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RESPECT TO DOUBLING WEIGHTS ON [−ω, ω]
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Abstract. Various important weighted polynomial inequalities, such as Bernstein,
Marcinkiewicz, Nikolskii, Schur, Remez, etc. inequalities, have been proved re-
cently by Giuseppe Mastroianni and Vilmos Totik under minimal assumptions on
the weights. In most of the cases this minimal assumption is the doubling condi-
tion. Here, based on a recently proved Bernstein-type inequality by D.S. Lubinsky,
we establish Markov-Bernstein type inequalities for trigonometric polynomials with
respect to doubling weights on [−ω, ω]. Namely, we show the theorem below.

Theorem. Let p ∈ [1,∞) and ω ∈ (0, 1/2]. Suppose W (arcsin((sinω) cos t)) is a

doubling weight. Then there is a constant C depending only on p and the doubling

constant L so that

∫

ω

−ω

|T ′

n
(t)|pW (t)

(

ω/n+
√

ω2 − t2
)

p

dt ≤ Cnp

∫

ω

−ω

|Tn(t)|
pW (t) dt

holds for every Tn ∈ Tn, where Tn denotes the class of all real trigonometric poly-

nomials of degree at most n.

1. The Weights

For Introduction we refer to Sections 1 and 2 of the Mastroianni-Totik paper
[15] and the references therein. See [1] – [6], [8], [9], [11], [14], and [16]. See also [7]
and [12]. Here we just formulate the original and some equivalent definitions that
we shall use. We shall work with integrable periodic weight functions W satisfying
the so-called doubling condition:

W (2I) ≤ LW (I)

for intervals I ⊂ R, where L is a constant independent of I, 2I is the interval
with length 2|I| (|I| denotes the length of the interval I) and with midpoint at the
midpoint of I, and

W (I) :=

∫

I

W (u) du .
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In other words, W has the doubling property if the measure of a twice enlarged
interval is less than a constant times the measure of the original interval.

Associated with a periodic weight function W on R, let

(1.1) Wn(t) := n

∫ t+1/n

t−1/n

W (θ) dθ .

Let ω ∈ [−1/2, 1/2]. Associated with a weight function W (x) on [−ω, ω], we define

(1.2) Wω(t) = W (arcsin((sinω) cos t))

and

(1.3) Wn,ω(t) := n

∫ t+1/n

t−1/n

Wω(θ) dθ .

The class of all real trigonometric polynomials of degree at most n will be denoted
by Tn. Associated with a trigonometric polynomial Tn ∈ Tn, we define

(1.4) Tn,ω(t) := Tn(arcsin((sinω) cos t)).

Lemma 1.1. Let W be a periodic weight function on R. Then W is a doubling
weight if and only if there are constants s > 0 and K > 0 depending only on W
such that

Wn(t2) ≤ K(1 + n|t2 − t1|)
sWn(t1) .

holds for all n ∈ N and t1, t2 ∈ R. Here, if L is the doubling constant, then with
the choice s = logL, K depends only on L.

Markov-Bernstein type inequalities play a basic role in proving inverse theorems
of approximation. Mastroianni and Totik [15] proved the following Bernstein-type
inequality recently.

Theorem 1.2. Let W be a doubling weight and let 1 ≤ p < ∞ arbitrary. Then
there is a constant C depending only on the doubling constant L so that

∫ π

−π

|T ′
n(t)|

pW (t) dt ≤ Cnp

∫ π

−π

|Tn(t)|
pW (t) dt

holds for every Tn ∈ Tn.

The above inequality is extended in [7] for all p > 0. The purpose of this paper is
to establish the right analogue of Theorem 1.2 when the period [−π, π) is replaced
with a shorter interval [−ω, ω]. Our main result is the Markov-Bernstein type
inequality below.
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Theorem 1.3. Let p ∈ [1,∞) and ω ∈ (0, 1/2]. Suppose W (arcsin((sinω) cos t)) is
a doubling weight. Then there is a constant C depending only on p and the doubling
constant L so that

∫ ω

−ω

|T ′
n(t)|

pW (t)
(

ω/n+
√

ω2 − t2
)p

dt ≤ Cnp

∫ ω

−ω

|Tn(t)|
pW (t) dt

holds for every Tn ∈ Tn.

