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Throughout this paper c¢,(-), ¢,(-),.. will denote positive constants
depending only on the values given in the parenthesis. Let {7, be the set of
all real algebraic polynomials of degree at most n. A weaker version of an
inequality of the brothers Markov (see [8, 9]) asserts that

max |p"™(x)|
ASx=B

<(2 Lp(x)] I, >1
- B—4 Aglxa)g(B px) (PE ny B, M= )

o~
[y
[

For 0<rZ(B—A4)/2 (4, BeR) let
D\(A, B, r)t :={zeCllz—(A+r)<r}
and denote by S4(4, B, r)" (0 <k <n) the set of those polynomials from

I1,, which have at most k roots in D (A4, B,r)™. From (40) of [2], by a
simple linear transformation we obtain

THEOREM A. Let 0<r=<(B—A)/2, A. BeR, 0<k<n, n mz1, and
seS5(4, B, r)*. Then

nlk+1) \" X
s sentm) () max ol
! N, r(B__A) ASxE B
Let
plis:= sup [p(x)exp(—x) (pell,,a>0), (2)
0sx<=x

Dy(ry:={zeCl|z—r|<r} (#>0), {3)
Di(r):={zeC|Rez>r} {4)
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214 T. ERDELYI

and denote by W¥(r) and V¥(r) (0<k<n, r=0) the set of those polyno-
mials from I7, which have at most k roots in D,(r) and D;(r), respectively.
The main purpose of this paper is to give Markov-type estimates for the
derivatives of polynomials from I7,, W(r), and V(r) (0<k<n,r>0) on
[0, co) with respect to the norm |[-|,. We shall prove the following
theorems.

THEOREM 1. Let n=2, m=1, and a>0. Then we have
” p(m)"a é Cz(a, m)(Kn(a))m Hp”a (p € Hn)a
where

n?~v if l<a<w
K (a)=<log’n if a=3
1 if 0<a<}.
THEOREM 2. Let n=22,05k<n,m=1,r=0, and a>0. Then we have

1Pl < es(a@, m){((k + 1) Lo(a, r))" I pll.  (p€ Wi(r)),

where
nZ—l/a (Oérénl/a’l)
nl——l/(Za)
Ln(aa i‘)= (nl/afzérénl/”)
Jr
nl—l/a (nl/“§r<co)
ifl<a<oo,
nZAl/a (Oérénl/a—l)
pl—12a)
La,r)= (n*em2<rgn? 1)
A/ T
1 ("Y1 < r< )
ifi<agl,
log?n  (0Zr=<log?%n)
log n
L £ (log7?n<r<log®n)

(log? n<r< w)
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ifa=4%, and
Lar)=1 if O0<a<i.

THEOREM 3. [f k=0, 1Em<n, and O<a+#1, then up 1o the constant
depending only on a and m Theorems 1 and 2 are sharp.

Conjecture 1. Up to the constant c¢,(@, m) Theorem 2 is sharp even in
the case when k=0, 1 <m=<n, and a= 3.

THEOREM 4. Let n, m=1, r20, and a > 0. Then we have
[P . S cala, mIG(a, )V pll.  (pe VI
where

r2a—l+n1—1xa+1 (0§r§n1'a‘)
Gula,r)= n? e (n'*<r<x)

when ¥ <a< o,

log’(r+2) (0sr<a’
log’(n+1) (nl<r<x),

Naar

Guth )=

C

and

G ar)=1 when 0<a<i.

THEOREM 5. For all O0<a# % and Y Em =< n, up to the constant cy(a. m)
Theorem 4 is sharp.

Conjecture 2. Up to the constant c.(q, m) Theorem 4 is sharp even for
a=land 1Sm<n
(To see this it would be sufficient to prove that Theorem 1 is sharp when

-1

Proof of Theorem 1. Tt is sufficient to prove the theorem when m =1,
from this the general case follows by induction on m. We distinguish two
cases.

