ARESTOV'S THEOREMS ON BERNSTEIN'S INEQUALITY

Tamás Erdélyi

September 29, 2019

Abstract

Following Arestov's Λ-method we give a simple, elementary, and at least partially new proof of Arestov's famous extension of Bernstein's inequality in L_{p} to all $p \geq 0$. Our crucial observation is that Boyd's approach to prove Mahler's inequality for algebraic polynomials $P_{n} \in \mathcal{P}_{n}^{c}$ can be extended to all trigonometric polynomials $T_{n} \in \mathcal{F}_{n}^{c}$.

1. Introduction and Notation

Let \mathcal{F}_{n}^{c} be the collection of all trigonometric polynomials T_{n} of the form

$$
T_{n}(z)=\sum_{j=-n}^{n} a_{j} z^{j}, \quad a_{j} \in \mathbb{C}, \quad z \in \mathbb{C} \backslash\{0\}
$$

Let \mathcal{P}_{n}^{c} be the collection of all algebraic polynomials P_{n} of the form

$$
P_{n}(z)=\sum_{j=0}^{n} a_{j} z^{j}, \quad a_{j} \in \mathbb{C}, \quad z \in \mathbb{C}
$$

Let D denote the open unit disk of the complex plane, and ∂D denote its boundary. We define the Mahler measure (geometric mean of Q on ∂D)

$$
\|Q\|_{0}=M_{0}(Q):=\exp \left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|Q\left(e^{i t}\right)\right| d t\right)
$$

for bounded measurable functions Q on ∂D. It is well known, see [HL-95], for instance, that

$$
\|Q\|_{0}=M_{0}(Q)=\lim _{p \rightarrow 0+} M_{p}(Q)
$$

where

$$
\|Q\|_{p}=M_{p}(Q):=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|Q\left(e^{i t}\right)\right|^{p} d t\right)^{1 / p}, \quad p>0
$$

Key words and phrases. Bernstein's inequality in L_{p} for all $p \geq 0$, Arestov's theorem.
2010 Mathematics Subject Classifications. 41A17

It is also well known that for a function Q continuous on ∂D we have

$$
\|Q\|_{\infty}=M_{\infty}(Q):=\max _{t \in[0,2 \pi]}\left|Q\left(e^{i t}\right)\right|=\lim _{p \rightarrow \infty} M_{p}(Q)
$$

It is a simple consequence of the Jensen formula that

$$
M_{0}(Q)=|c| \prod_{k=1}^{n} \max \left\{1,\left|z_{k}\right|\right\}
$$

for every polynomial of the form

$$
Q(z)=c \prod_{k=1}^{n}\left(z-z_{k}\right), \quad c, z_{k} \in \mathbb{C}
$$

Bernstein's inequality

$$
\left\|T_{n}^{\prime}\right\|_{\infty} \leq n\left\|T_{n}\right\|_{\infty}, \quad T_{n} \in \mathcal{F}_{n}^{c}
$$

plays a crucial role in proving inverse theorems of approximation as well as many other results in approximation theory. See [BE-95], for instance. As far as the history of Bernstein's inequality is concerned we refer to Nevai's lovely papers [N-14] and [N-19] and the references in them. We do not repeat the full story here. In 1981 Arestov [A-81] proved that

$$
\begin{equation*}
\left\|T_{n}^{\prime}\right\|_{p} \leq n\left\|T_{n}\right\|_{p}, \quad T_{n} \in \mathcal{F}_{n}^{c} \tag{1.1}
\end{equation*}
$$

for all $p \geq 0$, extending the result known only for $p \geq 1$ for a long time. Simpler proof of Bernstein's inequality in L_{p} for all $p \geq 0$ have been given by Golitschek and Lorentz in [GL-89] which is presented in the book [DL-93] by DeVore and Lorentz. A very elegant and even more simplified proof was published recently in [QZ-19] by Queffélec and Zarouf. A central part of their proof is to prove (1.1) for $p=0$ first. Mahler [M-61] showed (1.1) for $p=0$ but only for polynomials $P_{n} \in \mathcal{P}_{n}^{c}$, and he gave a rather involved proof. Mahler's inequality was also posed as a problem by Vaaler in the Problems section of the American Mathematical Monthly and solved by Boyd [VB-91] using an elementary theorem of Bernstein. We note that Glazyrina [G-05] proved a sharp Markov-type inequality for algebraic polynomials in L_{0} on finite subintervals of the real line.

