MARKOV-BERNSTEIN TYPE INEQUALITIES FOR POLYNOMIALS UNDER ERDŐS-TYPE CONSTRAINTS

Tamás Erdélyi

The Markov-Bernstein inequality asserts that

$$
\left|p^{\prime}(x)\right| \leq \min \left\{\frac{n}{\sqrt{1-x^{2}}}, n^{2}\right\}\|p\|_{[-1,1]}, \quad x \in(-1,1)
$$

holds for every polynomial of degree at most n with complex coefficients. Here, and in what follows, $\|p\|_{A}:=\sup _{y \in A}|p(y)|$. Throughout his life Erdős showed a particular interest in inequalities for constrained polynomials. In a short paper in 1940 Erdős [7] has found a class of restricted polynomials for which the Markov factor n^{2} improves to $c n$. He proved that there is an absolute constant c such that

$$
\left|p^{\prime}(x)\right| \leq \min \left\{\frac{c \sqrt{n}}{\left(1-x^{2}\right)^{2}}, \frac{e n}{2}\right\}\|p\|_{[-1,1]}, \quad x \in(-1,1)
$$

for every polynomial p of degree at most n that has all its zeros in $\mathbb{R} \backslash(-1,1)$. This result motivated a number of people to study Markov- and Bernstein-type inequalities for polynomials with restricted zeros and under some other constraints. Generalizations of the above Markov-Bernstein type inequality of Erdős has been extended later in many directions.

Let $\mathcal{P}_{n, k}^{c}$ denote the set of all polynomials of degree at most n with complex coefficients and with at most $k(0 \leq k \leq n)$ zeros in the open unit disk. Let $\mathcal{P}_{n, k}$ denote the set of all polynomials of degree at most n with real coefficients and with at most $k(0 \leq k \leq n)$ zeros in the open unit disk. Associated with $0 \leq k \leq n$ and $x \in(-1,1)$, let

$$
B_{n, k, x}^{*}:=\max \left\{\sqrt{\frac{n(k+1)}{1-x^{2}}}, n \log \left(\frac{e}{1-x^{2}}\right)\right\}, \quad B_{n, k, x}:=\sqrt{\frac{n(k+1)}{1-x^{2}}},
$$

and

$$
M_{n, k}^{*}:=\max \{n(k+1), \quad n \log n\}, \quad M_{n, k}:=n(k+1)
$$

It is shown in [5] and [6] that

$$
c_{1} \min \left\{B_{n, k, x}^{*}, M_{n, k}^{*}\right\} \leq \sup _{p \in \mathcal{P}_{n, k}^{c}} \frac{\left|p^{\prime}(x)\right|}{\|p\|_{[-1,1]}} \leq c_{2} \min \left\{B_{n, k, x}^{*}, M_{n, k}^{*}\right\}
$$

for every $x \in(-1,1)$, where $c_{1}>0$ and $c_{2}>0$ are absolute constants. This result should be compared with the inequalities

$$
c_{3} \min \left\{B_{n, k, x}, M_{n, k}\right\} \leq \sup _{p \in \mathcal{P}_{n, k}} \frac{\left|p^{\prime}(x)\right|}{\|p\|_{[-1,1]}} \leq c_{4} \min \left\{B_{n, k, x}, M_{n, k}\right\}
$$

for every $x \in(-1,1)$, where $c_{3}>0$ and $c_{4}>0$ are absolute constants. The upper bound of this second result is also fairly recent, see [1], and it may be surprising that there is a significant difference between the real and complex cases as far as Markov-Bernstein type inequalities are concerned. The lower bound of the second result is proved in [5]. It is the final piece of a long series of papers on this topic by a number of authors starting with Erdős in 1940.

Let $\mathcal{P}_{n}^{c}(r)$ be the set of all polynomials of degree at most n with complex coefficients and with no zeros in the union of open disks with diameters $[-1,-1+2 r]$ and $[1-2 r, 1]$, respectively $(0<r \leq 1)$. Let $\mathcal{P}_{n}(r)$ be the set of all polynomials of degree at most n with real coefficients and with no zeros in the union of open disks with diameters $[-1,-1+2 r]$ and $[1-2 r, 1]$, respectively $(0<r \leq 1)$.

Essentially sharp Markov-type inequalities for $\mathcal{P}_{n}^{c}(r)$ and $\mathcal{P}_{n}(r)$ on $[-1,1]$ are established in [6] and [4]. In [6] we show

$$
c_{1} \min \left\{\frac{n \log (e+n \sqrt{r})}{\sqrt{r}}, n^{2}\right\} \leq \sup _{0 \neq p \in \mathcal{P}_{n}^{c}(r)} \frac{\left\|p^{\prime}\right\|_{[-1,1]}}{\|p\|_{[-1,1]}} \leq c_{2} \min \left\{\frac{n \log (e+n \sqrt{r})}{\sqrt{r}}, n^{2}\right\}
$$

for every $0<r \leq 1$ with absolute constants $c_{1}>0$ and $c_{2}>0$. This result should be compared with the inequalities

