- 
tion 2). In our inequalities only the generalized degrees off and w, respec- 
tively, and a multiplicative absolute constant show up. The results are new 
and (in a sense) sharp even when f is an ordinary polynomial. In [S] the 
case w - 1 is studied and some ideas from that case play a key role in this 
paper as well. 

Our motivation was to find tools with which to examine systems of 
orthogonal polynomials simultaneously, associated with generalized Jacobi, 
or at least generalized non-negative polynomial weight functions of degree 
at most r> 0. In a recent paper [7] we gave sharp estimates in this spirit 
for the Christoffel function on [ - 1, 11, and for the distances of the 
consecutive zeros of orthogonal polynomials, associated with generalized 
non-negative polynomial weight functions of degree at most f. 

2. GENERALIZED POLYNOMIALS, DEFINITIONS, AND NOTATIONS 

Generalized algebraic and trigonometric polynomials were introduced, 
studied thoroughly, and applied in a sequence of papers [24,6, 71. 
Denote by Z7, the set of all real algebraic polynomials of degree at most n. 
The function 

f= fi P?, (P,, E n,\n, - 1, '; > 0, j = 1,2, . . . . k) (2.1) 
j= 1 

will be called a generalized real algebraic polynomial of (generalized) 
degree 

N= i rjnj. (2.2) 
j=l 

To be precise, in this paper we will use the definition 

z’=exp(rloglzl+irargz) (zeC,r>O, -n<argz<rc). (2.3) 

Obviously 

u-l = Ii IR,I’. (2.4) 
j=l 

We will denote by GRAP, the set of all generalized real algebraic 
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polynomials of degree at most A? We introduce the class IGRAP(,= 
{ Ifl: f~ GRAP,). The function 

f(z)=c fi (z-zj)Q (0 # c, zj E @, rj > 0, j = 1, 2, . . . . k) (2.5) 
j=l 

will be called a generalized complex algebraic polynomial of (generalized) 
degree 

We have 

N= i rj. 
j=l 

(2.6) 

If(z)l = ICI fi IzMzjlr’. (2.7) 
j=l 

Denote by GCAP, the set of all generalized complex algebraic polynomials 
of degree at most N. The set { Ifl: feGCAPN} will be denoted by 
IGCAPI,. 

In the trigonometric case we denote the set of all real trigonometric 
polynomials by T,,. The function 

f= fi PZ, (P,~T~,\T,,-,,rj>O,j=1,2,...,k) (2.8) 
j= 1 

will be called a generalized real trigonometric polynomial of (generalized) 
degree N defined by (2.2). Obviously (2.4) holds again. We will denote by 
GRTP, the set of all generalized real trigonometric polynomials of degree 
at most N. Let (GRTPI,= { IfI: f~ GRTP,}. We say that the function 

f(z)=ci (sin((z-zj)/2))q (O#CE@,Z,E@, rj>O,j= 1, 2, . . . . k) (2.9) 
j=l 

is a generalized complex trigonometric polynomial of (generalized) degree 

N= 4 i rj, 
j=l 

(2.10) 

We have 

k 

If( = ICI I-I Isin((Z-Zj)P)l',. (2.11) 
j=l 

Denote the set of all generalized complex trigonometric polynomials of 
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degree at most N by GCTP,. The set { IfI : f~ GCTP,} will be denoted 
by IGCTPl,,,. 

We remark that if f~ (GCAP( N, then restricted to the real line we have 
f~ IGRAPI,. Similarly if fE IGCTP),, then restricted to the real line we 
have fE IGRTP( ,,,.. These follow from the observations 

/z-z,1 =((z-z,)(z-F,))“2 (ZER) (2.12) 

and 

Isin((z-zi)/2)) = (sin((z-zi)/2) sin((z-Fj)/2))“2 

= ((cosh(Im zj) - cos(z - Re z,))/2)“* (z E R). (2.13) 

Using (2.12) and (2.13) one can easily check that restricted to the real line 

\GCAP(,= f=fi Pp’2:O<l’iE172,rj>0, j=l,2,...,k; 5 r,QN 
j=t j=l 

lGCTPl,= f=fi PJ’,i2:O<P,ETI,rj>0, j=1,2,...,k; i rj<2N . 
j= 1 j= 1 

The subject of this paper is the classes IGCAP(, and IGCTP), restricted 
to the real line, and the elements of these classes can be considered as 
generalized non-negative polynomials in the above sense. This explains the 
title. Throughout this paper ci, i = 1, 2, . . . . denotes a suitable positive 
absolute constant, and f' means df/dz, where t is real. 

3. NEW RESULTS 

We prove the following weighted Markov-type inequality. 

