MARKOV INEQUALITY FOR POLYNOMIALS OF DEGREE n WITH m DISTINCT ZEROS

David Benko and Tamás Erdélyi

Abstract. Let \mathcal{P}_{n}^{m} be the collection of all polynomials of degree at most n with real coefficients that have at most m distinct complex zeros. We prove that

$$
\max _{x \in[0,1]}\left|P^{\prime}(x)\right| \leq 32 \cdot 8^{m} n \max _{x \in[0,1]}|P(x)|
$$

for every $P \in \mathcal{P}_{n}^{m}$. This is far away from what we expect. We conjecture that the Markov factor $32 \cdot 8^{m} n$ above may be replaced by $c m n$ with an absolute constant $c>0$. We are not able to prove this conjecture at the moment. However, we think that our result above gives the best known Markov-type inequality for \mathcal{P}_{n}^{m} on a finite interval when $m \leq c \log n$.

1. Introduction, Notation, New Result

Markov's inequality asserts that

$$
\max _{x \in[0,1]}\left|P^{\prime}(x)\right| \leq 2 n^{2} \max _{x \in[0,1]}|P(x)|
$$

for all polynomials of degree at most n with real coefficients. There is a huge literature about Markov-type inequalities for constrained polynomials. In particular, several essentially sharp improvements are known for various classes of polynomials with restricted zeros. Here we just refer to [1], and the references therein.

Let \mathcal{P}_{n}^{m} be the collection of all polynomials of degree at most n with real coefficients that have at most m distinct complex zeros. We prove the following.

Theorem. We have

$$
\max _{x \in[0,1]}\left|P^{\prime}(x)\right| \leq 32 \cdot 8^{m} n \max _{x \in[0,1]}|P(x)|
$$

for every $P \in \mathcal{P}_{n}^{m}$.
This is far away from what we expect. We conjecture that the Markov factor $32 \cdot 8^{m} n$ above may be replaced by $c m n$ with an absolute constant $c>0$. We are not able to prove this conjecture at the moment. However, we think that our result above gives the best known Markov-type inequality for \mathcal{P}_{n}^{m} on a finite interval when $m \leq c \log n$.

[^0]
2. Proof

It is easy to see by Rouche's Theorem that \mathcal{P}_{n}^{m} is closed in the maximum norm on $[0,1]$, and hence in any norm. Therefore it is easy to argue that there is a $P^{*} \in \mathcal{P}_{n}^{m}$ with minimal L_{1} norm on $[0,1]$ such that

$$
\frac{\left|P^{* \prime}(0)\right|}{\max _{x \in[0,1]}\left|P^{*}(x)\right|}=\sup _{P \in \mathcal{P}_{n}^{m}} \frac{\left|P^{\prime}(0)\right|}{\max _{x \in[0,1]}|P(x)|} .
$$

Lemma 1. There is a polynomial $T \in \mathcal{P}_{n}^{m+1}$ of the form

$$
T(x)=Q(x)(x-a),
$$

where $Q \in \mathcal{P}_{n-1}^{m}$ has all its zeros in $[0,1], a \in \mathbb{R}$, and

$$
\frac{\left|P^{* \prime}(0)\right|}{\max _{x \in[0,1]}\left|P^{*}(x)\right|} \leq \frac{\left|T^{\prime}(0)\right|}{\max _{x \in[0,1]}|T(x)|}
$$

Proof. Assume that $z_{0} \in \mathbb{C} \backslash \mathbb{R}$ is a zero of P^{*} with multiplicity k. Then

$$
P_{\varepsilon}^{*}(x):=P^{*}(x)\left(1-\varepsilon \frac{x^{2}}{\left(x-z_{0}\right)\left(x-\bar{z}_{0}\right)}\right)^{k}
$$

with a sufficiently small $\varepsilon>0$ is in \mathcal{P}_{n}^{m} and it contradicts the defining properties of P^{*}. So each of the zeros of P^{*} is real. Now let $P^{*}=R S$ where all the zeros of R are in $[0,1]$, while $S(0)>0$ and all the zeros of S are in $\mathbb{R} \backslash[0,1]$. We may assume that S is not identically constant, otherwise $T:=P^{*} \in \mathcal{P}_{n}^{m+1}$ with $Q \in \mathcal{P}_{n-1}^{m}$ defined by