Our main tool is the following inequality proved recently by Lubinsky [12] (see
also the paper [10] by Kobindarajah and Lubinsky).

Theorem 1.4 (Lubinsky). Let ω ∈ (0, 1/2]. We have
∫ ω

−ω

|T ′
n(t)|

p
(

ω/n+
√

ω2 − t2
)p

dt ≤ Cnp

∫ ω

−ω

|Tn(t)|
p dt

for all Tn ∈ Tn.

This may be viewed as the Lp version of the Videnskii’s inequality [17] below.

Theorem 1.5 (Videnskii). Let ω ∈ (0, 1/2]. We have

max
t∈[−ω,ω]

|T ′
n(t)|

(

ω/n+
√

ω2 − t2
)

≤ Cn max
t∈[−ω,ω]

|Tn(t)|

for all Tn ∈ Tn.

2. The Main Theorem

In this paper C,C1, C2, . . . always denote constants depending (possibly) only
on the value of p and the doubling constant L in the doubling weight involved.

Using the notation of (1.1) – (1.4), we prove the following basic theorem.

Theorem 2.1. Let ω ∈ (0, 1/2]. Suppose W is a weight function on [−ω, ω] such
that Wω is a doubling weight. doubling weight. Let 1 ≤ p < ∞ be arbitrary. Then
there is a constant C depending only on the doubling constant L for Wω such that
for every Tn ∈ Tn we have

C−1

∫ π

−π

|Tn,ω(t)|
pWω(t) (sinω)| sin t| dt ≤

≤

∫ π

−π

|Tn,ω(t)|
pWn,ω(t) (sinω)| sin t| dt ≤

≤ C

∫ π

−π

|Tn,ω|
pWω(t)(sinω)| sin t| dt ,

(2.1)

or equivalently

C−1

∫ ω

−ω

|Tn(t)|
pW (t) dt ≤

∫ π

−π

|Tn,ω(t)|
pWn,ω(t)(sinω)| sin t| dt

≤ C

∫ ω

−ω

|Tn(t)|
pW (t) dt .

(2.1)
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As the next lemma shows, Wn,ω is very close to be a nonnegative trigonometric
polynomial of degree at most n.

Theorem 2.2. Suppose Wω satisfies the doubling condition. Then there is a con-
stant C > 0 depending only on the doubling constant L, and for each n ∈ N there
is a nonnegative even trigonometric polynomial Qn of degree at most n(1+ 1/p) so
that

(2.2) C−1Wn,ω(t) ≤ Qn(t)
p ≤ CWn,ω(t)

and

(2.3) |Q′
n(t)|

p ≤ CnpWn,ω(t)

uniformly in x ∈ R.

Proof of Theorem 2.2. It is easy to see that Wn,ω(t) ∼ Wm,ω(t) uniformly in x
whenever n ∼ m.1 So it is sufficient to verify the existence of a nonnegative
trigonometric polynomial Qn of degree 2mn with the stated properties for some
fixed m ∈ N satisfying 2m ≥ s/p+ 2, where s is the number from Lemma 1.1. To
be more specific, we define 2m as the smallest even number not less than s/p+ 2.
Let

(2.4) Sn(θ) = n−(2m−1)

(

sin((n+ 1/2)θ)

sin(θ/2)

)2m

be the Jackson kernel. It is well known that

(2.5)

∫ π

−π

|θ|lSn(θ) dt ∼ n−l

for each 0 ≤ l < 2m− 1. Indeed, the inequalities

Sn(θ) ≤ Cmn ,

Sn(θ) ≤ Cmn−(2m−1)θ−2m ,

|θ| ≤ 1/n ,

1/n ≤ |t| ≤ π ,

are easy to establish, from where

∫ π

−π

|θ|lSn(θ) dθ ≤ C1n
−l

is obvious. On the other hand, there is a constant C2 > 0 depending only on m so
that

Sn(θ) ≥ C2n , |θ| ≤ 1/n ,

from where
∫ π

−π

|θ|lSn(θ) dθ ≥ C1n
−l

1In what follows A ∼ B means that the ratio of the two sides is between two positive constants.
Here the “similarity” constants in Wn,ω(t) ∼ Wm,ω(t) depend only on the doubling constant L
and the “similarity” constants in n ∼ m.
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for each 0 ≤ l < 2m − 1 follows. By this (2.5) is completely shown. It clearly
implies that

(2.6)

∫ π

−π

(1 + n|θ|)s/pSn(θ) dθ ∼ 1 .

