A NOTE ON BARKER POLYNOMIALS

PETER BORWEIN AND TAMÁS ERDÉLYI

Abstract. We give a new proof of the fact that there is no Barker polynomial of even degree greater than 12, and hence Barker sequences of odd length greater than 13 do not exist. This is intimately tied to irreducibility questions and proved as a consequence of the following new result.

Theorem. If \(n := 2m + 1 > 13 \) and

\[
Q_{4m}(z) = (2m + 1)z^{2m} + \sum_{j=1}^{2m} b_j (z^{2m-j} + z^{2m+j})
\]

where each \(b_j \in \{-1, 0, 1\} \) for even values of \(j \), each \(b_j \) is an integer divisible by 4 for odd values of \(j \), then there is no polynomial \(P_{2m} \in \mathcal{L}_{2m} \) such that \(Q_{4m}(z) = P_{2m}(z)P^*_m(z) \), where

\[
P^*_m(z) := z^{2m}P_m(1/z),
\]

and \(\mathcal{L}_{2m} \) denotes the collection of all polynomials of degree \(2m \) with each of their coefficients in \(\{-1, 1\} \).

A clever usage of Newton’s identities plays a central role in our elegant proof.

Following the pioneering work of Turyn and Storer [TS-61], Turyn [T-63], [T-65], and Saffari [S-90], in the last few years P. Borwein and his collaborators revived interest in the study of Barker polynomials (Barker codes, Barker sequences). See [B-02], [BCJ-12], [BM-08], [H-09], [M-09], and [E-11], for example.

Following the paper of Turyn and Storer [TS-61] we call the polynomial

\[
P_{n-1}(x) = \sum_{j=1}^{n} a_j z^{n-j} = a_1 z^{n-1} + a_2 z^{n-2} + \cdots + a_{n-1} z + a_n, \quad a_j \in \{-1, 1\},
\]
a Barker polynomial of degree \(n - 1 \) if

\[
T_n(z) = P_{n-1}(z)P_{n-1}(1/z) = n + \sum_{k=1}^{n-1} c_k (z^k + z^{-k}), \quad |c_k| \leq 1.
\]

Key words and phrases. zeros of Littlewood polynomials, Barker polynomials, constrained coefficients.

2000 Mathematics Subject Classifications. 11C08, 41A17, 30C15, 52A40

Typeset by AMS-\TeX
Let \(c_0 := n \). Since
\[
c_k = \sum_{j=1}^{n-k} a_j a_{j+k}, \quad k = 0, 1, \ldots n - 1,
\]
and each term \(a_j a_{j+k} \) is in \(\{-1, 1\} \), it follows that
\[
(1) \quad \prod_{j=1}^{n-k} (a_j a_{j+k}) = (-1)^{(n-k-c_k)/2}, \quad k = 0, 1, \ldots, n - 1.
\]
Multiplying two consecutive equations of the above form gives
\[
a_{k+1} a_{n-k} = (-1)^{n-k-(1+c_k+c_{k+1})/2}, \quad k = 0, 1, \ldots, n - 1.
\]
Observe that
\[
c_k + c_{n-k} = \sum_{j=1}^{n} a_j a_{j+k}, \quad k = 1, 2, \ldots, n - 1,
\]
where the second index \(j + k \) is taken modulo \(n \). Then (1) yields
\[
\prod_{j=1}^{n} (a_j a_{j+k}) = 1 = (-1)^{(n-c_k-c_{n-k})/2}, \quad k = 0, 1, \ldots, n - 1,
\]
hence \(c_k + c_{n-k} = n \) (mod 4).