$$
Q(x):=\frac{P^{*}(x)}{x-a}
$$

is a suitable choice, where $x-a$ is any linear factor of P^{*}. It is easy to see that S can be written as

$$
S(x):=\sum_{j=0}^{d} A_{j} x^{j}(1-x)^{d-j}, \quad A_{j} \geq 0, j=0,1, \ldots, d
$$

where $d \geq 1$ is the degree of S. Now let

$$
T(x)=R(x) \sum_{j=0}^{1} A_{j} x^{j}(1-x)^{d-j}
$$

Then T is of the form

$$
T(x)=Q(x)(x-a),
$$

where $Q \in \mathcal{P}_{n-1}^{m}$ has all its zeros in $[0,1], a \in \mathbb{R}$, and

$$
\frac{\left|P^{* \prime}(0)\right|}{\max _{x \in[0,1]}\left|P^{*}(x)\right|} \leq \frac{\left|T^{\prime}(0)\right|}{\max _{x \in[0,1]}|T(x)|},
$$

and the proof is finished.
For the sake of brevity let

$$
n \leq M(n, m):=\sup _{P} \frac{\left|P^{\prime}(0)\right|}{\max _{x \in[0,1]}|P(x)|}
$$

where the supremum is taken for all $P \in \mathcal{P}_{n}^{m}$ having all their zeros in $[0,1]$.
Lemma 2. Let P^{*} and $T(x)=Q(x)(x-a)$ be as in Lemma 1. Suppose $a<0$ or $a>2$. Then

$$
\max _{x \in[0,1]}|Q(x)| \leq 4 M(n, m) \max _{x \in[0,1]}|T(x)|
$$

Proof. Let $b \in[0,1]$ be a point for which

$$
|Q(b)|=\max _{x \in[0,1]}|Q(x)|
$$

Case 1: $b \in[1 / 2,1]$. In this case

$$
\max _{x \in[0,1]}|Q(x)|=|Q(b)|=\frac{|T(b)|}{|b-a|} \leq 2|T(b)| \leq 2 \max _{x \in[0,1]}|T(x)|
$$

Case 2: $b \in[0,1 / 2]$. In this case $Q=U V$, where $U \in \mathcal{P}_{n}^{m}$ has all its zeros in $[b, 1]$, and $V \in \mathcal{P}_{n}^{m}$ has all its zeros in $\mathbb{R} \backslash[b, 1]$. It is easy to see that V can be written as

$$
V(x):=\sum_{j=0}^{d} B_{j}(x-b)^{j}(1-x)^{d-j}, \quad B_{j} \geq 0, \quad j=0,1, \ldots, d
$$

where d is the degree of V. Now let

$$
W(x)=U(x) B_{0}(1-x)^{d}
$$

Then

$$
\begin{equation*}
|W(b)|=|(U V)(b)|=|Q(b)|=\max _{x \in[b, 1]}|Q(x)| \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
|W(x)| \leq|Q(x)|, \quad x \in[b, 1] . \tag{2}
\end{equation*}
$$

Also $W \in \mathcal{P}_{n}^{m}$ has all its zeros in $[b, 1]$. Let $\eta>b$ be the smallest point for which

$$
|W(\eta)|=\frac{1}{2} \max _{x \in[b, 1]}|W(x)|
$$

Then $\left|W^{\prime}(x)\right|$ is decreasing on $[b, \eta]$, and it follows by a linear transformation that

$$
\begin{equation*}
\left|W^{\prime}(b)\right| \leq \frac{M(n, m)}{1-b} \max _{x \in[b, 1]}|W(x)| \tag{3}
\end{equation*}
$$