In this note, following Arestov's Λ-method in [A-81], we give a simple, elementary, and at least partially new proof of Arestov's famous extension of Bernstein's inequality in L_{p} to all $p \geq 0$. Our crucial observation is that Boyd's approach to prove Mahler's inequality for algebraic polynomials $P_{n} \in \mathcal{P}_{n}^{c}$ can be extended to all trigonometric polynomials $T_{n} \in \mathcal{F}_{n}^{c}$.

Theorem 1.1. We have

$$
\left\|T_{n}^{\prime}\right\|_{0} \leq n\left\|T_{n}\right\|_{0}, \quad T_{n} \in \mathcal{F}_{n}^{c}
$$

Equivalently

$$
\int_{\partial D} \log \left|T_{n}^{\prime}(z) / n\right||d z| \leq \int_{\partial D} \log \left|T_{n}(z)\right||d z|, \quad T_{n} \in \mathcal{F}_{n}^{c}
$$

Theorem 1.2. With the notation $\log ^{+}|a|:=\max \{\log |a|, 0\}$ we have

$$
\int_{\partial D} \log ^{+}\left|T_{n}^{\prime}(z) / n\right||d z| \leq \int_{\partial D} \log ^{+}\left|T_{n}(z)\right||d z|, \quad T_{n} \in \mathcal{F}_{n}^{c}
$$

Theorem 1.3. We have

$$
\left\|T_{n}^{\prime}\right\|_{p} \leq n\left\|T_{n}\right\|_{p}, \quad T_{n} \in \mathcal{F}_{n}^{c}
$$

for every $p>0$.

2. LEMMAS

To prove Theorem 1.1 we need two lemmas.
Lemma 2.1. Associated with $S_{n} \in \mathcal{F}_{n}^{c}$, let $P_{2 n} \in \mathcal{P}_{2 n}^{c}$ be defined by $P_{2 n}(z)=z^{n} S_{n}(z)$. If $P_{2 n}$ has each of its $2 n$ zeros in D, then S_{n}^{\prime} has each of its zeros in D as well. The same is true if D is replaced by the closed unit disk \bar{D}.
Proof. We prove the lemma for D, the case of the closed unit disk \bar{D} follows from this by a straightforward limiting argument. Suppose $a \notin D$, that is, $a \in \mathbb{C}$ and $|a| \geq 1$. Suppose also that

$$
P_{2 n}(z)=c \prod_{j=1}^{2 n}\left(z-z_{j}\right), \quad 0 \neq c \in \mathbb{C}, \quad z_{j} \in D
$$

We have

$$
\begin{equation*}
\frac{a S_{n}^{\prime}(a)}{S_{n}(a)}=\sum_{j=1}^{2 n} \frac{a}{a-z_{j}}-\frac{a n}{a}=\sum_{j=1}^{2 n} \frac{1}{1-z_{j} / a}-n \tag{2.1}
\end{equation*}
$$

Observe that $\left|z_{j} / a\right|<1$ for each $j=1,2, \ldots, 2 n$, and hence

$$
\begin{equation*}
\operatorname{Re}\left(\frac{1}{1-z_{j} / a}\right)>\frac{1}{2}, \quad j=1,2, \ldots, 2 n \tag{2.2}
\end{equation*}
$$

Combining (2.1) and (2.2) we obtain

$$
\operatorname{Re}\left(\frac{a S_{n}^{\prime}(a)}{S_{n}(a)}\right)>\frac{2 n}{2}-n=0
$$

We conclude that $S_{n}^{\prime}(a) \neq 0$.
We remark that, using the notation in Lemma 2.1, we have $S_{n}(z)=P_{2 n}(z) z^{-n}$, hence

$$
S_{n}^{\prime}(z)=P_{2 n}^{\prime}(z) z^{-n}-n P_{2 n}(z) z^{-n-1}=z^{-n-1}\left(z P_{2 n}^{\prime}(z)-n P_{2 n}(z)\right) .
$$

Thus the statement of the lemma is equivalent to the fact that the polynomial $z P_{2 n}^{\prime}(z)-$ $n P_{2 n}(z)$ has all its zeros in $D(\bar{D})$. However, this statement is a special case of a problem going back to Laguerre [PSz-98, Part Five, Chapter 2, Section 2, Problem 117.]