Case 1. 1=a< . Denote the integer part of a by {a]. A close inspec-
tion of its derivative shows that

) x[a] 2n X
F(x) = <1 ~;—[a—];) exp(x”)

/

640.58 2.7
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is monotonically decreasing in [0, n'/“]; therefore

exp(—y“)
(1 - y[a]/n [a]/’a)Zn

exp( _xﬂ) g qn, y(x) =
x[a] 2n
x(l— [a]/;> 20 (0sysxsn'™). (5)
n

Now let peII, be arbitrary. Then s :=pg,, , € Hapa74 1) (05 y<n'?), so
by (1) and (5) we obtain

2(2[a]+1)*n?

o)l < )
ls'(¥)] = T S |p(x) g, ,(x)|
Zes(ayn®= 1 max | p(x) exp(—x“)]
yExZ y+(1/2)nli
Ses(ayw®> Y pll, (0L y=5n'). (6)

Further a simple calculation shows that

|40 (PN Scola)n' = exp(—y?)  (0Zy<in'), (7)

Hence and from (6)

[p’(y) exp(— ¥y =p"(¥) 4u, ,(¥)|
SISO+ 1p(y) 4, ()]
<es(a)n* V| pll,
+cglayn' =1 | p(y) exp(— y°)|
Seay® Y pl,  (pell,,0<y<in'@). (8)

Finally by (1) we get
2

, " o 2n
|P'(y) exp(—y*)| <exp(—y )7 max |p(x)|

4]

<d4n*~ % max |p(x)exp(—x°)|
)

0=x=
<4’ |pl, (peM,, 3n'*<y<w) (9)

Now (8) and (9) give Theorem 1 in this case.
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Case 2. (O<a=<1. We need the following Markov-type inequality,

sup | f"(x) exp(— |x|°)| S c5(b) H,(b) sup |f(x)exp(—|x|°}

[xi < o2 x| <o

(felly, n22,6>0), (10)

where
' i 1Sh<ax
Hd(b)=< logn if 6=1 (11}
1 if O0<b<l.

{See G. Freud [4] (2<b<w), A. L. Levin and D. 5. Lubinsky [5]
(1 <b<2),and P. Nevai and V. Totik [11] (0<b=<1).) Now et ge 7, be
arbitrary and f(x)= g(x*)e Il,,. Using (10) and the substitutions z = x?
and a = b/2, we get
|g'(0)|=31/"(0)]
< ¢o(b)(H,(b))* sup |f(x)exp(—|x|")]

[x| < o

Sciola) K,(a) sup |g(z)exp(—z?)|

0z <

scpla) Ky(a)llgl.  (0<a<). (12}

Let pell, and ye[0, oc) be arbitrary. Consider the polynomial g{x)}:=
plx+ yyell,. Applying (12) to g and using that x°+ y*=(x+ y¥
(x, y20,0<La=1), we obtain

[p'(3)l=1g'(0)]
.S_ CIO(a) Kn(a) Hg”a
= ciola) Ko (a) exp(37) sup lp(x+ y) exp{—{x+ »))

= ciola) K{a) exp(y°) [ pll., (13}

which yields Theorem 1 in this case as well. [

Note 1. In case a=1 Theorem 2 was proved by G. Szego6 [121], but his
method does not work in the general case.

Before proving Theorem 2 we establish a Bernstein-type estimate on
[0, ¢} with respect to the norm || p|,.
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LemMa 1. Letmz=1, a>0, y>0. Then
12" (yyexp(— y*) S cyyla, m)(H,(2a))" y "2 |pl,  (pell,),

where H, (b} is defined by (11) for b> 0.
Proof. From (10), by induction on m it is straightforward that

sup |f"(x) exp(— Ix])|

[x| < o0

< ciplb, m)(H,(b))™ sup |f(x)exp(—|xI")]  (fell,, 0<b< o)

x| < oo

(14)

We prove the lemma by induction on m. The statement holds for m=0.
Now suppose that it holds for all 0 < u<m — 1. Let pe I1, be arbitrary and
let f(x) := p(x*) € IT,,. It is easy to check that with suitable constants c,,, ,,
depending only on u, v, and m we have

)=+ Y X (1)

thus with the substitution y = x? and b = 2a we have
S (x) exp(— x| %) =27y p ™ y) exp(— y°)

