
PSEUDO-BOOLEAN FUNCTIONS AND THE

MULTIPLICITY OF THE ZEROS OF POLYNOMIALS

Tamás Erdélyi

Abstract. A highlight of this paper states that there is an absolute constant c1 > 0 such

that any polynomial P of the form

P (z) =

n
∑

j=0

ajz
j , aj ∈ C ,

satisfying

|a0| = 1 , |aj | ≤ M−1

(n

j

)

, j = 1, 2, . . . , n ,

with some 2 ≤ M ≤ en has at most n − ⌊c1
√
n logM⌋ zeros at 1. This is compared with

some earlier results of similar type reviewed in the introduction and closely related to some

interesting Diophantine problems. Our most important tool is an essentially sharp result due

to Coppersmith and Rivlin asserting that if Fn := {1, 2, . . . , n}, then there is an absolute
constant c > 0 such that

|P (0)| ≤ exp(cL) max
x∈Fn

|P (x)|

for every polynomial P of degree at most m ≤
√

nL/16 with 1 ≤ L < 16n. A short new

proof of this inequality is included in our discussion.

1. Number of Zeros at 1 of Polynomials with Restricted Coefficients

In [B-99] and [B-13] we examine a number of problems concerning polynomials with
coefficients restricted in various ways. We are particularly interested in how small such
polynomials can be on the interval [0, 1]. For example, we prove that there are absolute
constants c1 > 0 and c2 > 0 such that

exp
(
−c1

√
n
)
≤ min

0 6=p∈Fn

{
max
x∈[0,1]

|p(x)|
}

≤ exp
(
−c2

√
n
)

for every n ≥ 2, where Fn denotes the set of all polynomials of degree at most n with
coefficients from {−1, 0, 1}.

Littlewood considered minimization problems of this variety on the unit disk. His most
famous, now solved, conjecture was that the L1 norm of an element f ∈ Fn on the unit
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circle grows at least as fast as c logN , where N is the number of non-zero coefficients in f
and c > 0 is an absolute constant.

When the coefficients are required to be integers, the questions have a Diophantine
nature and have been studied from a variety of points of view. See [A-79, B-98, B-95,
B-94, F-80, O-93].

One key to the analysis is a study of the related problem of giving an upper bound for
the multiplicity of the zero these restricted polynomials can have at 1. In [B-99] and [B-13]
we answer this latter question precisely for the classes of polynomials of the form

p(x) =
n∑

j=0

ajx
j , |aj| ≤ 1 , aj ∈ C , j = 1, 2, . . . , n ,

with fixed |a0| 6= 0.
Variants of these questions have attracted considerable study, though rarely have precise

answers been possible to give. See in particular [A-90, B-32, B-87, E-50, Sch-33, Sz-34].
Indeed, the classical, much studied, and presumably very difficult problem of Prouhet,
Tarry, and Escott rephrases as a question of this variety. (Precisely: what is the maximal
vanishing at 1 of a polynomial with integer coefficients with l1 norm 2n? It is conjectured
to be n.) See [H-82], [B-94], or [B-02].

For n ∈ N, L > 0, and p ≥ 1 we define the following numbers. Let κp(n, L) be the
largest possible value of k for which there is a polynomial P 6= 0 of the form

P (x) =
n∑

j=0

ajx
j , |a0| ≥ L

(
n∑

j=1

|aj |p
)1/p

, aj ∈ C ,

such that (x − 1)k divides P (x). For n ∈ N and L > 0 let κ∞(n, L) the largest possible
value of k for which there is a polynomial P 6= 0 of the form

P (x) =
n∑

j=0

ajx
j , |a0| ≥ L max

1≤j≤n
|aj| , aj ∈ C ,

such that (x − 1)k divides P (x). In [B-99] we proved that there is an absolute constant
c3 > 0 such that

min

{
1

6

√
(n(1− logL)− 1 , n

}
≤ κ∞(n, L) ≤ min

{
c3
√
n(1− logL) , n

}

for every n ∈ N and L ∈ (0, 1]. However, we were far from being able to establish the right
result in the case when L ≥ 1. Recently in [B-13] we found the right order of magnitude of
κ∞(n, L) in the case when L ≥ 1, that is, there are absolute constants c1 > 0 and c2 > 0
such that

c1
√
n/L− 1 ≤ κ∞(n, L) ≤ c2

√
n/L

for every n ∈ N and L ≥ 1. To prove this, the lower bound, in particular, required some
subtle new ideas. An interesting connection to number theory is explored. The fact that
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the density of square free integers is positive (in fact, it is π2/6), appears in our proof. In
[B-13] we also prove that there are absolute constants c1 > 0 and c2 > 0 such that