THEOREM 1. Letf~lGCAPJ,beoftheform (2.7) with r,>l (l<j<k) 
and let w E ]GCAPl, be arbitrary. Then 

r”y< 1 If’(xMx)l G c,(N + U* _ pjx< 1 f(x) w(x), . -. . . 

where c, is an absolute constant. 

In the trigonometric case we show 
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THEOREM 2. Let f~ [GCTPl N be of the form (2.11) with rj 2 1 
(1 < j 6 k) and let w E )GCTP) r be arbitrary. Then 

where c2 is an absolute constant. 

By the substitution x = cos t, from Theorem 2 we will easily obtain 

THEOREM 3. Let f E JGCAPI, be of the form (2.7) with rj > 1 
(1 < j d k) and let w E IGCAPI, be arbitrary. Then 

If’(Y) W(Yl6 
c,(T+ l)(N+ r) 

Jm 
max f(x) w(x) (-l<Y<l), -I~X~l 

where c2 is the same as in Theorem 2. 

Remark 3.1. The problem arises, how to define f' for an f e (GCAPI N 
or f e (GCTPI,. Observe that though f’ may not exist (even as an 
extended real) at the zeros off, the one-sided derivatives exist and are 
equal in absolute value. 

Remark 3.2. We conjecture that in the inequalities of Theorems 2 and 
3 the multiplicative factor (r+ 1) can be dropped. If this conjecture were 
true, we would obtain Theorem 1 as a simple consequence of Theorem 3, 
using a Remez-type inequality [2, Theorem I] for generalized complex 
algebraic polynomials. 

Remark 3.3. Iffe IGCAP), is of the form (2.7) with rj> 1 (1 <j< k), 
then f E IGRAP(, is of the form (2.4) with rja f, P,(z) > 0 (z E [w, 
0 <j < h), and rj 3 1 (h <j< k), where (0 <)h (<k) is a suitable integer. 
Furthermore, w E IGCAPI, implies w E (GRAP(,. Similar relations hold 
for generalized complex and real trigonometric polynomials. These follow 
easily from (2.12), (2.13) and the fact that we study each function restricted 
to the real line. 

Remark 3.4. If f E JGCAPJ, is of the form 

j=l 

(0 # c E C, zie [w are different, ri> 1, j= 1,2, . . . . k), (3.1) 

then ) f ‘1 E IGCAP) N has only real zeros, and at least one of any two adja- 
cent zeros of If ‘1 has multiplicity at least 1 (for generalized polynomials the 
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multiplicities of the zeros can be arbitrary positive real numbers). A similar 
statement holds for every f E IGCTPJ N of the form 

f(z)= ICI fi Isin((z-zj)/2)lq 
j=l 

(0 # c E C, zj E Iw are different, rj 2 1, j = 1, 2, . . . . k). (3.2) 

We discuss only the trigonometric case; the same argument works in the 
algebraic case as well. By (3.2) we have 

f= (cl fj Py’ with Z’,(z) = sin*( (z - z,)/2), (3.3) 
j=l 

and using the product rule, we obtain 

If’1 = [c/2\ fi py--I j i riPj fi P, 1. (3.4) 
j= 1 i=l i=l 

j#i 

Observe that in (3.4) 

k k 

Q= c rip: n PjETk 
i=l j=l 

.I z f 

(3.5) 

is an ordinary trigonometric polynomial. Without loss of generality we may 
assume that - rc 6 z r < z2 < . . . < zk < 7t. By Rolle’s theorem If’1 has a zero 
yj in each of the intervals (z,, zj+ r) if 1 <j< k - 1, and a zero yk in 
tzk, z1 + 27r). Hence from (3.3), (3.4) and (3.5) we easily deduce that 

Q(Z) = c’ fi sin( (z - z,)/2) sin((z - y,)/2), c’ E R. (3.6) 
j= 1 

This, together with (3.3) and (3.4), yields that 

If’(z)1 = (~“1 fi (sin(z-z,)/21+’ fi Isin((z-yj)/2)1, c” E c, (3.7) 
j==l j= 1 

which gives the desired result. 

4. LEMMAS FOR THEOREM 1 

Our first two lemmas guarantee the existence of certain extremal 
generalized polynomials. 
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LEMMA 4.1. Ifm,>O (1 dj<k) arefixed integers, sj>O (1 <j<k) are 
fixed reals such that cJ=, sjmj d r, then for every 0 $ f E (GCAP( ,,, of the 
form (2.7) with r,>l (ldj6k) and for every - 1 < 6 < 1 there exists a 
iii E lGRAPl,- of the form 

such that 

If’(l) @(I)1 If’(l) w(l)l 
max-,.,.6f(x) ~(x)=SUwPmax-,.x.,f(x) w(x)=L<co (4’1) 

and 

If’(l) t?(l)1 = max -1<*<, If’(x)*(x)L . . 
(4.2) 

where the supremum in (4.1) is taken for all 0 f w E IGRAPI r of the form 

w= fi IQ,P (Qm,~fl,,,, 1 ,<j<k) 
j= 1 

such that 

If’(l) w(l)1 = -p<y<I If’(x) w(x)l. . . 