+ Z cu,v,m yvx'Zp(/J)(y) exp(_}’a)- (16)

0O<sv=usm—1
2u—v=m

Here by the induction assumption
|y*2p®(y) exp(— y*)|
= ["pWexp(— y)| yt 172
Scyla, p)(H(2a))* | pllo (H(2a))

< eula, w)(H,(2a)" 1ol
OSv<psm—1,2u—v<m y2(H,2a)"?). (17

Using the substitutions y = x?, b= 2q, and recalling that f(x) = p(x?)e I1,,,,
from (14) we get

|/"(x) exp(— |x|?)|
S (b, mi(H,(2a)" |pll.  (y20) (18)
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Now (16), (17), and (18) give the desired result when y 2 (H,(2q)) 2. I
0< y<(H,2a))™? then by Theorem 1

|2 (p) exp(— y*)| < c5(a, m)(K,(a))" | pll.
< cola, m)(H,(2a))" y =" || p,.

s
U,

19)

Thus the proof of the lemma is complete. |
Proof of Theorem 2. We distinguish three cases.

Case 1. az1. We shall use the notations introduced in the proof of
Theorem 1. Observe that g, , (0= y <4n'") has all its zeros outside the
circle {zeC||z| <n'}. Hence by an observation of G. G. Lorentz g, , is
of the form )

g (x)=Y aj(x—n"")y (n"*—x)""7  withall a;=0,
j=0

so from Theorem B of [6], by a linear transformation we get

|q§«”;()’)| <cusla, jYn' ey
X max g, (X))

yExZy+(12)nlia

=cysla, j)n' 1y

xexp(—y‘) (0= y=3n' j20) (20)

To prove Theorem 2 we proceed by induction on m. In case of m =0 the
statement is obvious. Suppose that the theorem holds for 0 < j<m 1.
Let 0<y<r, n'*2<r<in', and peW%(r). Then s:=pgq,, €
Stta1+ 1m(¥s ¥+ 30Y% 1/2), so using Theorem A and (5) we have

nlfl,v'(Za)(k_i_ 1)2 e
/v

/

()] < eralas m) (
—\/ E4

x _max |p(x)q, ()

)'§x§y+(1,«"2)n1“
é C14(a, m)((k + 1)2 Ln(a: r))m

x max | p(x) exp( — x*)]

rExSy+(1,2)nk
<ecla, m)((k+1)2 L(a, )" |pl,

O y<rn 2<r<in'). (21)
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Now by (5), (20), (21), and the induction assumption we deduce

2" (y) exp(—y*) =" (¥) g, (¥)|
<(pg. )™ ()
» im )
3 (M) (g
=1
éCM(a’ m)((k+ 1)2 Ln(a, r))m “p“a
m m )
+ 2. )exp(y“)c3(a,m——j)
i=1
X ((k+1)* Ly(a,r))" 7 |pl.
x ¢y3(a, j)(n' ~ 1) exp(— y?)
< eysla, m)((k+1)> L(a, r))" |ipl.
(peWk(r),0<y<rn'" 2 <r<in'). (22)
Further by Lemma 1
[p"(y) exp(— y°)|
L ciela, m)(H,(2a))" r " | pll,
= cygla, m)(L,(a, m))" | pl, (pell,,r< y< ). (23)
Now (22) and (23) give the theorem when n'“~2Zr<in'a If
0<r<n"~2 then Theorem 1 gives the desired result. If n"*<r< oo,

then using the relation W¥(r)c W%(4n"“) and the just proved part of the
theorem, we get the statement for all r= §n'/

Case 2. 1 <a<1. We need a number of lemmas.

LeMMA 2. For alln22 and § £a< oo there exist polynomials Q, , € IT
such that

(@) 20,4y exp(y¥)Scila) (0 y=n'™) (24)

and

[cis(a)n] if f<a<ow

[(Clg(a)n lOg n] lj" a:% (25)

1£N=N(n) ::{

hold with suitable c,(a), c,g(a), and c 4(a).
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By using the substitutions y = x and b = 2a, this is a trivial consequence
of the corresponding result for the interval (— oo, oc) and weight function
exp( — |x]%) (1 £b < ©); see Theorem 1.1 of [5] when 1 <b< o0, and the
proof of Theorem 3 of [11] when b= 1.