Now assume that \(n = 2m + 1 \) is odd,
\[
|c_k| \leq 1, \quad k = 2, 4, \ldots, 2m = n - 1,
\]
and each \(c_k \) is an integer divisible by 4 whenever \(k = 1, 3, \ldots, 2m - 1 = n - 2 \). Observe that \(c_k + c_{n-k} = n \) (mod 4) implies
\[
c_{2j-1} = 0 \pmod{4} \quad \text{and} \quad c_{2j} = (-1)^m, \quad j = 1, 2, \ldots, m.
\]
The formula for \(a_{k+1} a_{n-k} \) becomes
\[
(2) \quad a_{k+1} a_{n-k} = (-1)^{m+k}, \quad k = 0, 1, \ldots, n - 1.
\]
Hence
\[
c_{2j} = \sum_{i=1}^{n-2j} a_i a_{i+2j}
\]
can be rewritten as
\[
(-1)^m = \sum_{i=1}^{n-2j} a_i a_{n+1-i-2j} (-1)^{m+i+1}, \quad j = 1, 2, \ldots m.
\]
Now let \(n - 2j = 2k + 1, k = 0, 1, \ldots, m - 1 \). Then

\[
1 = \sum_{i=1}^{2k+1} a_i a_{2k+2-i} (-1)^{i+1}
\]

\[
= 2 \sum_{i=1}^{k} a_i a_{2k+2-i} (-1)^{i+1} + a_{k+1}^2 (-1)^{k+2}, \quad k = 0, 1, \ldots, m - 1.
\]

Hence

\[
(3) \quad \frac{1 + (-1)^{k+1}}{2} = \sum_{i=1}^{k} a_i a_{2k+2-i} (-1)^{i+1}, \quad k = 0, 1, \ldots, m - 1.
\]

From this we can easily deduce

\[
\prod_{i=1}^{k} (a_i a_{2k+2-i}) = 1,
\]

and hence

\[
\prod_{i=1}^{2k+1} a_i = a_{k+1}, \quad k = 0, 1, \ldots, m - 1.
\]

Multiplying two consecutive equations of the above form gives

\[
(4) \quad a_k a_{k+1} = a_{2k} a_{2k+1}, \quad k = 1, 2, \ldots, m - 1.
\]

Let \(L_n \) be the collection of all polynomials of degree \(n \) with each of their coefficients in \(\{-1, 1\} \).

Theorem 1. If \(n := 2m + 1 > 13 \) and

\[
Q_{4m}(z) = (2m + 1)z^{2m} + \sum_{j=1}^{2m} b_j (z^{2m-j} + z^{2m+j})
\]

where each \(b_j \in \{-1, 0, 1\} \) for even values of \(j \), each \(b_j \) is an integer divisible by 4 for odd values of \(j \), then there is no polynomial \(P_{2m} \in L_{2m} \) such that \(Q_{4m}(z) = P_{2m}(z) P_{2m}^*(z) \), where

\[
P_{2m}^*(z) := z^{2m} P_{2m}(1/z).
\]

Observe that if \(Q_{4m}(z) \) satisfies the conditions of the theorem and there is a polynomial \(P_{2m} \in L_{2m} \) such that \(Q_{4m}(z) = P_{2m}(z) P_{2m}^*(z) \), where

\[
P_{2m}^*(z) := z^{2m} P_{2m}(1/z),
\]

then the introductory remarks imply that

\[
Q_{4m}(z) = P_{2m}(z) P_{2m}^*(z) = (-1)^m P_{2m}(z) P_{2m}(-z),
\]

that is the polynomial \(Q_{4m} \) is even, hence, in fact, we have that \(b_j = 0 \) for each odd values of \(j \). Moreover

\[
b_j = (-1)^m, \quad j = 2, 4, \ldots, 2m.
\]

Therefore to prove Theorem 1 it is sufficient to prove only the following much less general looking result.
Theorem 2. Suppose \(n := 2m + 1 > 13 \) and

\[
Q_{4m}(z) = (2m + 1)z^{2m} + (-1)^m \sum_{j=1}^{m} (z^{2m-2j} + z^{2m+2j}).
\]

There is no polynomial \(P_{2m} \in \mathcal{L}_{2m} \) such that \(Q_{4m}(z) = P_{2m}(z)P_{2m}^*(z) \), where

\[
P_{2m}^*(z) := z^{2m} P_{2m}(1/z).
\]

As a consequence, Barker polynomials \(P_{2m} \) of degree greater than 12 do not exist.