c1
√
n/L− 1 ≤ κ2(n, L) ≤ c2

√
n/L

for every n ∈ N and L > 2−1/2, and

min
{
c1
√

n(− logL)− 1 , n
}
≤ κ2(n, L) ≤ min

{
c2
√

n(− logL) , n
}

for every n ∈ N and L ∈ (0, 2−1/2]. Our results in [B-99] and [B-13] sharpen and generalize
results of Schur [Sch-33], Amoroso [A-90], Bombieri and Vaaler [B-87], and Hua [H-82]
who gave versions of this result for polynomials with integer coefficients. Our results in
[B-99] and [B-13] have turned out to be related to a number of recent papers from a rather
wide range of research areas. See [A-02, B-98, B-95, B-96 B-97a, B-97b, B-97, B-00, B-07,
B-08a, B-08b, C-02, C-13, C-10, D-99, D-01, D-03, E-08a, E-08b, E-13, F-00, G-05, K-04,
K-09, M-03, M-68, N-94, O-93, P-12, P-13, S-99, T-07, T-84], for example.

More on the zeros of polynomials with Littlewood-type coefficient constraints may be
found in [E-02]. Markov and Bernstein type inequalities under Erdős type coefficient
constraints are surveyed in [E-01].

Our goal in this paper is to explore a variety of new ideas essentially different from
those used in [B-99] and [B-13] to obtain essentially sharp bounds for the multiplicity of
the zero at 1 of polynomials from various classes of constrained polynomials.

2. Pseudo-Boolean Functions

A function f : {−1, 1}n → R is called an n-bit pseudo-Boolean function. We say that
an n-bit pseudo-Boolean function f : {−1, 1}n → R is symmetric if f(x) = f(xσ) for every
permutation σ ∈ Sn and x ∈ {−1, 1}n, where

xσ := (xσ(1), xσ(2), . . . , xσ(n))

denotes a σ permuted version of x. Note that if p : {−1, 1}n → R is a polynomial in
variables x1, x2, . . . , xn then the fact x2

j = 1 implies that we can view p as a multi-linear
polynomial in which each variable appears with degree at most 1. We say that a multi-
linear polynomial p has degree at most d1 and pure high degree at least d2 if each term in
p is a product of at most d1 and at least d2 variables.

Let Dn := {0, 1, . . . , n}. Associated with any symmetric function f : {−1, 1}n → R

there is a function F of a single variable F : Dn → R such that

f(x) = F (|x|) , x = (x1, x2, . . . , xn) ∈ {−1, 1}n ,

where

|x| := n− (x1 + x2 + · · ·+ xn)

2

is the Hamming weight of x, that is |x| is the number of −1 components of x. By using
the fundamental theorem of symmetric polynomials it can be easily proved (see [M-69],
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for example) that for every symmetric multi-linear polynomial p : {−1, 1}n → R there is a
polynomial P : Dn → R of a single variable of the same degree such that

p(x) = P (|x|) , x = (x1, x2, . . . , xn) ∈ {−1, 1}n .

Note that the pure high degree of p does not correspond to the degree of the term with
the lowest degree in P . By the pure high degree of a polynomial P : Dn → R of a
single variable we mean the pure high degree of its corresponding multi-linear polynomial
p : {−1, 1}n → R.

Let Xn be the vector space of all symmetric multi-linear polynomials p : {−1, 1}n → R

over R. Let Yn be the vector space of all polynomials Dn → R of a single variable over R.
We define the scalar product

〈p, q〉 :=
∑

x∈{−1,1}n

p(x)q(x)

on Xn. This induces the scalar product

〈P,Q〉 :=
n∑

k=0

(
n

k

)
P (k)Q(k) .

on Yn, where

p(x) = P (|x|) and q(x) = Q(|x|) , x = (x1, x2, . . . , xn) ∈ {−1, 1}n .

A function f : {−1, 1}n → {−1, 1} is called an n-bit Boolean function. Boolean func-
tions on the space {−1, 1}n are important not only in the theory of error-correcting codes,
but also in cryptography, where they occur in private key systems. Boolean functions are
studied in [R-04], for example, a paper inspired by works of Salem and Zygmund [S-54],
Kahane [K-85], and others about the related problem of real polynomials with random
coefficients.