Lemma 2.2. Associated with $V_{n} \in \mathcal{F}_{n}^{c}$, let $R_{2 n} \in \mathcal{P}_{2 n}^{c}$ be defined by $R_{2 n}(z)=z^{n} V_{n}(z)$ and suppose that $R_{2 n}$ has each of its $2 n$ zeros in the closed unit disk \bar{D}. If $T_{n} \in \mathcal{F}_{n}^{c}$ and

$$
\begin{equation*}
\left|T_{n}(z)\right| \leq\left|V_{n}(z)\right|, \quad z \in \partial D \tag{2.3}
\end{equation*}
$$

then

$$
\left|T_{n}^{\prime}(z)\right| \leq\left|V_{n}^{\prime}(z)\right|, \quad z \in \partial D
$$

Proof. Without loss of generality we may assume that $R_{2 n}$ has each of its $2 n$ zeros in D, the case when $R_{2 n}$ has each of its $2 n$ zeros in the closed unit disk \bar{D} follows from this by a straightforward limiting argument. Let $Q_{2 n} \in \mathcal{P}_{2 n}^{c}$ be defined by $Q_{2 n}(z):=z^{n} T_{n}(z)$. Let $\alpha \in \mathbb{C},|\alpha|<1$, and

$$
\begin{equation*}
S_{n}(z):=\left(V_{n}-\alpha T_{n}\right)(z)=z^{-n}\left(R_{2 n}-\alpha Q_{2 n}\right)(z) \tag{2.4}
\end{equation*}
$$

It follows from (2.3) that

$$
\left|Q_{2 n}(z)\right| \leq\left|R_{2 n}(z)\right|, \quad z \in \partial D
$$

and hence $|\alpha|<1$ and the fact that $R_{2 n} \in \mathcal{P}_{2 n}^{c}$ does not vanish on ∂D imply that

$$
\left|\alpha Q_{2 n}(z)\right|<\left|R_{2 n}(z)\right|, \quad z \in \partial D
$$

Therefore Rouché's Theorem implies that the polynomial $P_{2 n}:=R_{2 n}-\alpha Q_{2 n} \in \mathcal{P}_{2 n}^{c}$ and $R_{2 n}$ has the same number of zeros in D, that is, $R_{2 n}-\alpha Q_{2 n}$ has each of its $2 n$ zeros in D. By Lemma 2.1 and (2.4) we can deduce that $S_{n}^{\prime}=V_{n}^{\prime}-\alpha T_{n}^{\prime}$ has each of its zeros in D. In particular,

$$
S_{n}^{\prime}(z)=V_{n}^{\prime}(z)-\alpha T_{n}^{\prime}(z) \neq 0, \quad z \in \partial D
$$

for all $\alpha \in \mathbb{C},|\alpha|<1$. We conclude that

$$
\left|T_{n}^{\prime}(z)\right| \leq\left|V_{n}^{\prime}(z)\right|, \quad z \in \partial D
$$

3. Proof of Theorems 1.1, 1.2, and 1.3

Proof of Theorem 1.1. Associated with $T_{n} \in \mathcal{F}_{n}^{c}$, let $P_{2 n} \in \mathcal{P}_{2 n}^{c}$ be defined by $P_{2 n}(z)=$ $z^{n} T_{n}(z)$. Without loss of generality we may assume that $P_{2 n}$ has exactly $2 n$ complex zeros, the case when $P_{2 n}$ has less than $2 n$ complex zeros follows from this by a straightforward limiting argument.
Case 1. Suppose $P_{2 n}$ has all its $2 n$ zeros in the closed unit disk \bar{D}. It follows from Lemma 2.1 that T_{n}^{\prime} has all its zeros in the closed unit disk \bar{D}. Let

$$
T_{n}(z)=\sum_{j=-n}^{n} a_{j} z^{j}, \quad a_{j} \in \mathbb{C}, \quad z \in \mathbb{C} \backslash\{0\}
$$

