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Abstract. Let Pm

n
be the collection of all polynomials of degree at most n with real coeffi-

cients that have at most m distinct complex zeros. We prove that

max
x∈[0,1]

|P ′(x)| ≤ 32 · 8m
n max

x∈[0,1]
|P (x)|

for every P ∈ Pm

n
. This is far away from what we expect. We conjecture that the Markov

factor 32 · 8mn above may be replaced by cmn with an absolute constant c > 0. We are not

able to prove this conjecture at the moment. However, we think that our result above gives

the best known Markov-type inequality for Pm

n
on a finite interval when m ≤ c log n.

1. Introduction, Notation, New Result

Markov’s inequality asserts that

max
x∈[0,1]

|P ′(x)| ≤ 2n2 max
x∈[0,1]

|P (x)|

for all polynomials of degree at most n with real coefficients. There is a huge literature
about Markov-type inequalities for constrained polynomials. In particular, several essen-
tially sharp improvements are known for various classes of polynomials with restricted
zeros. Here we just refer to [1], and the references therein.

Let Pm
n be the collection of all polynomials of degree at most n with real coefficients

that have at most m distinct complex zeros. We prove the following.

Theorem. We have

max
x∈[0,1]

|P ′(x)| ≤ 32 · 8mn max
x∈[0,1]

|P (x)|

for every P ∈ Pm
n .

This is far away from what we expect. We conjecture that the Markov factor 32 · 8mn
above may be replaced by cmn with an absolute constant c > 0. We are not able to prove
this conjecture at the moment. However, we think that our result above gives the best
known Markov-type inequality for Pm

n on a finite interval when m ≤ c log n.
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2. Proof

It is easy to see by Rouche’s Theorem that Pm
n is closed in the maximum norm on [0, 1],

and hence in any norm. Therefore it is easy to argue that there is a P ∗ ∈ Pm
n with minimal

L1 norm on [0, 1] such that

|P ∗′(0)|

max
x∈[0,1]

|P ∗(x)|
= sup

P∈Pm
n

|P ′(0)|

max
x∈[0,1]

|P (x)|
.

Lemma 1. There is a polynomial T ∈ Pm+1
n of the form

T (x) = Q(x)(x − a) ,

where Q ∈ Pm
n−1 has all its zeros in [0, 1], a ∈ R, and

|P ∗′(0)|

max
x∈[0,1]

|P ∗(x)|
≤

|T ′(0)|

max
x∈[0,1]

|T (x)|
.

Proof. Assume that z0 ∈ C \ R is a zero of P ∗ with multiplicity k. Then

P ∗
ε (x) := P ∗(x)

(

1 − ε
x2

(x − z0)(x − z0)

)k

with a sufficiently small ε > 0 is in Pm
n and it contradicts the defining properties of P ∗. So

each of the zeros of P ∗ is real. Now let P ∗ = RS where all the zeros of R are in [0, 1], while
S(0) > 0 and all the zeros of S are in R \ [0, 1]. We may assume that S is not identically
constant, otherwise T := P ∗ ∈ Pm+1

n with Q ∈ Pm
n−1 defined by

Q(x) :=
P ∗(x)

x − a

is a suitable choice, where x − a is any linear factor of P ∗. It is easy to see that S can be
written as

S(x) :=
d

∑

j=0

Ajx
j(1 − x)d−j , Aj ≥ 0 , j = 0, 1, . . . , d ,

where d ≥ 1 is the degree of S. Now let

T (x) = R(x)

1
∑

j=0

Ajx
j(1 − x)d−j .

Then T is of the form
T (x) = Q(x)(x − a) ,
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where Q ∈ Pm
n−1 has all its zeros in [0, 1], a ∈ R, and

|P ∗′(0)|

max
x∈[0,1]

|P ∗(x)|
≤

|T ′(0)|

max
x∈[0,1]

|T (x)|
,

and the proof is finished. �

For the sake of brevity let

n ≤ M(n, m) := sup
P

|P ′(0)|

max
x∈[0,1]

|P (x)|
,

where the supremum is taken for all P ∈ Pm
n having all their zeros in [0, 1].

Lemma 2. Let P ∗ and T (x) = Q(x)(x − a) be as in Lemma 1. Suppose a < 0 or a > 2.
Then

max
x∈[0,1]

|Q(x)| ≤ 4M(n, m) max
x∈[0,1]

|T (x)| .

Proof. Let b ∈ [0, 1] be a point for which

|Q(b)| = max
x∈[0,1]

|Q(x)| .