Lemma 3. Ifi<a<o0,r>0,0# vell, and

[0(0)[ 2 c0(a) max —fo(x)| (2¢)

0<x=nple

then v has at most cy(a)ln=Y0

[o, 1.

Using Lemma 1 of [2] and the substitution x=3n'“(1+cos?), we
obtain Lemma 3 at once.

\/ r roots {counting multiplicities) in

LemMa 4. Ifi<a<oo,n j=0,r>0, pell, has all its zeros in [2¢, oo}
and |p(0)| = || pli,. then

. L M\
|P(0)] < exla, Jj) <:F,) IPla

where M= Nn~ Y% and N is defined by (25).

Proof. Let deg p=/<n and denote the roots of p by (2r<jx, <
X, £ -+ £x,(<o0). Observe that v:=pQ, ,cll,, , satisfies (26) where
Q.. and N are defined by Lemma 2. With the notation

L=[2r*2rv+ 1)1 (v=1,2,..)

from Lemma3 we deduce that v and hence p as well have at most
czl(a)(n—an‘l"z”’\/_ v+1)? roots {counting multiplicities) in 7.
Hence and from (25)

PO ;T:(’(()O)i (i >j (}j y Ly

”PHa v=1i xuel,” Xy

IA

, A
=< Z Czl(a)(""”N)nil'(zmV/_r (V+1)zfr—v—4)

v=1

§((2 /Eczl(a) i —15> (”’_+N_)/w”_7_m:a_;\)1

W /
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LeMMA 5. If i<a<oo, n2l, M2<r<M?* (M is defined in
Lemma &), peIl, has all its zeros in {2r, o0), and | p(0)| = || p}i ., then

1P(0)] <2 | p(x) (xe[o —\/—T—JC [0, 1])

’ cxsla)yM

with a suitable cs5(a).

Proof. Let cy3(a) :=max[2c,,(a, 1), 1} and

Y= 623(0)M'

Since M ~2<r< M? we have
0< y<min{r, 1}. (28)
As | p'(x)| is monotonically decreasing in (— o0, 2r], Lemma 4 implies

C22(a, 1 )

M
() = IP'(O)Ié—\/——r———IIPIIa (0=8=2r). (29)

From the mean value theorem, (27), and (28) we deduce that there exists
a &, €(0, y) such that
|p(0)— p(M) =y 1P ()
Vo ocpla, )M
< iplla
cla)M /oy P

<3 lplle =31p(0); (30)

hence

2|p(y)l 2 1p(0)I. (31)

As | p(x)| is monotonically decreasing in (— o0, 2r], (27) and (31) give the
desired result. |

LEMMA 6. Let $<a<oo, n, m21, M *<n<M? (M is defined in
Lemma 4), s = pq where pell, has all its zeros in [2r, 0), | p(0)| = ||pl.,
and ge Il,. Then

2\ m
150 < crala, m) <M> Il

\/—r_

(32)
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Proof. For the sake of brevity let

_ e .
I=1In,a,r):= [0, czs(a)M} <10, 1]. (33)

Applying Markov’s inequality to ge IT, on I, we get

lq“"f)(o)\é(z—cij*a”)%’ﬁmnlq(xnl O<jsm).  (34)
r

where

.
(F%]
(€21
-

x, €1 is such that |g(x,)] =rna;( lg(x)].

Therefore by Lemmas 4, 5, (34), and (35) we easily obtain

m

EUES) (’;’) 1p(0) ¢ (0}

j=0
i MY (2c55(a) MIP\™ 7 g
= <m> cnla j) <_/:> lella %") fg{x}i
j=0\J N N
M+ 1)\
< eataom) (L) 1pt) )
v r

< ecys(a, m) (Afif—_l—))m sl 8
NE.

LemMma 7. Let $<a<w, n, m21, M 2<r<M?> (M is defined in
Lemma 4), s = pg where pell, has all its zeros in [2r, «0), and qe I, has
all its zeros in {ze C{0<Re z<2r}. Then inequality (32) holds.