Before presenting the proof of Theorem 2 we need to introduce some notation and to prove two lemmas.

Suppose \(P_{2m} \in \mathcal{L}_{2m} \) is of the form

\[
P_{2m}(z) = \sum_{j=1}^{2m+1} a_j z^{2m+1-j}, \quad a_j \in \{-1, 1\}, \quad j = 1, 2, \ldots, 2m + 1,
\]

and assume that

\[
Q_{4m}(z) = P_{2m}(z)P_{2m}^*(z).
\]

Note that (2) implies that \(P_{2m}^*(z) = (-1)^m P_{2m}(-z) \). Without loss of generality we may assume that \(a_1 = 1 \). We introduce the coefficients \(c_j \) of \(Q_{4m} \) by

\[
Q_{4m}(z) = \sum_{j=1}^{4m+1} c_{4m+2-j} z^{j-1},
\]

that is, \(c_{2m+1} = 2m + 1 \) and

\[
c_1 = c_3 = \cdots = c_{2m-1} = c_{2m+3} = c_{2m+5} = \cdots = c_{4m+1} = (-1)^m.
\]

Let

\[
P_{2m}(z) = \prod_{j=1}^{2m} (z - \alpha_j), \quad \alpha_j \in \mathbb{C}.
\]

Then

\[
P_{2m}(-z) = \prod_{j=1}^{2m} (z + \alpha_j), \quad \alpha_j \in \mathbb{C},
\]

and

\[
Q_{4m}(z) = (-1)^m \prod_{j=1}^{2m} (z - \alpha_j)(z + \alpha_j), \quad \alpha_j \in \mathbb{C}.
\]
Associated with a nonnegative integer μ let
\[S_\mu = S_\mu(Q_{4m}) := \sum_{j=0}^{2m} \alpha_j^\mu + (-\alpha_j)^\mu, \]
and
\[s_\mu = s_\mu(P_{2m}) := \sum_{j=0}^{2m} \alpha_j^\mu. \]

Observe that $S_\mu = 0$ when μ is odd. Newton’s identities (see page 5 in [BE-95], for instance) give
\[c_1S_\mu + c_2S_{\mu-1} + \cdots + c_\mu S_1 + \mu c_{\mu+1} = 0, \quad \mu = 1, 2, \ldots, 4m, \]
that is,
\[S_\mu + S_{\mu-2} + S_{\mu-4} + \cdots + S_2 = -\mu, \quad \mu = 2, 4, \ldots, 2m - 2. \]
We conclude that
\[S_2 = S_4 = S_6 = \cdots = S_{2m-2} = -2, \]
and since $2s_{2k} = S_{2k}$, we have
\[s_{2k} = -1, \quad k = 1, 2, \ldots, m - 1. \]
Let
\[a_1 = a_2 = \cdots = a_p = 1, \quad a_{p+1} = -1. \]
Then (4) implies that p is odd and, considering P_{2m}^* rather than P_{2m} if necessary, without loss of generality we may assume that $p \geq 3$.

Lemma 1. Suppose
\[s_j = -1 \pmod{p}, \quad j = 1, 2, \ldots, \mu - 1. \]
Then
\[a_{up+1} = a_{up+2} = \cdots = a_{up+r}, \]
whenever $0 \leq up + r \leq \mu$, $r = 0, 1, \ldots, p - 1$.

Proof of Lemma 1. We prove the lemma by induction on μ. The statement is obviously true for $\mu = 1$. Assume that the statement is true for μ. We may assume that $\mu \neq up$, otherwise there is nothing to prove in the inductive step. The inductive step follows from the Newton’s identity
\[\sum_{j=1}^{\mu} a_j s_{\mu+1-j} + \mu a_{\mu+1} = 0, \]
which, together with the inductive assumption and the assumption
\[s_j = -1 \pmod{p}, \quad j = 1, 2, \ldots, \mu, \]
yields
\[
\sum_{j=1}^{\mu} a_j s_{\mu+1-j} + \mu a_{\mu+1} = -\sum_{j=1}^{\mu} a_j + \mu a_{\mu+1} = -\mu a_{\mu} + \mu a_{\mu+1} \pmod{p}.
\]

We conclude that
\[
a_{\mu} = a_{\mu+1} \pmod{p},
\]
and hence the lemma is true for \(\mu + 1 \). \(\square \)

Lemma 2. We have \(s_{\mu} = -1 \pmod{p} \) for all \(\mu = 1, 2, \ldots, 2m - 1 - p \).