Case 1: b ∈ [1/2, 1]. In this case

max
x∈[0,1]

|Q(x)| = |Q(b)| =
|T (b)|

|b − a|
≤ 2|T (b)| ≤ 2 max

x∈[0,1]
|T (x)| .

Case 2: b ∈ [0, 1/2]. In this case Q = UV , where U ∈ Pm
n has all its zeros in [b, 1], and

V ∈ Pm
n has all its zeros in R \ [b, 1]. It is easy to see that V can be written as

V (x) :=
d

∑

j=0

Bj(x − b)j(1 − x)d−j , Bj ≥ 0 , j = 0, 1, . . . , d ,

where d is the degree of V . Now let

W (x) = U(x)B0(1 − x)d .

Then

(1) |W (b)| = |(UV )(b)| = |Q(b)| = max
x∈[b,1]

|Q(x)|

and

(2) |W (x)| ≤ |Q(x)| , x ∈ [b, 1] .
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Also W ∈ Pm
n has all its zeros in [b, 1]. Let η > b be the smallest point for which

|W (η)| =
1

2
max

x∈[b,1]
|W (x)| .

Then |W ′(x)| is decreasing on [b, η], and it follows by a linear transformation that

(3) |W ′(b)| ≤
M(n, m)

1 − b
max

x∈[b,1]
|W (x)| .

Combining the above by the Mean Value Theorem, we obtain

1

2
max

x∈[b,1]
|W (x)| = |W (b) − W (η)| = (η − b)|W ′(ξ)|

≤ (η − b)||W ′(b)| ≤
η − b

1 − b
M(n, m) max

x∈[b,1]
|W (x)| ,

whence

η − b ≥
1 − b

2M(n, m)
.

This, together with (1), (2), (3), yields

max
x∈[0,1]

|Q(x)| ≤ 2|Q(η)| =
2|T (η)|

|η − a|
=

2|T (η)

|η − b|

|η − b|

|η − a|

≤ 2|T (η)|
2M(n, m)

1 − b

1 − b

|1 − a|
≤ 4M(n, m) max

x∈[0,1]
|T (x)| ,

and the proof is finished. �

Lemma 3. Let P ∗ be as in Lemma 1. Then there exists a polynomial U ∈ Pm+1
n having

all its zeros in [0, 1] such that

|U ′(0)|

max
x∈[0,1]

|U(x)|
≥

1

7

|P ∗′(0)|

max
x∈[0,1]

|P ∗(x)|
.

Proof. Let T (x) = Q(x)(x − a) as in Lemma 1. We distinguish three cases.

Case 1: a ∈ [0, 1]. In this case U(x) = T (x) is a suitable choice.

Case 2: a ∈ [1, 2]. In this case U(x) = T (ax) is a suitable choice.

Case 3: a < 0 or a > 2. Then we have

T ′(0) = −aQ′(0) + Q(0) .
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Combining this with Lemma 2 we obtain

|P ∗′(0)|

max
x∈[0,1]

|P ∗(x)|
≤

|T ′(0)|

max
x∈[0,1]

|T (x)|
≤

|aQ′(0)|

max
x∈[0,1]

|Q(x)(x− a)|
+

|Q(0)|

max
x∈[0,1]

|Q(x)(x− a)|

≤
|aQ′(0)|

∣

∣

∣

a

2

∣

∣

∣
max

x∈[0,1]
|Q(x)|

+
|Q(0)|

(4M(n, m))−1 max
x∈[0,1]

|Q(x)|

≤ 2M(n − 1, m) + 4M(n, m + 1) ≤ 6M(n, m) .

This means that there is a polynomial U ∈ Pm+1
n having all its zeros in [0, 1] such that

|U ′(0)|

max
x∈[0,1]

|U(x)|
≥ (1/7)

|P ∗′(0)|

max
x∈[0,1]

|P ∗(x)|
. �

We introduce

n ≤ M∗(n, m) := sup
P

|P ′(0)|

max
x∈[0,1]

|P (x)|
,

where the supremum is taken for all P ∈ Pm
n having all their zeros in [0, 1] for which

|P (0)| = max
x∈[0,1]

|P (x)| .

Lemma 4. We have M(n, m + 1) = M∗(n, m + 1).

Proof. Since M(n, m + 1) ≥ M∗(n, m + 1) is trivial, we need to see only M(n, m + 1) ≤
M∗(n, m + 1). To this end take a P ∈ Pm+1

n and choose α ∈ (−∞, 0] so that

|P (α)| = max
x∈[0,1]

|P (x)| .

Now let
U(x) := P ((1 − α)x + α) .