Proof. Because of the conditions prescribed for the roots of p and g,
|s(x)] is monotonically decreasing in {— 0, 0]. (363
Thus there exists exactly one y e (—co, 0] such that
ls(y)| = lislia {37}
Now let
FS(x)i=s(x+ ) {38}

Then

o
il
=1
el
P,
o
D
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where p(x)= p(x+ y)ell, and §(x)=g(x+ y)e T, have all their zeros in
[2r—y,w)and {zeC|—y<Rez=<2r— y}, respectively. From (36), (37),
and (38) we easily deduce
13(0) = Is(»)I = lIsll, = I5l..- (40)
From (39) it is clear that
[PO) = [P(x)| 2 [ p(x) exp(—x*)]  (0Sx<dr—2y) (41)
and

14(0)] = 14(x)]  (4r—2p=<x< o). (42)
By (39), (40), and (42) it is obvious that

_50)1  15(x) exp(—x?)
701 = 13
=1p(x)exp(—x)|  (4r—2ySx<o) (43)

|5(0)]

Now (41) and (43) yield
[P0} = 1P| (44)

Because of (39), y <0, and (44), Lemma 6 can be applied to §= 5g; thus
also using (38) and (40) we obtain

2\ m
") = 5"0)] = ¢34(a, m) (%-—F—rl—)) 131}

~ eplam) (M

NG

By Gauss’ Theorem s“(x) has all its zeros in {ze C|Re z20}; hence y <0
yields

)mxlsu,, (M=2<r<M?).  (45)

[s2(0)] < [s“(¥)] (46)
which together with (45) gives the lemma. J
Now let

Ipllas:= sup [p(x)exp(—x*)  (pell,,a,6>0). (47)

S=x<

We need the following
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LemMa 8. (a) For all 05k<n, m=1, r, a, 6>0 there exists a
0 # s*=s*,, .56 Whi(r) such that

15*(0) 5™(0) .
_— = —_— 423
TP A E )

(b) s* has at most m roots (counting multiplicities) in

Dyr):={zeC\R||z—r|>r}.

The proof is rather similar to that of Lemma § of [2], so we omit it.
Now let § = 1/4n®. Then using Markov’s inequality (1) on [0, 1] {with
m=1) and the mean value theorem, we easily obtain

lpl. £2elplles  (pell,). (49}

From now on let s*:=s%, 5 Then in the same way as in [2] (see
(20)-(37) there}, from Lemmas 7 and 8 and (49) we can deduce that

|s*™(0)] < ¢y5(a, m)((k+ 1)* L(a, r))"
x[s*l5 (M TPSrsM?) (50}

whence because of the maximality of s* we get

[s"(O) < casla, m)(k + 1)* L(a, )™ ishas
S eysa, m)((k+ 1) L(a, 7)™ |s),
(se Wh(r), M 2<r < M?*). (31
Now observe that pe W4(r), ye[0,r] imply s(x):=p(x+ y)e Wk(r/2};
thus, applying (51) to s and using that x*+ y*Z(x+»)* (x, y20,
0<a<1) we obtain
P31 =1s"(0)]
< cagla, m)((k + 17 L,(a, 1) 5],
< aq(a, m)((k+ 1) L (@ 1))" exp(y)
x sup | p{x + y)exp( — {x + 1))

x=0
S cxgla, m)((k+ 1)* La, r))™ exp(y7) | plla
(peWi(r), 0 y<r, M *Sr<M?). (52)
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This together wih Lemma 1 yields the theorem, when M *<r< M2 If
0<r< M 2 then Theorem ! gives the desired result. If M%< r < oo, then
the relation W%(r) = WX(M?) and the just proved part of the theorem yield
the statement.

Case 3. 0<a<3. Now Theorem 1 implies Theorem 2. ||

Proof of Theorem 3. We shall use the following infinite-finite range
inequality,

Iflasexnta) _ max  |f(y)exp(—y) (f €D, 0<a<wo), (53)

<y = enlaynl

with suitable ¢,,(a), c»5(a) = 1. By using the substitutions y =x? and b= 2a
this is an obvious consequence of the analogous result for the interval
(— o, ) and weight function exp( — |x|?) (5> 0); see [7, Theorem A] or
[10, Lemma 6.3]. To prove the sharpness of Theorem2 when k=0,
1<m<n, and 0 <a# %, we distinguish three cases.