LEMMA 4.2. Zf nj > 0 (1 < j d k) and 0 < h <k are fixed integers, rj 2 $ 
(l<j<h)andrj>,l (h<j<k)arefixedrealssuchthatC,k=,rinl<NN,then 
for every 0 f w E IGRAP(, and for every - 1 < 6 < 1 there exists an 
f~ (GRAP(, of the form 

such that 

13YJ) W)l If’(l) w(l)1 
max _ ,,,.,3b, w(x)=su/p rnax_,.,,,f(x)~(x)=~<~ (4*3) 

where the supremum in (4.3) is taken for all 0 $ f E ) GRAP) N of the form 

f= Ii IKJ (P,~17,,(1,<j~kk),P,,(z)~O(z~[W, l<j<h)). 
j=l 
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Our next two lemmas show that the extremal generalized polynomials 
defined by Lemmas 4.1 and 4.2, respectively, have some additional 
properties. 

LEMMA 4.3. Let 8 E lGRAP(, be defined by Lemma 4.1. Then iG has all 
its zeros in [-l,S]. 

LEMMA 4.4. Let YE JGRAPI N be defined by Lemma 4.2. Then 7 has only 
zeros. 

The following Remez-type inequality was proved in [2]. 

LEMMA 4.5. For every g E (GCAP( N and 0 -C s < 2 we have 

m({yE C-L 11: g(y)>exp(-N&) pyxI &)))2c3s, . . 

where m( . ) denotes the Lebesgue measure and c3 > 0 is an absolute constant. 

From Lemma 4.5, by a Phragmen-Lindelof type argument we will easily 
obtain 

LEMMA 4.6. Let N> 1 and g E lGCAP\ ,,, be such that 

g(l)= -fpa,<l g(x). (4.4) . . 

Then for every 0 < cq d 1 there are c5 > 1 and cg > 0 depending only on cq 
such that 

m({yE[l-~~N~*,l]:g(y)>c;~ max g(x)})>,c,Nm2 
-I<Xil 

holds. 

The following lemma can be found in [S]. 

LEMMA 4.7. Let r > 0 and 0 f p E IT, be such that 

IP( = -yy$P(X)l. . . (4.5) 

Then p has at most c,nfi zeros in [ 1 - r, 11, where cl is an absolute 
cons tan t. 

We remark that in Lemma4.7, c, =& can be chosen. However, 
in the sequel we assume only that c, 3 fi in a suitable choice. From 
Lemma 4.7 we will easily conclude 
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LEMMA 4.8. Let r > 0, 0 $ ge IGCAPI, he of the form (2.7) such that 
each ri is rational, and assume that 

g(l)= max -1 c,rG 1 g(x). (4.6) 

Then the total multiplicity of the zeros of g lying in [ 1 - r, 11 is at most 
c7 Nfi, where c, is the same absolute constant as in Lemma 4.7. 

From Lemmas 4.6 and 4.8 we will obtain 

LEMMA 4.9. Assume that f E (GCAPI, and w E IGCAP(, are of the 
forms 

f(z)= fi lz-zjlq (z, are real, rj > 1 are rational, 1 6 j 6 k,) (4.7) 
j=l 

and 

w(z)= fi Iz-ujp 
j=l 

respectively, and 

(uj~ C-1, 1 -~c,(N+I--~], 

cq = c;=, sj > 0 are rational, 1 <j d k,), (4.8) 

If’(l) w(l)1 = -FXX<, If’(x) w(x)l. (4.9) . . 

Then 

If’(l)W)l~cdN+~)2 p~<;x<,f(x)W> . . 

where 6 = 1 - 2c,(N + J’-= and cg is an absolute constant. 

Our last lemma drops some assumptions from Lemma 4.9 and gives the 
same conclusion. 

LEMMA 4.10. Assume that f E IGCAP(, and WE (GCAP(, are of the 
f orms 

f(z)= fi Iz-zil~ (zi are real, rj Z 1 are rational, 1 d j < k, ) (4.10) 
j=l 

and 

w(z) = fi Iz- ujp (uj E C, sj > 0 are rational, 1 < j d k2), (4.11) 
j= 1 
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respectively. Then 

If’(l) w(l)1 <CAN+ r)* max f(x) w(x), 
-l<.r<fi 

(4.12) 

where 6 is the same as in Lemma 4.9 and cQ is an absolute constant. 