Then U ∈ Pm+1
n has all its zeros in [0, 1] and

|U(0)| = |P (α)| = max
x∈[0,1]

|P (x)| = max
x∈[α,1]

|P (x)| = max
x∈[0,1]

|U(x)| ,

while, since |P ′(x)| is decreasing on (−∞, 0], we have

|U ′(0)| = (1 − α)|P ′(α)| ≥ (1 − α)|P ′(0)| ≥ |P ′(0)| .

Therefore
|P ′(0)|

max
x∈[0,1]

|P (x)|
≤

|U ′(0)|

max
x∈[0,1]

|U(x)|
. �

From Lemmas 3 and 4 we can draw the following conclusion.
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Lemma 5. We have

sup
P∈Pm

n

|P ′(0)|

max
x∈[0,1]

|P (x)|
≤ 7M∗(n, m + 1) .

Lemma 6. We have M∗(n, m) ≤ 2
7
8mn .

Proof. Suppose that P ∈ Pm
n has all its zeros in [0, 1], and

|P (0)| = max
x∈[0,1]

|P (x)| .

Let F (x) := |P (x)|1/d, where d(≤ n) is the degree of P . Then

(4) |F (0)| = max
x∈[0,1]

|F (x)| .

Let

F (x) =
m
∏

i=1

|x − xi|
αi ,

where

0 < x1 < . . . < xm < 1 , 0 < αi, i = 1, 2, . . . , m ,

m
∑

i=1

αi = 1 .

We show that

(5)
αi

xi
≤ 2 · 8m−i

for i = 1, 2, . . . , m. To see this let

A1 := {1, 2, . . . , i1} ,

A2 := {i1 + 1, i1 + 2, . . . , i2} ,

...

Aµ := {iµ−1 + 1, iµ−1 + 2, . . . , iµ := m} ,

be the sets of indices for which

xi+1

xi
≤ 8 whenever i and i + 1 are in the same set ,

xi+1

xi
> 8 whenever i and i + 1 are in two distinct sets .

Now (5) is clear for any i ∈ Aµ, since (4) implies that

αi

xi
≤

1

xi
≤

8m−i

xm
≤ 2 · 8m−i .
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We continue by induction. Assume that (5) holds for any i ∈ Aν ∪ Aν+1 ∪ . . . ∪ Aµ. We
prove that it holds for any j ∈ Aν−1. Since

m
∏

i=1

|x − xi|
αi ≤ F (0) =

m
∏

i=1

|xi|
αi , x ∈ [0, 1] ,

we have
m

∑

i=1

αi log

∣

∣

∣

∣

x

xi
− 1

∣

∣

∣

∣

≤ 0 , x ∈ [0, 1] .

Let j ∈ Aν−1 arbitrary and x∗ := 4xiν−1
. For k ∈ Aν∪Aν+1∪. . .∪Aµ we have x∗/xk ≤ 1/2 ,

so

log

(

1 −
x∗

xk

)

≥ −2(log 2) ·
x∗

xk
.

Thus

(log 3)

iν−1
∑

i=1

αi ≤ 2(log 2) · x∗

m
∑

i=iν−1+1

αi

xi
,

αj

xj
≤

2(log 2)

log 3

x∗

xj

m
∑

i=iν−1+1

αi

xi
≤

2(log 2)

log 3
4 · 8iν−1−j

(

2 + 2 · 8 + · · · + 2 · 8m−iν−1−1
)

,

from which
αj

xj
≤ 2 · 8m−j

follows immediately. The proof of (5) is complete now for all i = 1, 2, . . . , m. The lemma
follows now from (5):

|P ′(0)|

|P (0)|
= d

|F ′(0)|

|F (0)|
≤ d

2

7
8m . �

Now it follows from Lemmas 5 and 6 that

Corollary 7. We have

|P ′(0)| ≤ 2 · 8m+1n max
x∈[0,1]

|P (x)| .

for every P ∈ Pm
n .

Proof of the Theorem. We need to prove that

|P ′(y)| ≤ 4 · 8m+1n max
x∈[0,1]

|P (x)| .

for every P ∈ Pm
n and y ∈ [0, 1]. However, it follows from Corollary 7 by a simple linear

transformation that

|P ′(y)| ≤ 2 · 2 · 8m+1n max
x∈[y,1]

|P (x)| ≤ 4 · 8m+1n max
x∈[0,1]

|P (x)| , y ∈ [0, 1/2] ,

and

|P ′(y)| ≤ 2 · 2 · 8m+1n max
x∈[0,y]

|P (x)| ≤ 4 · 8m+1n max
x∈[0,1]

|P (x)| , y ∈ [1/2, 1] .

This finishes the proof. �
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