Using Jensen's formula and the multiplicative property of the Mahler measure we can easily deduce that

$$
\left\|T_{n}^{\prime}\right\|_{0}=n\left\|T_{n}\right\|_{0}=n\left|a_{n}\right| .
$$

Case 2. Suppose that some of the zeros of $P_{2 n}$ are outside the closed unit disk \bar{D}. Let $z_{1}, z_{2}, \ldots, z_{m}$ be the zeros of T_{n} outside the closed unit disk \bar{D} and let $z_{m+1}, z_{m+2}, \ldots, z_{2 n}$ be the zeros of T_{n} in the closed unit disk \bar{D}. We have

$$
T_{n}(z)=a_{n} z^{-n} \prod_{j=1}^{m}\left(z-z_{j}\right) \prod_{j=m+1}^{2 n}\left(z-z_{j}\right)
$$

We define

$$
V_{n}(z):=a_{n} z^{-n} \prod_{j=1}^{m}\left(1-\overline{z_{j}} z\right) \prod_{j=m+1}^{2 n}\left(z-z_{j}\right)
$$

Observe that (2.3) holds, $V_{n} \in \mathcal{F}_{n}^{c}$, and $R_{2 n} \in \mathcal{P}_{2 n}^{c}$ defined by $R_{2 n}(z):=z^{n} V_{n}(z)$ has each of its $2 n$ zeros in the closed unit disk \bar{D}. Using Lemma 2.2, the (in)equality of the theorem in Case 1, and Jensen's formula, we obtain

$$
\left\|T_{n}^{\prime}\right\|_{0} \leq\left\|V_{n}^{\prime}\right\|_{0}=n\left\|V_{n}\right\|_{0}=n\left|a_{n}\right| \prod_{j=1}^{m}\left|\overline{z_{j}}\right|=n\left|a_{n}\right| \prod_{j=1}^{m}\left|z_{j}\right|=n\left\|T_{n}\right\|_{0} .
$$

Proof of Theorem 1.2. We follow the argument given first in [A-81] and used recently in [QZ-19] as well to base our proof on Theorem 1.1. It is well-known, and by applying Jensen's formula it is easy to see, that

$$
\log ^{+}|v|=\frac{1}{2 \pi} \int_{\partial D} \log |v+w||d w|, \quad v \in \mathbb{C}
$$

and hence

$$
\begin{equation*}
\log ^{+}|v|=\frac{1}{2 \pi} \int_{\partial D} \log |v+w u||d w|, \quad u \in \partial D, \quad v \in \mathbb{C} . \tag{3.1}
\end{equation*}
$$

Let $T_{n} \in \mathcal{F}_{n}^{c}, w \in \partial D$, and $E_{n}(z):=z^{n}$. Applying Theorem 1.1 with T_{n} replaced by $T_{n}+w E_{n}$ we obtain

$$
\int_{\partial D} \log \left|T_{n}^{\prime}(z) / n+w E_{n-1}(z)\right||d z| \leq \int_{\partial D} \log \left|T_{n}(z)+w E_{n}(z)\right||d z| .
$$

Integrating both sides on ∂D with respect to $|d w|$, then using Fubini's theorem and (3.1), we get the theorem.