5. LEMMAS FOR THEOREM 2 

Our lemmas for Theorem 2 are very similar to the corresponding ones 
from Section 4. The unwanted factor r+ 1 appears in Lemma 5.9 first, 
since Lemma 5.8, though it is sharp, cannot be exploited to such an extent 
in Lemma 5.9 (see (7.14)) as Lemma 4.8 in Lemma 4.9 in the corresponding 
algebraic case. 

LEMMA 5.1. Zfmj>O (1 <j<k) are fixed integers, sj>O (1 <j<k) are 
fixed reals such that cj”=, sjmj < N, then for every 0 $ f E IGCTP( N of the 
form (2.11) with rj>l (l<j<k) and for every 0<6<n there exists a 
k E IGRTPJ r of the form 

such that 

and 

If'(n) Jw)l=-~y<n If'(x)e)l> (5.2) -. . 

where the supremum in (5.1) is taken for all 0 f w E IGRTP( r of the form 

w= n IQJ’ (Q,,p L,, 16jGk) 
j= 1 

such that 

If ‘(~1 w(n)l = -2:x< k If’(x) w(x)l . . 

LEMMA 5.2. Zf nj 2 0 (1 < j < k) and 0 <h <k are fixed integers, rj >, i 
(16 j,< h) and rja 1 (h < j< k) are fixed reals such that c,“= 1 rjnj < N, 
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then for every 0 $ w E IGRTPI, and for every 0 < 6 < x there exists an 
7~ JGRTP(, of the form 

such that 

where the supremum is taken for all 0 $ f E (GRTPJ n of the form 

f = ii IEJ’/ (P,,,E T,,, (1 <j<k), P,Jz)zO (ZE R, 1 <j<h)). 
J=I 

LEMMA 5.3. Let @IS IGRTPI, be defined by Lemma 5.1. Then S has all 
its zeros in [ -6, S]. 

LEMMA 5.4. Let YE IGRTPJ N be defined by Lemma 5.2. Then 7 has only 
real zeros. 

The following Remez-type inequality was proved in [2]. 

LEMMA 5.5. For every g E IGCTP) N and 0 < s < 271 we have 

m({yE[--71,n):g(y)>exp(-Ns) max dX))PC,OS~ -n<x<n 

where m( . ) denotes the Lebesgue measure and cIo is a positive absolute 
constant. 

LEMMA 5.6, Let NZ 1 and g E JGCTPI N be such that 

g(n)= max g(x). 
-n<x<n (5.4) 

Then for every 0 < c4 < 1 there are c5 > 1 and c6 > 0 depending only on c4 
such that 

m({yEC~--c,N-l,~+c,N-l]:g(y)~c,l max g(x)})>c,N-’ -n<x<n 

holds. 

The following lemma can be found in [S]. 
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LEMMA 5.7. Let r > 0 and 0 f p E T,, be such that 

I p(n)1 = _za;CZ IP(X . . 
(5.5) 

Then p has at most 3nr zeros in [n - r, n + r]. 

LEMMA 5.8. Let r > 0 and 0 $ g E [GCTPI N be of the form (2.11) such 
that each rj is rational, and assume that 

g(n) = -,y& g(x). (5.6) . . 

Then the total multiplicity of the zeros of g lying in [n - r, x + r] is at most 
3Nr. 

LEMMA 5.9. Assume that f~ IGCTPI,,, and w E IGCTPJ, are of the 
forms 

f(z)= fi /,i*TI’ (zj are real, rj > 1 are rational, 1 < j < k,) (5.7) 
.j= 1 

and kz z-u. 9 
w(z) = n sin d 

j=l I I 2 

(u~E[-~++(N+Z--~,~~-~(N+~--‘], 

sI > 0 are rational, 1 d j 6 k,), 

respectively, and 

Then 

1fYJ.c) w(~)l= -yx<, If’(x) w(x)l. . . 

(5.8) 

(5.9) 

If’(~) w(n)1 6 c,,(r+ l)(N+ 0 _~y<~ f(x) 4x1, . . 

where 6 = 7~ - $( N + r)- ’ and cI1 is an absolute constant. 

LEMMA 5.10. Assume that feIGCTP\, and WE IGCTPl,- are of the 
f orms 

(zj are real, rj 2 1 are rational, 1 < j < k, ) (5.10) 
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and 

respectively. Then 

(u, E @, sj > 0 are rational, 1 < j Q k2), (5.11) 

where 6 = 7~ - $N + l’) -’ and c,~ is an absolute constant. 