Now we define

(2.7) Qn(t) :=

∫ π

−π

Wn,ω(θ)
1/pSn(t− θ) dθ .

Then Qn ∈ T2mn and

(2.8) Q′
n(t) =

∫ π

−π

Wn,ω(θ)
1/pS′

n(t− θ) dθ .

Applying Lemma 1.1 and (2.6), we obtain

Qn(t) =

∫ π

−π

Wn,ω(t− θ)1/pSn(θ) dθ

≤

∫ π

−π

Wn,ω(θ)
1/pK1/p(1 + n|θ|)s/pSn(θ) dθ ≤ C1+1/pWn,ω(t)

1/p .

The opposite inequality is simpler. For |t| ≤ 1/(2n), we have Wn,ω(t−θ) ∼ Wn,ω(t)
and Sn(θ) ∼ n, therefore

Qn(t) ≥

∫ 1/(2n)

0

Wn,ω(t− θ)1/pSn(θ) dθ

≥ C
1/p
1 Wn,ω(t)

1/p

∫ 1/(2n)

0

n dθ ≥ C
1+1/p
2 Wn,ω(t)

1/p ,

and the proof of (2.2) is complete. To prove (2.3), observe that

S′
n(θ) ≤ Cmn2 ,

S′
n(θ) ≤ Cmn−(2m−2)θ−2m ,

|θ| ≤ 1/n ,

1/n ≤ |θ| ≤ π ,

which follows from direct differentiation and from Bernstein’s inequality

max
−π≤θ≤π

|S′
n(θ)| ≤ nm max

−π≤θ≤π
|Sn(θ)| ≤ Cmmn2 ,

since (2.4) implies
max

−π≤θ≤π
|Sn(θ)| ≤ Cmn .

With this and (2.8) the proof of (2.3) is identical with the proof of the upper bound
in (2.2). �

By a routine application of the Mean Value Theorem and Theorem 1.5 (Viden-
skii) we obtain
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Corollary 2.3. Let ω ≤ 1. Let Tn,ω be defined by (1.4). Then

∫ π

−π

|Tn,ω(t)|
p(sinω)Wn,ω(t) dt ≤ C1n

∫ π

−π

|Tn,ω(t)|
p(sinω)| sin t|Wn,ω(t) dt

for all Tn ∈ Tn with a constant CM depending only on M .

Proof. Indeed, by Theorem 2.2, there is a nonnegative even trigonometric polyno-
mial Qn of degree at most n(1 + 1/p) such that (2.2) holds. Observe that

Qn(t) = Un,ω(arcsin((sinω) cos t))

with some Un ∈ Tn. Hence, with the notation

Sn,ω = Tn,ωUn,ω ∈ Tcn

it is sufficient to prove that

∫ π

−π

|Sn,ω(t)|
p(sinω)dt ≤ C1n

∫ π

−π

|Sn,ω(t)|
p(sinω)| sin t| dt

However, this follows easily from the fact that

m

({

t ∈ [−π, π) : |Sn,ω(t)| ≥
1

2
max

−π≤t≤π
|Sn,ω(t)|

})

≥ C/n

with a constant depending only on p. The above inequality can be shown by a
routine combination of Theorem 1.5 (Videnskii) and the Mean Value Theorem.

Proof of Theorem 2.1. Let p ≥ 1. We verify that there is a constant C depending
only on the doubling constant L such that for every Tn ∈ Tn we have

∫ π

−π

|T ′
n(arcsin((sinω) cos t)|

p(sinω((1/n+ | sin t|))pWn,ω(t)(sinω)| sin t| dt ≤

≤ Cnp

∫ π

−π

|Tn,ω(t)|
pWn,ω(t)(sinω)| sin t| dt .

(2.9)

Indeed, by Theorem 2.2, there is a nonnegative even trigonometric polynomial Qn

of degree at most n(1 + 1/p) such that (2.2) holds. We have

∫ π

−π

|T ′
n(arcsin((sinω) cos t)|

p((sinω)(1/n+ | sin t|))pWn,ω(t)(sinω)| sin t| dt ∼

∼

∫ π

−π

|T ′
n(arcsin((sinω)(cos t))|

p((sinω)(1/n+ | sin t|))pQn(t)
p(sinω)| sin t| dt .