Proof of Theorem 1.3. We follow the argument given in [QZ-19] to base our proof on Theorem 1.2. Observe that

$$
\begin{equation*}
u^{p}=\int_{0}^{\infty} \log ^{+}(u / a) p^{2} a^{p-1} d a \quad p>0, \quad u \geq 0 \tag{3.2}
\end{equation*}
$$

Indeed, the integration by parts formula gives

$$
\int_{0}^{\infty} \log ^{+}(u / a) p^{2} a^{p-1} d a=\int_{0}^{u} \log ^{+}(u / a) p^{2} a^{p-1} d a=\int_{0}^{u} p a^{p-1} d a=u^{p}
$$

For the sake of brevity we will use the notation $d \mu(a)=p^{2} a^{p-1} d a$. Using (3.2), Fubini's theorem, Theorem 1.2, and Fubini's theorem again, we obtain

$$
\begin{aligned}
\int_{\partial D}\left|T_{n}^{\prime}(z) / n\right|^{p}|d z| & =\int_{\partial D}\left(\int_{0}^{\infty} \log ^{+}\left|T_{n}^{\prime}(z) /(n a)\right| d \mu(a)\right)|d z| \\
& =\int_{0}^{\infty}\left(\int_{\partial D} \log ^{+}\left|T_{n}^{\prime}(z) /(n a)\right||d z|\right) d \mu(a) \\
& \leq \int_{0}^{\infty}\left(\int_{\partial D} \log ^{+}\left|T_{n}(z) / a\right||d z|\right) d \mu(a) \\
& =\int_{\partial D}\left(\int_{0}^{\infty} \log ^{+}\left|T_{n}(z) / a\right| d \mu(a)\right)|d z| \\
& =\int_{\partial D}\left|T_{n}(z)\right|^{p}|d z|
\end{aligned}
$$

4. Additional Remarks

Let \mathcal{T}_{n}^{c} be the set of trigonometric polynomials f_{n} of the form

$$
f_{n}(t)=\sum_{k=-n}^{n} a_{k} e^{i k t}, \quad a_{k} \in \mathbb{C}, \quad t \in \mathbb{R},
$$

that is, $f_{n}(t)=T_{n}\left(e^{i t}\right)$ with some $T_{n} \in \mathcal{F}_{n}^{c}$. We define

$$
\left\|f_{n}\right\|_{p}:=\left\|T_{n}\right\|_{p}, \quad 0 \leq p \leq \infty .
$$

The sharp inequality

$$
\begin{equation*}
\left\|f_{n}^{\prime}\right\|_{p} \leq n\left\|f_{n}\right\|_{p}, \quad f_{n} \in \mathcal{T}_{n}^{c} \tag{4.1}
\end{equation*}
$$

is associated with the name of S . N. Bernstein, who proved (4.1) for $p=\infty$ with the constant $2 n$ and applied it to obtain inverse theorems of approximation theory. In 1914 M. Riesz proved the interpolation formula

$$
f_{n}^{\prime}(t)=\sum_{k=1}^{2 n}(-1)^{k+1} \alpha_{k} f_{n}\left(t+t_{k}\right), \quad f_{n} \in \mathcal{T}_{n}^{c}
$$

where

$$
\begin{equation*}
t_{k}=\frac{2 k-1}{2 n} \pi, \quad \alpha_{k}=\frac{1}{4 n \sin ^{2}\left(t_{k} / 2\right)}, \quad 1 \leq k \leq 2 n . \tag{4.2}
\end{equation*}
$$

The coefficients α_{k} in (4.2) are nonnegative and $\sum_{k=1}^{2 n} \alpha_{k}=n$. The formula (4.2) gives inequality (4.1) for $1 \leq p \leq \infty$. Moreover, (4.2) gives the sharp inequality

$$
\begin{equation*}
\int_{0}^{2 \pi} \varphi\left(\left|f_{n}^{\prime}(t)\right|\right) d t \leq \int_{0}^{2 \pi} \varphi\left(n\left|f_{n}(t)\right|\right) d t, \quad f_{n} \in \mathcal{T}_{n}^{c} \tag{4.3}
\end{equation*}
$$

for an arbitrary nondecreasing function φ convex downwards on the half-line $[0, \infty)$. In particular, the function $\varphi(u)=u^{p}$ for $1 \leq p<\infty$ has such properties, and in this case (4.3) turns into (4.1). The details may be found in [Z-59] or [BE-95], for example.
V.V. Arestov [A-81] proposed another method for studying inequalities similar to (4.1) for convolution operators, including the differentiation operator. More exactly, he considered inequalities of type (4.1) for the operators of Szegő composition on the set of algebraic polynomials on the unit circle of the complex plane. For polynomials $P_{n} \in \mathcal{P}_{n}^{c}$ and $\Lambda_{n} \in \mathcal{P}_{n}^{c}$ written in the form