6. PROOFS OF THE LEMMAS FROM SECTION 4 

Proof of Lemma 4.1. Choose WOE (GRAPI, (i= 1,2, . ..) of the form 

wi= n IQ,,iI' (Q,,,,~E~~,, 1 Q'dk) (6.1) 
j=l 

such that 

If’(l) w,(l)1 
max-,...6f(-X)wi(X)~miniL-i-“i’ 

(i= 1, 2, . ..) 

and 

If’(l) wi(l)l = -Etfcl lf’tx) wi(x)l. 
. -. 

We may assume that 

;t;<, IQ,+(x)I = 1 (1 ,< j<k, i= 1,2, . ..). 
. . 

For every 1 < j < k we can select a subsequence of {Q,, ;} ,y, (without loss 
of generality we may assume that this is (Q,+} p”= , itself) such that 

lim -;y<, IQ,,&)-&,+)I =O 
i-rm .Z 

holds for every 1 < j < k with some limit polynomials Qm, E Z7,,. Then it is 
easy to see that 

has the desired properties. 1 
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The proof of Lemma 4.2 is quite similar to that of Lemma 4.1, so we 
omit the details. 

Proof of Lemma 4.3. If K(zO) = 0 for a z,, E C\rW (we may assume that 
&,,(z,) = 0), then the function 

9,(z)= ii @m,e,l~J) IQ&i (I- (zJ;o,f’,) S’E IGRAPIi- ( j=2 )I 

with a sufficiently small E > 0 contradicts the maximality of 9. If $(zO) = 0 
for a z. E rW\[ - 1, S] (we may assume that &,(zo) = 0), then the function 

1 -8 sgn(z,) 1-z 
zo-z 

with a sufficiently small E >O contradicts the maximality of 6. Thus the 
lemma is proved. m 

Proof of Lemma 4.4. If T(z,) = 0 f or a z. E C\rW, then there is an index 
1 < i f k such that I,, = 0. Then the function 

with a sufficiently small E > 0 contradicts the maximality of J Thus the 
lemma is proved. 1 

Lemma 4.5 was proved in [2, Theorem 11. 

Proof of Lemma 4.6. Let T,,(x) = cos(n arccos x) ( - 1 <x < 1) be the 
Chebyshev polynomial of degree n, and with n = [N] > 1 we define 

QJX) := T,(x + C,W2). (6.2) 

It is easy to check that the well-known explicit formula for T, outside 
(- 1, 1) implies 

Q,(l)>c,>L (6.3) 

where c5 is a constant depending only on cd. We study the product 

G=Q,g, (6.4) 
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where gc IGCAPJ, satisfies (4.4). From (6.2), (6.3), (6.4), and (4.4) we 
easily deduce that 

lG(~)l6 max g(x)<c;‘QJl) g(l)<c;’ max /G(X)\ -I<x<l -I<.r<l 

(-l<ygl-c,N-*). (6.5) 

Applying Lemma 4.5 to JGJ E IGCAPJ,, with s= (log c,)*(2N)-*, we 
obtain 

~({YE C-1, 11: IG(Y)I >exp(-logc,) -;y<, IG(x)l)) . . 

=~(IYEC-~, 11: Ill >exp(-2NJ) pyy<, IGb)l}) . . 

> c,(log c,)~(~N)-* = c,N-*. (6.6) 

This, together with (6.5), yields 

m({y~ [l -c,N-*, 11: [G(y)/ >c;’ max IG(x)l})>c,N-*, 
-lGX<l 

hence by (6.2), (6.3), and (6.4) we get 

m({.w Cl -cd-*, 11: g(y)%-,’ _y<y<, g(x)})8c6N-*; . . 

thus the lemma is proved. 1 

The proof of Lemma 4.7 can be found in [S, Lemma 1 and Corollary 11. 

Proof of Lemma 4.8. Let rj = qj/q (1 <j< k) with some positive 
integers. Applying Lemma 4.7 to the polynomial 

Ic(*9 fi ((Z-z,i)(Z-~j))9w72yN, 

j=l 

and taking the (2q)th root of its modulus we get the lemma 
immediately. 1 

Proof of Lemma 4.9. By Remark 3.4., (4.7) implies that If’1 E IGCAPI, 
has only real zeros, and at least one of any two adjacent zeros of If’1 has 
multiplicity at least 1. Hence, applying Lemma 4.8 to g= If’wl E 
IGCAPI,,, with r = c,(N+ r)-* = (c,(N+ r))-*, we can deduce that 
If’1 does not have two different zeros in [ 1 - c,(N + T))*, 11. Since w does 
not have any zero’in [l - c,(N+ r))‘, l] by assumption, the set 