Case 1. 0<r<(n/dm) cg(a)n*if 1<a< oo, or 0<r < (n/dm)n*~ V2 if
{<a Let

J

(czs(a) 1I,a_4_mr> cos (2n—2j+1)n
T

2 2n

Czs(a) nl/a

> (1£/=n), (54)
z;=X; +ir (1£j<n), (55)

and
S(X) = 8,1 ol X) = _Z (x—z;0(x —Z;) € W(r). (56)

By Lemma 3 of [1] and (53) we easily deduce that

Is(0)]= _ max  |s(x)|

0= x < crg(a)nte

v

max [s(x) exp(—x?)|

= x = cagla)nl

1

ca7(a)

Z st o (57)

So using the notation g(x)=37_, (x —x;), (54)-(57), and the assumption
of this case, by a simple calculation we get
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") 1 1s™(0)]
Islla  ~ ex(a) 1s(0)]

> 2 (1 L) L lg"0)]

~ cyla) dm \/2 1q(0})]
V2 (¢ 1 y

= ecyy(a) (,-:Zm 1 —x;

= cola, m)(L,(a, r})" (t£m<n)
l/a

Case 2. (m/dm)cyla)n’®<r<o0, a=1. Now the polynomials
Spmra =X" show that Theorem 2 is sharp when k=0 and 1<m<n

Case 3. (m/dm)cyla)yn®~ " "<r<oc if i<a<l or O<r<o if
0 <a< 3. Now the polynomials s, ., , = x give the desired resuit. §

Of course the sharpness of Theorem2 when k=0, 1<m<n, and
0 < a# % implies the sharpness of Theorem 1 as well.

Noie 2. Theorem 2 and the examples of Theorem 3 yield that

s
ish

(O<r<ow,1<m<nl<a#l)

¢20(a, )L, r)™ < sup < esta m)(L(a, r)Y"

holds not only in the case when the supremum is taken for all polynomials
from WO(r), but for all polynomials from I7, having all their zeros in
{zeC||Imz|=r}.

Proof of Theorem 4. We need

LemMma 9. (a) For each nz1, r 20, a, 6 >0, and 0 < vy <r there exists
a polynomial p* = p¥, . s , € V(r) such that

ET 1
) lp.(})', (5%)
Hp*”a,é,y pe Vg(r') Hp”a,é.y
where [ pllas. 7= SUP [0, ).y — 5. y+ ) | P(X) €XP(—x“)].

(b) p* has all but at most one root in [0,r]ju{zeC|Rez=r+}, and
the remaining (at most one) root is in {— 0. 0).

The proof of this lemma is rather similar to that of Lemma 5 of {27, so
we omit the details.
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It is easy to see that for all a>0, n=1, and y=0 there exists a
0<8§=23(a,n, y)<1 such that

tel. =2 1plias,  forall pell,. (59)

By Lemma 9 p* e V%(r) satisfying (58) with 6 =3 is of the form

P*(x) = (x — xo)* ﬁ (x—x.) (jﬁo ax=n) (60)

where
Xo €(—o00,0), a=0, or a=1, (61)
x.€[0,r] (1=Zv=Ph) (62)
2,20  (0<j<y) (63)

and
a+f+2y<n. (64)

Let
I, ={jeN|0Zj<y, B+2j<2(4r+ 1)}, (65)
L={jeN|OZSj<y, B+2j= (4r+ 1)}, (66)

and

B
pi(x)==(x=x0)* [] (x—x,)a,(x—r)¥  (0Zj<y). (67)

v=1

By (60), (65), (66), and (67) we have
pE*=fi+ 15 (68)
where

fi=Y p and  f,:=) p. (69)

jeh jen
By (67), (61), (62), and (66) for je I, and 0 < y <r we obtain
1p; () exp(—y)|
|p;(4r+ 1) exp(— (4r + 1)?)|
S(a+p+25)3" ¥ exp((4r + 1))
S3(L+4+2/)37 P2 exp((4r+ 1) — (B+2/)/2) S c30. (70)
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Thus from (67), (69), (70), (68), (63), (59), and 0 <3 <1
|f2(3) exp(— y)| S 30 | fo(4r + 1) exp( — (4r + 1))
Scs | p*(4r+ 1) exp(— (4r + 1))
Scyplp*las, O=ysr) {71}