$$
P_{n}(z)=\sum_{k=0}^{n}\binom{n}{k} a_{k} z^{k}, \quad \Lambda_{n}(z)=\sum_{k=0}^{n}\binom{n}{k} \lambda_{k} z^{k}
$$

the polynomial

$$
\begin{equation*}
\Lambda_{n} P_{n}(z):=\sum_{k=0}^{n}\binom{n}{k} \lambda_{k} a_{k} z^{k} \tag{4.4}
\end{equation*}
$$

is called the Szegő composition of the polynomials Λ_{n} and P_{n}. For a fixed $\Lambda_{n} \in \mathcal{P}_{n}^{c}$ the Szegő composition (4.4) is a linear operator on \mathcal{P}_{n}^{c}. In particular, writing $f_{n / 2}(t)=$ $P_{n}\left(e^{i t}\right) e^{-i n t / 2}$ for the differentiation operator $f_{n / 2} \rightarrow f_{n / 2}^{\prime}$ on $\mathcal{T}_{n / 2}^{c}$ it corresponds to the composition operator

$$
D_{n} P_{n}(z)=z P_{n}^{\prime}(z)-\frac{n}{2} P_{n}(z)
$$

with the polynomial

$$
\begin{equation*}
D_{n}(z)=\frac{n}{2}(z+1)^{n-1}(z-1) \tag{4.5}
\end{equation*}
$$

on \mathcal{P}_{n}^{c}. Let Φ^{+}be the set of functions φ nondecreasing and locally absolutely continuous on $(0, \infty)$, for which the function $u \varphi^{\prime}(u)$ is also nondecreasing on $(0, \infty)$. In particular $\varphi(u)=u^{p}$ for every $p>0$ belong to the set Φ^{+}.

In [A-81, Theorem 3] it is proved that the following sharp inequality holds on \mathcal{P}_{n}^{c} for all functions $\varphi \in \Phi^{+}$and an arbitrary operator (4.4):

$$
\begin{equation*}
\int_{0}^{2 \pi} \varphi\left(\left|\frac{\Lambda_{n} P_{n}\left(e^{i t}\right)}{\Lambda_{n} Q_{n}\left(e^{i t}\right)}\right|\right) d t \leq \int_{0}^{2 \pi} \varphi\left(\left|\frac{P_{n}\left(e^{i t}\right)}{Q_{n}\left(e^{i t}\right)}\right|\right) d t, \quad P_{n} \in \mathcal{P}_{n}^{c} \tag{4.6}
\end{equation*}
$$

where $Q_{n} \in \mathcal{P}_{n}^{c}$ is the extremal polynomial for the inequality

$$
\begin{equation*}
\int_{0}^{2 \pi} \log \left|\Lambda_{n} P_{n}\left(e^{i t}\right)\right| d t \leq \int_{0}^{2 \pi} \log \left(\left\|\Lambda_{n}\right\|_{0}\left|P_{n}\left(e^{i t}\right)\right|\right) d t, \quad P_{n} \in \mathcal{P}_{n}^{c} \tag{4.7}
\end{equation*}
$$

In [A-81, Theorem 4] for a special class of polynomials $\Lambda_{n} \in \mathcal{P}_{n}^{c}$ (including, in particular, the polynomial D_{n} defined by (4.5)) and in [A-90, Theorem 1] for an arbitrary polynomial $\Lambda_{n} \in \mathcal{P}_{n}^{c}$ it is proved that that the following inequality holds for all functions $\varphi \in \Phi^{+}$:

$$
\begin{equation*}
\int_{0}^{2 \pi} \varphi\left(\left|\Lambda_{n} P_{n}\left(e^{i t}\right)\right|\right) d t \leq \int_{0}^{2 \pi} \varphi\left(\left\|\Lambda_{n}\right\|_{0}\left|P_{n}\left(e^{i t}\right)\right|\right) d t, \quad P_{n} \in \mathcal{P}_{n}^{c} \tag{4.8}
\end{equation*}
$$

As a special case of (4.8), we have

$$
\begin{equation*}
\left\|\Lambda_{n} P_{n}\right\|_{p} \leq\left\|\Lambda_{n}\right\|_{0}\left\|P_{n}\right\|_{p}, \quad P_{n} \in \mathcal{P}_{n}^{c} \tag{4.9}
\end{equation*}
$$

for all $0<p<\infty$.
The following method, called Λ-method, used in the proof of inequalities (4.6) and (4.8) was proposed in [A-81]. The method consists of three steps.