3. New Results

In October, 2002, Mario Szegedy sent me the following question. “I know that there
must exist a polynomial Q of degree n− ⌊√n⌋ such that

n∑

k=0

(
n

k

)
|Q(k)| ≤ c|Q(0)|

with an absolute constant c > 0, but I cannot give it explicitly. Can you give it explicitly
by any chance?” A year later Robert Špalek [Š-03] answered this question. We state his
result as Lemma 4.1 and for the sake of completeness we reproduce his short and clever
proof.

Motivated by this question and answer, in this paper we prove the following results.
Let, as before, Dn := {0, 1, . . . , n}. Let m = ⌊√n⌋ and let Sn = {j2 : j ∈ Dm} ∪ {2}

denote the set containing the squares up to n and the number 2.
4



Theorem 3.1. Any polynomial P of the form

P (z) =

n∑

j=0

ajz
j , aj ∈ C ,

satisfying
12|a2|(

n
2

) +
∑

j∈Sn\{0,2}

8|aj |
j
(
n
j

) < |a0| ,

has at most n− ⌊√n⌋ − 1 zeros at 1.

Note that in Theorem 3.1 there is no restriction on the coefficient aj ∈ C whenever
j ∈ Dn \ Sn.

Theorem 3.2. There is an absolute constant c1 > 0 such that any polynomial P of the
form

P (z) =

n∑

j=0

ajz
j , aj ∈ C ,

satisfying

|a0| = 1 , |aj| ≤ M−1

(
n

j

)
, j = 1, 2, . . . , n ,

with some 2 ≤ M ≤ en has at most n− ⌊c1
√
n logM⌋ zeros at 1.

Remark 3.3. Theorem 3.1 is essentially sharp in a rather strong sense. Using the basics
of Chebyshev spaces (see Section 3.1, pages 92-100, in [B-95]), one can easily see that there
is a polynomial P of the form

P (z) = 1 +
∑

j∈Dn\Sn

ajz
j , aj ∈ C ,

having at least n−m− 1 = n− ⌊√n⌋ − 1 zeros at 1.

Theorem 3.4. Let 0 < m <
√

n/2. Every polynomial P of the form

P (z) =
n∑

j=0

ajz
j , aj ∈ C ,

satisfying

|a0| = 1 , |aj| ≤
n− 2m2

n

(
n

j

)
, j = 1, 2, . . . , n ,

has at most n−m zeros at 1.
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4. Lemmas

We call the results in this section lemmas although some of them would deserve to be
called theorems. We prove these lemmas in Section 5. We apply them in Section 6 where
we prove our theorems formulated in Section 3. Let µ = ⌊√n⌋ and let

Sn = {j2 : j ∈ Dµ} ∪ {2}

denote the set containing the squares up to n and the number 2. We introduce the
polynomial

(4.1) Qn(x) := 2(−1)n−µ−1 (µ!)
2

n!

∏

j∈Dn\Sn

(x− j) .

The multiplicative factor of Q in front of the product sign is chosen so that Qn(0) = 1.
The degree of Qn is n−µ− 1. The lemma below is due to Špalek [Š-03], who was the first
to answer Szegedy’s question quoted in the beginning of Section 3 by having the fortunate
idea of studying the polynomial Qn defined above.

Lemma 4.1. Let Qn be the polynomial of degree n−⌊√n⌋−1 defined in (4.1). In addition
to Q(0) = 1 we have

(
n

2

)
|Q(2)| ≤ 12 ,

(
n

k2

)
|Q(k2)| ≤ 8

k2
, k = 1, 2, . . . , µ .

Let Pm denote the set of all polynomials of degree at most m with real coefficients.
The following result is well known and can easily be proved as a simple exercise. It was
observed and used in [B-99], for instance.

Lemma 4.2. If a polynomial P of the form P (z) =
∑n

j=0 ajz
j , aj ∈ C, has a zero at 1

with multiplicity at least m+ 1, then
∑n

j=0 ajQ(j) = 0 for every polynomial Q ∈ Pm.

The following facts are well-known about Lagrange interpolation. If P ∈ Pm and

x0 < x1 < · · · < xm

are real numbers, then

P (x) =

m∑

k=0

P (xk)Lk(x) , x ∈ R ,

where

(4.2) Lk(x) :=

m∏

j=0

j 6=k

x− xj

xk − xj
, k = 0, 1, . . . , m .
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Note that Lk(xj) = δk,j , where

δj,k :=

{
0, j 6= k

1, j = k
for j, k ∈ {0, 1, . . . , m} .