Proof of Lemma 2. We prove the lemma by induction on \(\mu \). Assume that the lemma is true up to an even \(\mu \) and we prove it for \(\mu + 1 \leq 2m - 1 - p \). Note that we already know that the lemma is true for even values of \(\mu \leq 2m - 1 - p \). Newton’s identities give

\[
\sum_{j=1}^{\mu+p} a_j s_{\mu+p+1-j} + (\mu + p)a_{\mu+p+1} = 0
\]

and

\[
\sum_{j=1}^{\mu+p+1} a_j s_{\mu+p+2-j} + (\mu + p + 1)a_{\mu+p+2} = 0.
\]

Taking the difference of (6) and (5), we obtain

\[
\sum_{j=1}^{p} a_j (s_{\mu+p+2-j} - s_{\mu+p+1-j}) + \sum_{j=p+1}^{\mu+p} a_j (s_{\mu+p+2-j} - s_{\mu+p+1-j}) + a_{\mu+p+1}s_1
\]

\[+(\mu + p + 1)a_{\mu+p+2} - (\mu + p)a_{\mu+p+1} = 0.\]

By the inductive hypothesis we have

\[
\sum_{j=p+2}^{\mu+p} a_j (s_{\mu+p+2-j} - s_{\mu+p+1-j}) = 0 \pmod{p}.
\]

Also, one of the Newton’s identities gives \(a_1 s_1 + a_2 = 0 \), hence \(s_1 = -1 \).

Case 1. Suppose that \(\mu + 1 \leq 2m - 1 - p \) and \(\mu \neq vp - 1 \). Then (4) together with the inductive hypothesis and Lemma 1 yields that

\[
a_{\mu+p+1}a_{\mu+p+2} = a_{(\mu+p+1)/2}a_{(\mu+p+1)/2+1} = 1.
\]

Combining this with (7),(8), \(s_1 = -1 \), and \(a_{p+1} = -1 \), we obtain

\[
s_{\mu+p+1} - s_{\mu+1} - s_{\mu+1} - (-1)s_\mu - a_{\mu+p+1} + a_{\mu+p+1} = 0 \pmod{p}.
\]
Now a crucial observation is that
\[s_{\mu+p+1} = s_\mu = -1, \]
as \(\mu \) and \(\mu + p + 1 \leq 2m - 2 \) are even. Together with (9) this implies
\[-1 - 2s_{\mu+1} - 1 = 0 \pmod{p}, \]
and hence \(s_{\mu+1} = -1 \pmod{p} \). This is the statement of the lemma for \(\mu + 1 \).

Case 2. Suppose that \(\mu + 1 \leq 2m - 1 - p \) and \(\mu = vp - 1 \). Then \(s_1 = -1 \) gives
\[a_{\mu+p+1}s_1 + (\mu + p + 1)a_{\mu+p+2} - (\mu + p)a_{\mu+p+1} = 0 \pmod{p}. \]
Combining this with (7), (8), and \(a_{p+1} = -1 \), we obtain
\[s_{\mu+p+1} - s_{\mu+1} - s_{\mu+1} - (-1)s_\mu = 0 \pmod{p}. \]
Observe that (10) is valid in this case as well, hence it follows from (11) that
\[-1 - 2s_{\mu+1} - 1 = 0 \pmod{p}, \]
and hence \(s_{\mu+1} = -1 \pmod{p} \). This is the statement of the lemma for \(\mu + 1 \). \(\Box \)

Lemma 3. Suppose
\[s_j = -1 \pmod{p}, \quad j = 1, 2, \ldots, \mu - 1. \]
Then
\[a_{wp+1} = a_{wp+2} = \cdots = a_{wp+r} \]
whenever \(0 \leq wp + r \leq n - p - 1 \), \(r = 0, 1, \ldots, p - 1 \).