Step 1. Let $\varphi(u)=\log |u|$. In this case, inequalities (4.6) and (4.8) coinside with (4.7), which can also be written in the form

$$
\begin{equation*}
\left\|\Lambda_{n} P_{n}\right\|_{0} \leq\left\|\Lambda_{n}\right\|_{0}\left\|P_{n}\right\|_{0}, \quad P_{n} \in \mathcal{P}_{n}^{c} \tag{4.10}
\end{equation*}
$$

Inequality (4.10) was known; the general case was proved by N.G. de Bruijn and T.A. Springer in [DS-47] (see the theorem and its proof, in particular, (8) and the last formula in the proof); K. Mahler [M-61] proved (4.7) in a special case.

Step 2. Let $\varphi(u)=\log ^{+}|u|$. In this case the formula

$$
\begin{equation*}
\log ^{+}|z|=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|z+e^{i \theta}\right| d \theta, \quad z \in \mathbb{C} \tag{4.11}
\end{equation*}
$$

and the result of Step 1 were used.
Step 3. Let $\varphi \in \Phi^{+}$be arbitrary. In [A-81] a representation of the function φ in terms of the function $\log ^{+}$was presented and used as well as the result in Step 2. If the function $\varphi \in \Phi^{+}$is defined and continuous on the half-line $[0, \infty)$, then this representation has the form [A-81, (3.5)]

$$
\begin{equation*}
\varphi(u)=\varphi(0)+\int_{0}^{\infty} \log ^{+} \frac{u}{a} d \chi(a), \quad u \geq 0 \tag{4.12}
\end{equation*}
$$

where $\chi(a)=a \varphi^{\prime}(a)$. In particular,

$$
u^{p}=\int_{0}^{\infty} \log ^{+}(u / a) p^{2} a^{p-1} d a
$$

In [GL-89] inequality (4.1) was discussed for the operator

$$
S_{n} f_{n}=A f_{n}+B \frac{f_{n}^{\prime}}{n}, \quad f_{n} \in \mathcal{F}_{n}^{c}
$$

which is more general in comparison with the differentiation operator $f_{n} \rightarrow f_{n}^{\prime}$, and the Λ-method was used. In [GL-89, Lemma 1], for real A and B, a classical property of the zeros of the function $S_{n} f_{n}$ was observed depending on the zeros of the function $f_{n} \in \mathcal{T}_{n}^{c}$. In short this property means that an analogue of the Lagrange theorem on the zeros of the derivative holds for the operator S_{n}. In this way, in Theorem 1 (by means of the considerations applied earlier in [A-81] and [M-61]) an analogue of the inequality (4.1) with $p=0$ was proved, thus Step 1 was realized. After that Steps 2 and 3 from [A-81] were applied. Note that the operator S_{n} corresponds to the operator of Szegő composition on $\mathcal{P}_{2 n}^{c}$ satisfying the assumptions of [A-81, Theorem 4]. Thus the final result of [GL-89] was not new.

In [QZ-19, Sections 5 and 6] inequality (4.1) was proved by the Λ-method. In [QZ19, Sections 5] inequality 4.1 for $p=0$ called the inequality of K. Mahler, was discussed, though, in fact, this inequality appeared in the essentially earlier paper [DS-47]. In [QZ-19, Sections 6] the passage to the function $\log ^{+}$by formula (4.11), and then the passage to the function $u^{p}, p>0$, by formula (4.12) have been made.