Here

(2.10) Qn(t) = Un(arcsin(ω cos t))
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with some trigonometric polynomial Un of degree n(2 + 1/p). Also

T ′
nUn = (TnUn)

′ − TnU
′
n ,

therefore

∫ π

−π

|T ′
n(arcsin((sinω)(cos t))|

p(sinω(1/n+ | sin t|))pWn,ω(t) (sinω)| sin t| dt

≤ C1

∫ π

−π

|(TnUn)
′(arcsin((sinω)(cos t))|p(sinω(1/n+ | sin t|))p(sinω)| sin t| dt+

+ C1

∫ π

−π

|(TnU
′
n)(arcsin((sinω)(cos t))|

p(sinω(1/n+ | sin t|))p(sinω)| sin t| dt

≤ C1C2(n(2 + 1/p))p
∫ π

−π

|(TnUn)(arcsin((sinω)(cos t)))|
p (sinω)| sin t| dt+

+ C3n
p

∫ π

−π

|(TnUn)(arcsin((sinω)(cos t))|
p (sinω)| sin t| dt

≤ Cnp

∫ π

−π

|Tn,ω(t)|
pWn(t) (sinω)| sin t| dt ,

where at the first inequality we used that (A + B)p ≤ C1(A
p + Bp) for arbitrary

A,B ≥ 0, p ≥ 1; at the second inequality, to estimate the first term, we used
Lubinsky’s inequality in Lp, 0 < p < ∞ (see [1]) for trigonometric polynomials of
degree at most n(2 + 1/p); while to estimate the second term, the bound for |Q′

n|
given by Theorem 2.2 has been used; in the third inequality Theorem 2.2 has been
used again. Thus the proof of (2.9) is complete.

Now let M be a large positive integer to be chosen later, and set

Ik :=

[

2kπ

Mn
,
2(k + 1)π

Mn

]

, k = 0, 1, . . . ,Mn− 1 .

Let ζk ∈ Ik be the place where |Tn,ω(t)|
p(sinω)| sin t| attains its maximum on Ik,

and let θk ∈ Ik be a place where Wn,ω(t) attains its maximum on Ik (note that
Wn,ω is positive continuous). Finally we define

Rn :=
∑

|Tn,ω(ζk)|
p(sinω)| sin ζk|Wn,ω(θk) ,

where, and in what follows,
∑

is the taken for k = 0, 1, . . . ,Mn− 1. Let ξk ∈ Ik
be arbitrary. Let Jk be the interval with endpoints ζk and ξk. Using Hölder’s
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inequality, we obtain

Rn −
∑

|Tn,ω(ξk)|
p(sinω)| sin ξk|Wn,ω(θk)

=
∑

(|Tn,ω(ζk)|
p(sinω)| sin ζk| − |Tn,ω(ξk)|

p(sinω)| sin ξk|)Wn,ω(θk)

≤
∑

∫

Jk

p|T ′
n,ω(t)||Tn,ω(t)|

p−1(sinω)| sin t|Wn,ω(θk) dt

+
∑

∫

Jk

|Tn,ω(t)|
p(sinω)| cos t|Wn,ω(θk) dt

≤ p

(

∑

∫

Jk

|T ′
n,ω(t)|

p(sinω)| sin t|Wn,ω(θk) dt

)1/p

×

×

(

∑

∫

Jk

(|Tn,ω(t)|
(p−1)p/(p−1)(sinω)| sin t|Wn,ω(θk) dt

)(p−1)/p

+
∑

∫

Jk

|Tn,ω(t)|
p(sinω)Wn,ω(θk) dt

Using the fact that for u, v ∈ Ik we have Wn,ω(u) ∼ Wn,ω(v) uniformly, then
applying (2.9) and Corollary 2.3 we can continue