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Suppose \(P_{2m} \in \mathcal{L}_{2m} \) is of the form
\[P_{2m}(z) = \sum_{j=1}^{2m+1} a_j z^{2m+1-j}, \quad a_j \in \{-1, 1\}, \quad j = 1, 2, \ldots, 2m + 1, \]
and assume that
\[Q_{4m}(z) = P_{2m}(z)P^*_{2m}(z). \]
As we have observed before, (2) implies that \(P^*_{2m}(z) = (-1)^m P_{2m}(-z) \), and without loss of generality we may assume that \(a_1 = 1 \). As in Lemmas 1, 2, and 3, let
\[a_1 = a_2 = \cdots = a_p = 1, \quad a_{p+1} = -1. \]
Then (4) implies that p is odd and, considering P_{2m}^* rather than P_{2m} if necessary, without loss of generality we may assume that $p \geq 3$. Let

$$n = 2m + 1 = up + r, \quad 0 \leq r \leq p - 1.$$

Case 1. Suppose $u \geq 3$ and $p \geq 5$. Then by Lemma 3 we can deduce that

$$a_{p+2} = a_{p+3} = a_{p+4}.$$

On the other hand (2) implies that

$$a_{n-p-1} = -a_{n-p-2} = a_{n-p-3}.$$

However, this is impossible by Lemma 3.

Case 2. Suppose $u \geq 3$, $p = 3$, and $n \geq 13$. Then by Lemma 3 we can deduce that

$$a_{p+4} = a_{p+5} = a_{p+6}.$$

On the other hand (2) implies that

$$a_{n-p-3} = -a_{n-p-4} = a_{n-p-5}.$$

However, this is impossible by Lemma 3.

Case 3. Suppose $u = 2$, $p \geq 5$, and $r \geq 4$. Then by Lemma 3 we have

$$a_{p+2} = a_{p+3} = a_{p+4} = -1.$$

On the other hand (2) implies that

$$a_{n-p-1} = -a_{n-p-2} = a_{n-p-3}.$$

However, this is impossible by Lemma 3.

Case 4. Suppose $u = 2$, $p \geq 7$, and $r \leq 3$. First we observe that Lemma 3 and (2) imply $P_{2m}(1) \geq p - 4 \geq 3$. So $Q_{4m}(1) = P_{2m}(1)^2 \geq 9$, hence m must be even. But then $P_{2m}(1) \geq p$. Hence

$$4p + 5 = 2up + 5 \geq 2n - 1 = 4m + 1 = Q_{4m}(1) = P_{2m}(1)^2 \geq p^2,$$

that is $p^2 - 4p - 5 \leq 0$, which is impossible for $p \geq 7$.

Case 5. Suppose $u = 1$. Then (2) implies that $P_{2m}(1) \geq p - 1$. But then

$$4p - 3 \geq 2(p + r) - 1 \geq 2n - 1 = 4m + 1 \geq Q_{4m}(1) = P_{2m}(1)^2 \geq (p - 1)^2,$$

that is, $p^2 - 6p + 4 \leq 0$, which is impossible for $p \geq 7$.

The impossibility of the above five cases shows that if $n \geq 13$, then we must have either $u = 2$ with $p \leq 5$ and $r \leq 3$, or else, $u = 1$ with $p \leq 5$. Since $n = up + r$, both of the above cases is impossible. Hence $n \leq 12$ must be the case, and the theorem is proved. \(\Box\)
References

Department of Mathematics and Statistics, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6 (P. Borwein)

Department of Mathematics, Texas A&M University, College Station, Texas 77843 (T. Erdélyi)

E-mail address: pborwein@sfu.ca (P. Borwein) and terdelyi@math.tamu.edu (T. Erdélyi)