{ye Cl-c,(N+I’~*, 11: g(y)>c;’ max g(x)) 
-l<x<l 

(6.7) 
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is the union of at most two intervals. Since If’\ does not have two different 
zeros in [ 1 - cq(N+ Z))2, 11, by Rolle’s theorem we deduce that f has 
at most two different zeros in [ 1 - cq(N + Z) -2, 11. Hence, applying 
Lemma 4.6 to g = If’~il E ]GCAP( N+r, we can find an interval 

such that 

[a,h]=Zc[l-c‘$(N+Z))2,1] (6.8) 

m(z)=h-u>,pv+r)-2, (6.9) 

g(t)>c,’ max g(x) (tEz) (6.10) 
-l<.x<l 

and 

f is positive (hence differentiable) on I. 

By (6.8) and (4.8) 

(6.11) 

w is positive (hence differentiable) on I. (6.12) 

Because of (6.11) and (6.12) we can use the partial integration formula for 
g = jf’wj on Z, and we obtain 

2 (N+ w2 -yy< 1 If’(x) ++)I . . 

<s” If’(t) w(t)1 dt=i j”fWv(t,dt/ 
(I a 

G If(b) w(b) -f(a) w(a)1 + j” If(t) w’(t)1 dt. 
a 

(6.13) 

Here we used the fact that If’(t)1 d oes not vanish on [a, b] = Z because 
of (6.10). To handle the term jt If(t) w’(t)] dt we use Lemma 4.8. We 
introduce the intervals 

Z,=[l-2c,(a+1)4(N+Z)--2, l-2c4a4(N+z7-2] (tx=O, 1, 2, . ..). 
(6.14) 

By assumption (4.8), w does not vanish in I,, and applying Lemma 4.8 
to g= If’wl (we can do so by assumption (4.9)) we deduce that the 
total multiplicity of the zeros of g lying in Z, is at most 
c,& (N+ T)(cc f 1)2(N+ Z)-’ = fi(~ + 1)2. Now let 

tezc [l -c,(N+Z)-2,1]. (6.15) 
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Then uj < t by (4.8), therefore 

d f \//Z(a+l)2c4a4(N1+r)-2 
u=l 
Jz- Gr, %,,a-’ (N+T)2<y(N+I)2. 

( 1 

Therefore, recalling (6.8), we obtain 

fi jab If(t) w’(t)1 dt Gc, (N+ 0’ 1” f(t) w(t) dt cl 

~~(N+T)‘(h-u)~~~~*f(x) w(x) 
c4 . . 

<Ji max f(x) w(x). 
-IS\-<1 

This, together with (6.13), yields 

_ T”zljJ< 1 If’(x) w(x)1 d c13w+ o* _ y;<, fb) w(x). . . . . 
Observe that the Remez-type inequality of Lemma 4.5 implies 

max j(x) w(x) < c14 max j(x) w(x) 
-Ic.Y<l -I Gzr=s8 
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(6.16) 

(6.17) 

(6.18) 

(6.19) 

with 6 = 1 - 2c,(N+ r))2, where c,~ is an absolute constant. Now (6.18) 
and (6.19) gives the lemma. 1 

Proof of Lemma 4.10. First assume that (4.9) holds. Then using 
Lemmas 4.1, 4.3, 4.9 and Remark 3.3, we obtain (4.12). Now we can easily 
drop assumption (4.9). Choose an x,, E [ - 1, l] such that 

If’(%) w(xo)l = _ fyy-<, If’(x) w(x)l. (6.20) 
. . 

Without loss of generality we may assume that 0 6 x0 < 1. Applying the 
already proved part of the lemma transformed linearly to the interval 
[ - 1, x,], we get 

640,68!3-6 
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If’(l) w(l)1 d If’bo) w(xo)l ~~(N+T)‘-,~a:~~f(x)w(x) 
0 . . 

< 2c&V + q2 max f(x) 4x1 --I<X<l 

< c,(N + ry max f(x) w(x), (6.21) 
-1GXGS 

where the last inequality follows from (6.19) with cg=2c,c,,. Thus the 
lemma is proved. 1 

7. PROOFS OF THE LEMMAS FROM SECTION 5 

The proofs of Lemmas 5.1 and 5.2 are the same as those of the corre- 
sponding lemmas from Section4. 