Combining the above by the Mean Value Theorem, we obtain

$$
\begin{aligned}
\frac{1}{2} \max _{x \in[b, 1]}|W(x)| & =|W(b)-W(\eta)|=(\eta-b)\left|W^{\prime}(\xi)\right| \\
& \left.\leq(\eta-b)| | W^{\prime}(b)\left|\leq \frac{\eta-b}{1-b} M(n, m) \max _{x \in[b, 1]}\right| W(x) \right\rvert\,
\end{aligned}
$$

whence

$$
\eta-b \geq \frac{1-b}{2 M(n, m)}
$$

This, together with (1), (2), (3), yields

$$
\begin{aligned}
\max _{x \in[0,1]}|Q(x)| & \leq 2|Q(\eta)|=\frac{2|T(\eta)|}{|\eta-a|}=\frac{2 \mid T(\eta)}{|\eta-b|} \frac{|\eta-b|}{|\eta-a|} \\
& \leq 2|T(\eta)| \frac{2 M(n, m)}{1-b} \frac{1-b}{|1-a|} \leq 4 M(n, m) \max _{x \in[0,1]}|T(x)|
\end{aligned}
$$

and the proof is finished.
Lemma 3. Let P^{*} be as in Lemma 1. Then there exists a polynomial $U \in \mathcal{P}_{n}^{m+1}$ having all its zeros in $[0,1]$ such that

$$
\frac{\left|U^{\prime}(0)\right|}{\max _{x \in[0,1]}|U(x)|} \geq \frac{1}{7} \frac{\left|P^{* \prime}(0)\right|}{\max _{x \in[0,1]}\left|P^{*}(x)\right|}
$$

Proof. Let $T(x)=Q(x)(x-a)$ as in Lemma 1. We distinguish three cases.
Case 1: $a \in[0,1]$. In this case $U(x)=T(x)$ is a suitable choice.
Case 2: $a \in[1,2]$. In this case $U(x)=T(a x)$ is a suitable choice.
Case 3: $a<0$ or $a>2$. Then we have

$$
T^{\prime}(0)=-a Q^{\prime}(0)+Q(0) .
$$

Combining this with Lemma 2 we obtain

$$
\begin{aligned}
\frac{\left|P^{* \prime}(0)\right|}{\max _{x \in[0,1]}\left|P^{*}(x)\right|} & \leq \frac{\left|T^{\prime}(0)\right|}{\max _{x \in[0,1]}|T(x)|} \leq \frac{\left|a Q^{\prime}(0)\right|}{\max _{x \in[0,1]}|Q(x)(x-a)|}+\frac{|Q(0)|}{\max _{x \in[0,1]}|Q(x)(x-a)|} \\
& \leq \frac{\left|a Q^{\prime}(0)\right|}{\left|\frac{a}{2}\right| \max _{x \in[0,1]}|Q(x)|}+\frac{|Q(0)|}{(4 M(n, m))^{-1} \max _{x \in[0,1]}|Q(x)|} \\
& \leq 2 M(n-1, m)+4 M(n, m+1) \leq 6 M(n, m) .
\end{aligned}
$$

This means that there is a polynomial $U \in \mathcal{P}_{n}^{m+1}$ having all its zeros in $[0,1]$ such that

$$
\frac{\left|U^{\prime}(0)\right|}{\max _{x \in[0,1]}|U(x)|} \geq(1 / 7) \frac{\left|P^{* \prime}(0)\right|}{\max _{x \in[0,1]}\left|P^{*}(x)\right|}
$$

We introduce

$$
n \leq M^{*}(n, m):=\sup _{P} \frac{\left|P^{\prime}(0)\right|}{\max _{x \in[0,1]}|P(x)|}
$$

where the supremum is taken for all $P \in \mathcal{P}_{n}^{m}$ having all their zeros in $[0,1]$ for which

$$
|P(0)|=\max _{x \in[0,1]}|P(x)|
$$

Lemma 4. We have $M(n, m+1)=M^{*}(n, m+1)$.
Proof. Since $M(n, m+1) \geq M^{*}(n, m+1)$ is trivial, we need to see only $M(n, m+1) \leq$ $M^{*}(n, m+1)$. To this end take a $P \in \mathcal{P}_{n}^{m+1}$ and choose $\alpha \in(-\infty, 0]$ so that