≤ p

(
∫ π

−π

|T ′
n,ω(t)|

p(sinω)| sin t|Wn,ω(t) dt

)1/p

×

×

(
∫ π

−π

|Tn,ω(t)|
p(sinω)| sin t|Wn,ω(t) dt

)(p−1)/p

+

+

∫ π

−π

|Tn,ω(t)|
p(sinω)Wn,ω(t) dt

≤

(

pC1n
p

∫ π

−π

|Tn,ω(t)|
p(sinω)| sin t|Wn,ω(t) dt

)1/p

×

×

(
∫ π

−π

|Tn,ω(t)|
p(sinω)| sin t|Wn,ω(t) dt

)(p−1)/p

+

+ C1n

∫ π

−π

|Tn,ω(t)|
p(sinω)| sin t|Wn,ω(t) dt =

= C2n

∫ π

−π

|Tn,ω(t)|
p(sinω)| sin t|Wn,ω(t) dt ≤

≤ C2n
2π

Mn

∑

|Tn(ζk)|
p(sinω)| sin ζk|Wn,ω(θk) =

=
C2n(2π)

Mn
Rn .

So we have proven

Rn −
∑

|Tn,ω(ξk)|
p(sinω)| sin ξk|Wn,ω(θk) ≤

C2(2π)

M
Rn ,

from which it follows that

(2.11) Rn −
∑

|Tn,ω(ξk)|
p(sinω)| sin ξk|Wn,ω(θk) ≤

1

2
Rn ,
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provided M ≥ 4πC2.

Using also that Wn,ω(θk) ∼ Wn,ω(ηk) uniformly whenever ηk ∈ Ik, we obtain
that there is a constant C such that for any ξk, ηk ∈ Ik we have

∑

|Tn,ω(ξk)|
p(sinω)| sin ξk|Wn,ω(ηk) ≥

1

C
Rn .

In particular, this is true for the points ξk and ηk where |Tn,ω(t)|(sinω)| sin t| and
Wn,ω(t), respectively, attain their minimum on Ik, from which we obtain that all
possible sums

∑

|Tn,ω(uk)|
p(sinω)| sinuk|Wn,ω(vk) , uk, vk ∈ Ik ,

are uniformly of the same size (∼ Rn). If we also observe that

Wn,ω(vk) ∼ n

∫

Ik

Wω(t) dt ,

it follows, with some constant C > 0, that

n

C

∑

∫

Ik

(

max
v∈Ik

|Tn,ω(v)|
p(sinω)| sin v|

)

Wω(u) du ≤

≤
∑

|Tn,ω(uk)|
p(sinω)| sinuk|Wn,ω(vk) ≤

≤ Cn
∑

∫

Ik

(

min
v∈Ik

|Tn,ω(v)|
p(sinω)| sin v|

)

Wω(u) du

whenever uk, vk ∈ Ik. Setting uk = vk = 2kπ/(Mn) + t and integrating this with
respect to t ∈ [0, 1/(Mn)], it follows that

1

C

∑

∫

Ik

(

max
v∈Ik

|Tn,ω(v)|
p(sinω)| sin v|

)

Wω(u) du ≤

≤
∑

∫

Ik

|Tn,ω(t)|
p(sinω)| sin t|Wn,ω(t) dt ≤

≤ C
∑

∫

Ik

(

min
v∈Ik

|Tn,ω(v)|
p(sinω)| sin v|

)

Wω(u) du .

We now conclude that

1

C

∑

∫

Ik

|Tn,ω(t)|
p(sinω)| sin t|Wω(t) dt ≤

∑

∫

Ik

|Tn,ω(t)|
p(sinω)| sin t|Wn,ω(t) dt

≤ C
∑

∫

Ik

|Tn,ω(t)|
p(sinω)| sin t|Wω(t) dt ,

which we wanted to prove. �
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3. Proof of Theorem 1.3

Proof of Theorem 1.3. With the help of Theorem 2.1 and with a piece of its proof,
the proof of the theorem is a triviality now. It is sufficient to prove that

∫ π

−π

|T ′
n(arcsin(sinω cos t)|p(sinω((1/n) + | sin t|))pWω(t)(sinω)| sin t| dt ≤

≤ Cnp

∫ π

−π

|Tn,ω(t)|
pWω(t)(sinω)| sin t| dt

holds for every Tn ∈ Tn. We have already proven this with Wω replaced by Wn,ω,
see (2.9). What remains to observe is that Theorem 2.1 allows us to replace Wn,ω

by Wω . To this end we need to remark that if W (arcsin((sinω) cos t)) is a doubling
weight, then W (arcsin((sinω) cos t))(sinω)(1/n+ | sin t|))p with doubling constant
independent of n.
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