$$
c_{3} \min \left\{\frac{n}{\sqrt{r}}, n^{2}\right\} \leq \sup _{0 \neq p \in \mathcal{P}_{n}(r)} \frac{\left\|p^{\prime}\right\|_{[-1,1]}}{\|p\|_{[-1,1]}} \leq c_{4} \min \left\{\frac{n}{\sqrt{r}}, n^{2}\right\}, \quad 0<r \leq 1
$$

where $c_{3}>0$ and $c_{4}>0$ are absolute constants. See [4].
Let K_{α} be the open diamond of the complex plane with diagonals $[-1,1]$ and $[-i a, i a]$ such that the angle between $[i a, 1]$ and $[1,-i a]$ is $\alpha \pi$. In [8] Halász proved that there are constants $c_{1}>0$ and $c_{2}>0$ depending only on α such that

$$
c_{1} n^{2-\alpha} \leq \sup _{p} \frac{\left|p^{\prime}(1)\right|}{\|p\|_{[-1,1]}} \leq \sup _{p} \frac{\left\|p^{\prime}\right\|_{[-1,1]}}{\|p\|_{[-1,1]}} \leq c_{2} n^{2-\alpha}
$$

where the supremum is taken for all polynomials p of degree at most n (with either real or complex coefficients) having no zeros in K_{α}.

Erdős had many questions and results about polynomials with restricted coefficients. Let \mathcal{F}_{n} denote the set of polynomials of degree at most n with coefficients from $\{-1,0,1\}$. Let \mathcal{G}_{n} be the collection of polynomials p of the form

$$
p(x)=\sum_{j=m}^{n} a_{j} x^{j}, \quad\left|a_{m}\right|=1, \quad\left|a_{j}\right| \leq 1
$$

where m is an unspecified nonnegative integer not greater than n. In [2] and [3] we established the right Markov-type inequalities for the classes \mathcal{F}_{n} and \mathcal{G}_{n} on $[0,1]$. Namely there are absolute constants $c_{1}>0$ and $c_{2}>0$ such that

$$
c_{1} n \log (n+1) \leq \max _{0 \neq p \in \mathcal{F}_{n}} \frac{\left\|p^{\prime}\right\|_{[0,1]}}{\|p\|_{[0,1]}} \leq c_{2} n \log (n+1)
$$

and

$$
c_{1} n^{3 / 2} \leq \max _{0 \neq p \in \mathcal{G}_{n}} \frac{\left\|p^{\prime}\right\|_{[0,1]}}{\|p\|_{[0,1]}} \leq c_{2} n^{3 / 2}
$$

Observe that the right Markov factor for \mathcal{G}_{n} is much larger than the right Markov factor for \mathcal{F}_{n}. We also show that there are absolute constants $c_{1}>0$ and $c_{2}>0$ such that

$$
c_{1} n \log (n+1) \leq \max _{0 \neq p \in \mathcal{L}_{n}} \frac{\left\|p^{\prime}\right\|_{[0,1]}}{\|p\|_{[0,1]}} \leq c_{2} n \log (n+1)
$$

where \mathcal{L}_{n} denotes the set of polynomials of degree at most n with coefficients from $\{-1,1\}$.
For polynomials

$$
p \in \mathcal{F}:=\bigcup_{n=0}^{\infty} \mathcal{F}_{n} \quad \text { with } \quad|p(0)|=1
$$

and for $y \in[0,1)$ the Bernstein-type inequality

$$
\frac{c_{1} \log \left(\frac{2}{1-y}\right)}{1-y} \leq \max _{\substack{p \in \mathcal{F} \\|p(0)|=1}} \frac{\left\|p^{\prime}\right\|_{[0, y]}}{\|p\|_{[0,1]}} \leq \frac{c_{2} \log \left(\frac{2}{1-y}\right)}{1-y}
$$

is also proved with absolute constants $c_{1}>0$ and $c_{2}>0$.

References

1. P. Borwein and T. Erdélyi, Sharp Markov-Bernstein type inequalities for classes of polynomials with restricted zeros, Constr. Approx. 10 (1994), 411-425.
2. P. Borwein \& T. Erdélyi, Markov- and Bernstein-type inequalities for polynomials with restricted coefficients, Ramanujan J. 1 (1997), 309-323.
3. P. Borwein \& T. Erdélyi, Markov-Bernstein type inequalities under Littlewood-type coefficient constraints, manuscript.
4. T. Erdélyi, Markov-type estimates for certain classes of constrained polynomials, Constr. Approx. 5 (1989), 347-356.
5. T. Erdélyi, Markov-Bernstein type inequalities for constrained polynomials with real versus complex coefficients, Journal d'Analyse Mathematique 74 (1998), 165-181.
6. T. Erdélyi, Markov-type inequalities for constrained polynomials with complex coefficients, Illinois J. Math. 42 (1998), 544-563.
7. P. Erdős, On extremal properties of the derivatives of polynomials, Ann. of Math. 2 (1940), 310-313.
8. G. Halász, Markov-type inequalities for polynomials with restricted zeros, J. Approx. Theory (to appear).

Department of Mathematics, Texas A\&M University, College Station, Texas 77843, USA E-mail address: terdelyi@math.tamu.edu