$$
|P(\alpha)|=\max _{x \in[0,1]}|P(x)|
$$

Now let

$$
U(x):=P((1-\alpha) x+\alpha) .
$$

Then $U \in \mathcal{P}_{n}^{m+1}$ has all its zeros in $[0,1]$ and

$$
|U(0)|=|P(\alpha)|=\max _{x \in[0,1]}|P(x)|=\max _{x \in[\alpha, 1]}|P(x)|=\max _{x \in[0,1]}|U(x)|,
$$

while, since $\left|P^{\prime}(x)\right|$ is decreasing on $(-\infty, 0]$, we have

$$
\left|U^{\prime}(0)\right|=(1-\alpha)\left|P^{\prime}(\alpha)\right| \geq(1-\alpha)\left|P^{\prime}(0)\right| \geq\left|P^{\prime}(0)\right|
$$

Therefore

$$
\frac{\left|P^{\prime}(0)\right|}{\max _{x \in[0,1]}|P(x)|} \leq \frac{\left|U^{\prime}(0)\right|}{\max _{x \in[0,1]}|U(x)|}
$$

From Lemmas 3 and 4 we can draw the following conclusion.

Lemma 5. We have

$$
\sup _{P \in \mathcal{P}_{n}^{m}} \frac{\left|P^{\prime}(0)\right|}{\max _{x \in[0,1]}|P(x)|} \leq 7 M^{*}(n, m+1) .
$$

Lemma 6. We have $M^{*}(n, m) \leq \frac{2}{7} 8^{m} n$.
Proof. Suppose that $P \in \mathcal{P}_{n}^{m}$ has all its zeros in $[0,1]$, and

$$
|P(0)|=\max _{x \in[0,1]}|P(x)| .
$$

Let $F(x):=|P(x)|^{1 / d}$, where $d(\leq n)$ is the degree of P. Then

$$
\begin{equation*}
|F(0)|=\max _{x \in[0,1]}|F(x)| \tag{4}
\end{equation*}
$$

Let

$$
F(x)=\prod_{i=1}^{m}\left|x-x_{i}\right|^{\alpha_{i}}
$$

where

$$
0<x_{1}<\ldots<x_{m}<1, \quad 0<\alpha_{i}, \quad i=1,2, \ldots, m, \quad \sum_{i=1}^{m} \alpha_{i}=1
$$

We show that

$$
\begin{equation*}
\frac{\alpha_{i}}{x_{i}} \leq 2 \cdot 8^{m-i} \tag{5}
\end{equation*}
$$

for $i=1,2, \ldots, m$. To see this let

$$
\begin{aligned}
A_{1} & :=\left\{1,2, \ldots, i_{1}\right\} \\
A_{2} & :=\left\{i_{1}+1, i_{1}+2, \ldots, i_{2}\right\} \\
& \vdots \\
A_{\mu} & :=\left\{i_{\mu-1}+1, i_{\mu-1}+2, \ldots, i_{\mu}:=m\right\}
\end{aligned}
$$

be the sets of indices for which

$$
\begin{gathered}
\frac{x_{i+1}}{x_{i}} \leq 8 \text { whenever } i \text { and } i+1 \text { are in the same set } \\
\frac{x_{i+1}}{x_{i}}>8 \text { whenever } i \text { and } i+1 \text { are in two distinct sets. }
\end{gathered}
$$

Now (5) is clear for any $i \in A_{\mu}$, since (4) implies that

$$
\frac{\alpha_{i}}{x_{i}} \leq \frac{1}{x_{i}} \leq \frac{8^{m-i}}{x_{m}} \leq 2 \cdot 8^{m-i} .
$$