By (69), (65), and 0<a =1, f, is a polynomial of degree at most /:=
min{[2(4r+1)*+ 1], n}, so using Theorem 1, {63), (68), and (59) we
obtain

U iyYexp(—y9) Sexa, 1) Ki(a, r) [ fi .
Senla)Gula, r) /il
S cz(a) Gola, r) | p*li,
= 2cy(a) G, r) | p*llas., (O<a< o0, 0S y <o),
{(72)
From (68}, (71), and (72) we get
[p*'(y) exp(— y*)I
Scepla)Gla, ry | p*llas, (0<a<o0,05y<r)
hence the maximality of p* yields
[p'(y)exp(— y) S c3ala) Gula, ) I pllas, o
Scepla)Gular)lipl,
(peViyr),0<a<w, 0 y=<r). (7%
Now let pe V2(r) and z€ [0, oo) be arbitrary. Applying (73) with y =0 10
P(x) = p(x +z) e V%r) and using the inequality (x +z)*< x*+ 2% (x, z = 0,
0<a=1) we obtain
|p'(z) exp(—z°)| = | p'(0) exp(—z°)|
S cy(a) Gola, r) | pll, exp(—29)
Zcpla)Gula, r)

x sup |p(x+z)exp(—(x+z)")

O0=x<oc
g 632(61) Gn(a’ r) Ilp”a
(peVor),0<z<mw,0<axl) (74}

If pe V3(r)and r< y < $n"% then (cf. (5)) 5:= pq,., . € M (3007 4 1) has all
its zeros outside the circle with diameter [y, n'/*]; thus s is of the form
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d
s(x)= 3, bfx—p) (n"~x)"""
v=0

with 6,20 (1=v<d) and d=(2[al+ 1)n; thus a theorem of G.G.
Lorentz (see Theorem A of [6]) and (5) yield

SN max, 1s(x)
Sedant " max |pa)ex(—)
)<x<n"
Scul@n' = pl,  (ISa<oo,r<ysin).  (15)

Hence and from (7)
[P’ (y) exp(—=y)N I’ +1p(¥) 45, ()]
Segs{ayn’ i pll,
(peViry1Za<w,rsy<in).  (76)

By Lemma 1 we have
1 —1/(2a)

|7'() exp(— y)] < e36(a) "—\/T— 1ol

Sega)n' =M pll,
(pell,, s <a< o, in'* < y<o0) an
Finally we have
Ip'laScsla) ipll. (pell,,0<a<j) (78)

(see Theorem 2 of [11] and Theorem 1). Now (73), (74), (76), (77), and
(78) yield the theorem when m= 1. From this, using Gauss’ theorem, by
induction on m we immediately obtain the desired result for all m>1. |

Proof of Theorem 5. Let T.(x)=cos(k arccos x) be the Chebyshev
polynomial of degree k& and let

R :=min{r,n""}, a>1%, (79)
2
P =T (1) e Ve, (80)
where
k:=|: R a]§n (81)
cagla)

with c¢,5(a) = | defined by (53). Then using (53), (79), (80), and (81), by a
simple calculation we obtain
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lpell. = 1p(0)

2k2 m
cxtm) () max[pet)

0=xZR

1%

Z cyo(a, my(k*~ 1) o max o ip(x)]

§x§¢'gs(a)kl‘”
2 cqp(a, m)(1 +min{r* =", n? =1 " | p, |,
(3<a<o,kzm+1). 82y
Further, for the polynomials P,(x) :=x"e V'%0) < V5(r) (r = 0) we have

cala, m)(n' VY P, (1Sa<oc,nzm+1)

g3
cosla, m) 1P, . O<a<om,n=m+1). )

fWWMé{

Now (82) and (83) give the desired result. §
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