Proof of Lemma 5.3. If $(zO) = 0 for a Z~E @\rW (we may assume that 
&,,,(z,) = 0), then the function 

sin2( (z - 7r)/2) $1 

sin((z - z,)/2) sin((z - Z0)/2) 
E lG.RTP( r 

with a suffkiently small E > 0 contradicts the maximality of 6,. If @(zo) = 0 
for a z. E [ - rr, rc)\[ -6, S] (we may assume that &,(zo)), then the 
function 

w=( fl lem,w) 
j=2 

sin((z - n)/2) ” 
sin((z - z,)/2) 

E )GRTP( r 

with a sufftciently small E > 0 contradicts the maximality of %. Thus the 
lemma is proved. 1 

Proof of Lemma 5.4. If y(z,) = 0 f or a z. E @\rW, then there is an index 
1 < i < k such that P,,, (zo) = 0. But then the function 

T&(z) = ( fi (P,w) 
j=l 
i#i 

sin2((z - 7c)/2) 
>I 

r, 
l--E 

sin( (z - zo)/2) sin( (z - 2,)/2) 
E 1GRTPl N 
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with a sufficiently small E > 0 contradicts the maximality of 3 Thus the 
lemma is proved. 1 

Lemma 5.5 was proved in [2, Theorem 21. 

Proof of Lemma 5.6. Let T,(x) = cos(n arccos x) (- 1 <x 6 1) be the 
Chebyshev polynomial of degree n. Then 

(O<odn) 

is a trigonometric polynomial of degree n. We define 

Q,(x) = Qn,aAx) with n= [N] and w=n-c,N-‘. (7.1) 

It is easy to verify that the well-known explicit formula for T, outside 
(-1, 1) implies 

en(~) ’ c5 ’ 19 (7.2) 

where cs is a constant depending only on cd. We examine the product 

G=Qng. (7.3) 

From (7.1), (7.2), and (7.3) we conclude 

IG(Y)I G max g(x) < c;‘Q,An) g(n) <c;’ max ]G(x)l -n<x<n --n$xgn 

(-o<y<o). (7.4) 

Applying Lemma 5.5 to (GI E (GCTPI,, with s = (log cg)(2N)-‘, we obtain 

m({yEC--,71):lG(y)l3exp(-logc,) max -=cTx<* ‘G(x)l)) . . 

=m((yE C-n, ~1: IG(y)l3exp(-2Ns) max IG(x)l}) -n<x<n 

Z c,,(log c5)(2N)-’ = c,N-‘. (7.5) 

This, together with (7.4) yields 

m({yE C-T n)\(-w 01: lG(~)l~:“s~ pnyxc, lG(x)I))Bc6N-‘, . . 

hence by (7.1), (7.2), and (7.3) we deduce 

m({ye [n-c,Np’,n+c4N-‘1: g(y)>c;’ max g(x)})>c,N-‘, 
-*<x4n 

thus the lemma is proved. 1 
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The proof of Lemma 5.7 can be found in [S, Lemma 2-J. 

Proof of Lemma 5.8. Let rj= qj/q (1 d j< k) with some positive 
integers. Applying Lemma 5.7 to the trigonometric polynomial 

(~1~~ fi (sin~sin~)“,T,,, 
j= 1 

and taking the (2q)th root of its modulus we get the desired result 
immediately. 1 

Proof of Lemma 5.9. From (5.7) and Remark 3.4 we can deduce that 
1 f ‘I E IGCTP) ,,, has only real zeros, and at least one of any two adjacent 
zeros of If ‘I has multiplicity at least 1. Therefore, applying Lemma 5.8 to 
g= If’wl E WTPI,,, with r = i(N + Z)) ‘, we deduce that If ‘I does not 
have two different zeros in [n - $N+ T))‘, rr + i(N+ r))‘]. Since w does 
not have any zero in [ rc - i( N + I) ~ ‘, 7c + f( N + r) - ‘1 by assumption, the 
set 

{yE[7c-33’(N+r)-‘, TC+~~‘(N+~)~‘]: g(y)Bcy’ max g(x)} 
--n<x<n 

(7.6) 

is the union of at most two intervals. Since If ‘I does not have two different 
zeros in [rt - i(N+ Z))‘, rc + f(N+ Z)-‘1, Rolle’s theorem implies that f 
has at most two different zeros in [rc- i(N+r))‘, n + i(N+ r))‘]. 
Hence, applying Lemma 5.6 to g = I f’wl E IGCTP\,+,-, we can find and 
interval 

[a,b]=Zc[n-3-‘(N+r)~‘,71+3~‘(N+r)-’] (7.7) 

such that 

m(Z)=h-a>~(N+I.)pl, (7.8) 

g(y) 2c;’ max g(x) (YEI) (7.9) n<x<lr 

and 

f is positive (hence differentiable) on Z, (7.10) 

where cg > 1 and cg > 0 are chosen for cq = 3 by Lemma 5.6. By (7.7) and 
(5.8) 

w is positive (hence differentiable) on I. (7.11) 
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Because of (7.10) and (7.11) we can use the partial integration formula for 
g= If’wj on Z, which yields 