We continue by induction. Assume that (5) holds for any $i \in A_{\nu} \cup A_{\nu+1} \cup \ldots \cup A_{\mu}$. We prove that it holds for any $j \in A_{\nu-1}$. Since

$$
\prod_{i=1}^{m}\left|x-x_{i}\right|^{\alpha_{i}} \leq F(0)=\prod_{i=1}^{m}\left|x_{i}\right|^{\alpha_{i}}, \quad x \in[0,1]
$$

we have

$$
\sum_{i=1}^{m} \alpha_{i} \log \left|\frac{x}{x_{i}}-1\right| \leq 0, \quad x \in[0,1]
$$

Let $j \in A_{\nu-1}$ arbitrary and $x^{*}:=4 x_{i_{\nu-1}}$. For $k \in A_{\nu} \cup A_{\nu+1} \cup \ldots \cup A_{\mu}$ we have $x^{*} / x_{k} \leq 1 / 2$, so

$$
\log \left(1-\frac{x^{*}}{x_{k}}\right) \geq-2(\log 2) \cdot \frac{x^{*}}{x_{k}}
$$

Thus

$$
\begin{gathered}
(\log 3) \sum_{i=1}^{i_{\nu-1}} \alpha_{i} \leq 2(\log 2) \cdot x^{*} \sum_{i=i_{\nu-1}+1}^{m} \frac{\alpha_{i}}{x_{i}} \\
\frac{\alpha_{j}}{x_{j}} \leq \frac{2(\log 2)}{\log 3} \frac{x^{*}}{x_{j}} \sum_{i=i_{\nu-1}+1}^{m} \frac{\alpha_{i}}{x_{i}} \leq \frac{2(\log 2)}{\log 3} 4 \cdot 8^{i_{\nu-1}-j}\left(2+2 \cdot 8+\cdots+2 \cdot 8^{m-i_{\nu-1}-1}\right),
\end{gathered}
$$

from which

$$
\frac{\alpha_{j}}{x_{j}} \leq 2 \cdot 8^{m-j}
$$

follows immediately. The proof of (5) is complete now for all $i=1,2, \ldots, m$. The lemma follows now from (5):

$$
\frac{\left|P^{\prime}(0)\right|}{|P(0)|}=d \frac{\left|F^{\prime}(0)\right|}{|F(0)|} \leq d \frac{2}{7} 8^{m} .
$$

Now it follows from Lemmas 5 and 6 that
Corollary 7. We have

$$
\left|P^{\prime}(0)\right| \leq 2 \cdot 8^{m+1} n \max _{x \in[0,1]}|P(x)|
$$

for every $P \in \mathcal{P}_{n}^{m}$.
Proof of the Theorem. We need to prove that

$$
\left|P^{\prime}(y)\right| \leq 4 \cdot 8^{m+1} n \max _{x \in[0,1]}|P(x)|
$$

for every $P \in \mathcal{P}_{n}^{m}$ and $y \in[0,1]$. However, it follows from Corollary 7 by a simple linear transformation that

$$
\left|P^{\prime}(y)\right| \leq 2 \cdot 2 \cdot 8^{m+1} n \max _{x \in[y, 1]}|P(x)| \leq 4 \cdot 8^{m+1} n \max _{x \in[0,1]}|P(x)|, \quad y \in[0,1 / 2]
$$

and

$$
\left|P^{\prime}(y)\right| \leq 2 \cdot 2 \cdot 8^{m+1} n \max _{x \in[0, y]}|P(x)| \leq 4 \cdot 8^{m+1} n \max _{x \in[0,1]}|P(x)|, \quad y \in[1 / 2,1]
$$

This finishes the proof.

References

1. P. B. Borwein and T. Erdélyi, Polynomials and Polynomials Inequalities, Springer-Verlag, New York, 1995.

Department of Mathematics, Texas A\&M University, College Station, Texas 77843, USA
E-mail address: terdelyi@math.tamu.edu (T. Erdélyi) and benko@math.tamu.edu (D. Benko)

[^0]: 1991 Mathematics Subject Classification. Primary: 41A17, Secondary: 30B10, 26D15.
 Key words and phrases. Markov-type inequalities, polynomials with restricted zeros.
 Research of T. Erdélyi is supported, in part, by NSF under Grant No. DMS-0070826