The main result of the present paper is the proof of Theorem 1.1 contained in Lemmas 2.1 and 2.2. In these two lemmas we show that analogues of these lemmas, known earlier to be valid for algebraic polynomials $P_{n} \in \mathcal{P}_{n}^{c}$ also hold for trigonometric polynomials $T_{n} \in \mathcal{F}_{n}^{c}$. As a result we offer quite a simple proof of Bernstein's inequality (4.1) in L_{p} for all $p \geq 0$.

In particular, note that Lemma 2.2 in terms of polynomials $Q_{2 n}, R_{2 n} \in \mathcal{P}_{2 n}$ means that if $R_{2 n}$ has each of its $2 n$ zeros in the closed unit disk \bar{D} and

$$
\left|Q_{2 n}(z)\right| \leq\left|R_{2 n}(z)\right|, \quad z \in \partial D
$$

then

$$
\left|z Q_{2 n}^{\prime}(z)-n Q_{2 n}(z)\right| \leq\left|z R_{2 n}^{\prime}(z)-n R_{2 n}(z)\right|, \quad z \in \partial D
$$

This lemma can be considered as an extension of the Bernstein-De Bruijn theorem [M-96, Chapter 2, Theorem 6.4].

5. Acknowledgement

The author thanks Hervé Queffélec, Paul Nevai, and the anonymous referees for checking the details of the proof in this paper and for their suggestions to make the paper more readable. Special thanks to one of the anonymous referees for offering me to include Section 4 , a clearly presented history of the topic far beyond the novelty of the present paper.

References

A-79. V.V. Arestov, On inequalities of S.N. Bernstein for algebraic and trigonometric polynomials, Soviet Math. Dokl. 20 (1979), no. 3, 600-603.

A-81. V.V. Arestov, On integral inequalities for trigonometric polynomials and their derivatives, (Russian), translation in Math. USSR Izv. 18 (1982), no. 1, 1-17, Izv. AN SSSR Ser. Mat. 45 (1981), no. 1, 3-22.

A-90. V.V. Arestov, Integral inequalities for algebraic polynomials on the unit circle, Math. Notes 48 (1990), no. 4, 977-984.

BE-95. P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Springer, New York, 1995.
DS-47. N.G. De Bruijn and T.A. Springer, On the zeros of composition polynomials, Neder. Akad. Wetensch. Proc. 50 (1947), 895-903.

DL-93. R.A. DeVore and G.G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, 1993.
G-05. P. Yu. Glazyrina, The Markov brothers' inequality in the space L_{0} on an interval. (Russian), translation in Math. Notes 78 (2005), no. 1-2, 53-58, Mat. Zametki 78 (2005), no. 1, 59-65.

GL-89. M.V. Golitschek and G.G. Lorentz, Bernstein inequalities in $L_{p}, 0 \leq p \leq \infty$, Rocky Mountain J. Math. 19 (1989), no. 1, 145-156.

HL-95. G.H. Hardy, J.E. Littlewood, and G. Pólya, Inequalities, Cambridge Univ. Press, London, 1952.
M-61. K. Mahler, On the zeros of the derivative of a polynomial, Proc. Roy. Soc. London Ser. A 264 (1961), 145-154..

M-96. M. Marden, Geometry of Polynomials, AMS, Providence, 1996.
N-14. P. Nevai and The Anonymous Referee, The Bernstein inequality and the Schur inequality are equivalent, J. Approx. Theory 182 (2014), 103109.

N-19. P. Nevai, The True Story of n vs. $2 n$ in the Bernstein Inequality, in preparation (2019).
QZ-19. H. Queffélec and R. Zarouf, On Bernstein's inequality for polynomials, Anal. Math. Phys. (2019) (to appear).

PSz-98. G. Pólya and G. Szegő, Problems and Theorems in Analysis II, Springer-Verlag, Berlin, 1998.
VB-91. J. Vaaler and D. Boyd, Mahler's inequality, Amer. Math. Monthly 98 (1991), no. 5, 451-452.
Z-59. A. Zygmund, Trigonometric Series, Vol. II, Cambridge University Press, New York, 1959.

Department of Mathematics, Texas A\&M University, College Station, Texas 77843, College Station, Texas 77843

E-mail address: terdelyi@math.tamu.edu