= 
ji 

b f’(t) w(t) dfj 6 If(b) w(b) -f(a) w(a)1 + jb If(t) w’(t)1 dt. a n 
(7.12) 

Here we used the fact that If’(t)1 does not vanish on Z because of (7.9). To 
handle the term Jt If(t) w’(t)1 dt we use Lemma 5.8. Let 

tEzc [7c-331(N+Z)-‘, n+3-‘(N+Z))‘]. (7.13) 

By assumption (5.8) we easily obtain 

Iw’(t)l _ 1 k2 

w(t) 
YLj?l sjCOty $3T(N+T) (tEZ). (7.14) 

Hence, recalling (7.7), we obtain 

j-‘/j-(t) w’(t)/ dt<31‘(N+T)j”bf(t) w(t)dt 
u 0 

< 3Z(N+ T)(b - a) ayyb f(x) w(x) 
. . 

d 21” max f(x) w(x). 
a<x<b 

(7.15) 

This, together with (7.12) gives 

z;x<n U-Y 1 ( )I . . 
x w x <c15(T+ l)(N+ Z) nmG;xC, f(x) w(x). (7.16) 

. . 

Now observe that the Remez-type inequality of Lemma 5.5 yields 

mix f(x) w(x)dc,, mix f(x) w(x) --6<x<c5 n<x<n 
(7.17) 

with ~5=n-f(N+Z)-‘, where cl6 is an absolute constant, and this, 
together with (7.16) gives the lemma. 1 

Proof of Lemma 5.10. First we assume (5.9) holds. Then Lemmas 5.1, 
5.3, 5.9 and Remark 3.3 imply (5.12). Now we drop assumption (5.9). We 
choose an c( E [ -n, n) such that 

If’(a) W(@)l = -yy<, If’(x) w(x)l. (7.18) 
. . 
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Applying the already proved part of the lemma to f(z) =f(z + a - rc) E 
IGCTPI N and G(z) = w(z + a - 7t) E IGCTPI,, we obtain 

If’(n) W(n)1 < If’(a) w(a)1 d cll(f+ l)(N+ r) max f(x) w(x) 
-n<x.<n 

G c1*(f+ lW+ f) _yx<s f(x) w(x), (7.19) 
. . 

where the last inequality follows from (7.17) with c,~=c~~c,~. Thus the 
lemma is proved. 1 

8. PROOFS OF THEOREMS 1, 2, AND 3 

Proof of Theorem 1. It is sufficient to prove that 

If’(l) w(l)1 6 c17(N+ ZJ2 max f(x) w(x), (8.1) --I<.Y<a 

where 6 is defined by Lemmas 4.9 and 4.10, and c17 is an absolute constant. 
To estimate If’(y) w( y)l (- 1 < y < 1) we can use the above inequality 
transformed linearly to the interval [ - 1, y] if y > 0, or to the interval 
[ y, l] if y < 0, and we obtain the desired inequality with c, = 2c,, . To 
show (8.1) we may assume that 

f(z)= fi lz-zjp (z,E@, rj>/ 1 are rational, 16jdkr) (8.2) 
J=I 

and 

w(z)= fi )z-uj(~+ (USE C, sj > 0 are rational, 1 <j < k2), (8.3) 
j= 1 

since, if the inequality of Theorem 1 holds for these functions, then we get 
the theorem in the general case by approximation. By Lemmas 4.2 and 4.4 
we may also assume that each zj (1 < j < k,) in (8.2) is real; therefore from 
Lemma 4.10 we obtain (8.1). Thus the theorem is proved. 1 

Proof of Theorem 2. Because of the periodicity it is sufficient to prove 
that 

If’(n) W(~)l G c,,(~+ l)W+ 0 mbytx<6 S(x) w(x), (8.4) -. . 

where 6 is defined by Lemmas 5.9 and 5.10 and c,~ is an absolute constant. 
By using a density argument, it is sufficient to prove (8.4) when 

f(z)= fi (sin?/’ (z,E@, rj> 1 are rational, 1 <j<k,) (8.5) 
.I = 1 
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and 

(uj E @, sj > 0 are rational, 1 <j Q IQ). (8.6) 

By Lemmas 5.2 and 5.4 we may also assume that each z.~ (1 ,<j,< k,) in 
(8.5) is real, hence Lemma 5.10 implies the theorem. 1 

Proof of Theorem 3. The inequality of Theorem 3 follows immediately 
from Theorem 2 and Remark 3.3, by the substitution y = cos x. 1 
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