If y ≤ x0 < x1 < · · · < xm and Em := {x0, x1, . . . , xm} then

(4.3) max
0 6=P∈Pm

|P (y)|
max
x∈Em

|P (x)| =
m∑

k=0

|Lk(y)| =
m∑

k=0

(−1)kLk(y) .

Let

Em = {x0 < x1 < · · · < xm} and E∗
m = {x∗

0 < x∗
1 < · · · < x∗

m} .

Lemma 4.3. Suppose y ≤ x∗
0, x

∗
m ≤ xm, and

xj+1 − xj ≤ x∗
j+1 − x∗

j , j = 0, 1, . . . , m− 1 .

Then

max
P∈Pm

|P (y)|
max
x∈E∗

m

|P (x)| ≤ max
P∈Pm

|P (y)|
max
x∈Em

|P (x)| .

The lemma below is a straightforward consequence of Lemma 4.3.

Lemma 4.4. Suppose y ≤ x∗
0, x

∗
m ≤ xm, and

xj+1 − xj ≤ x∗
j+1 − x∗

j , j = 0, 1, . . . , m− 1 ,

and the polynomial Q ∈ Pm satisfies

(−1)jQ(xj) ≥ δ > 0 .

Then

max
P∈Pm

|P (y)|
max
x∈E∗

m

|P (x)| ≤ δ−1|Q(0)| .

A key to the proof of Theorem 3.2 is the Coppersmith-Rivlin inequality in [C-92], an
equivalent form of which may be formulated as follows.

Lemma 4.5. Let Fn := {1, 2, . . . , n}. There exists an absolute constant c > 0 such that

|P (0)| ≤ exp(cL) max
x∈Fn

|P (x)|

for every P ∈ Pm with m ≤
√

nL/16 and 1 ≤ L < 16n. The above inequality is sharp up
to the absolute constant c > 0 in the exponent.
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In Section 5 we give a shorter new proof of the Coppersmith-Rivlin inequality. Our
main idea to prove Lemma 4.5 is somewhat similar to the key idea to prove the bounded
Remez-type inequality of [B-97b] for non-dense Müntz spaces. The proof of Lemma 4.5
in the case n/16 ≤ m2 ≤ n/2 could also be obtained simply from the Markov inequality
for polynomials, while in the case m = n − 1 it follows from the basics of Lagrange
interpolation. However, the proof of Lemma 4.5 in general is more subtle. Lemma 4.5 is
proved to be essentially sharp in [C-92] and is used in [Bu-99] in the study of small-error
and zero-error quantum algorithms. A recent closely related interesting result is due to
E.A. Rakhmanov [R-07].

The result below plays a fundamental role in the proof of Theorem 3.2. We will prove
it with the help of of Lemma 4.5 in Section 5.

Lemma 4.6. Let c1 := (32c)−1/2, where the absolute constant c > 0 is the same as in
Lemma 4.5. Suppose e2c ≤ M < e32cn . There is a polynomial Q of degree at most

n−
⌊
c1
√

n logM
⌋

such that
n∑

k=1

(
n

k

)
|Q(k)| < M |Q(0)| .

The lemma below is quite useful when m ≤
√

n/4. We prove it in Section 5 as a simple
consequence of Markov’s inequality.

Lemma 4.7. Let Fn := {1, 2, . . . , n}. We have

|P (0)| < n

n− 2m2
max
x∈Fn

|P (x)|

for every P ∈ Pm with 0 < m <
√

n/2.

The lemma below can be used in the proof of Theorem 3.4.

Lemma 4.8. Suppose m ≤
√
n/2. There is a polynomial Q of degree at most n−m− 1

such that
n∑

k=1

(
n

k

)
|Q(k)| < n

n− 2m2
|Q(0)| .

5. Proof of the Lemmas

Proof of Lemma 4.1. We follow Špalek [Š-03]. First observe that if 0 ≤ k ≤ m then

(5.1)
(µ!)2

(µ+ k)!(µ− k)!
=

µ(µ− 1) · · · (µ− k + 1)

(µ+ k)(µ+ k − 1) · · · (µ+ 1)
=

k∏

j=1

(
1− k

µ+ j

)
≤ 1 .
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Using this with k = 2, we obtain

|Qn(2)| = 2
(µ!)2

n!
(n− 2)!

1

2

µ∏

j=3

1

|2− j2| <
(µ!)2

n!
(n− 2)!

µ∏

j=3

1

(j2 − 4)

=
(µ!)2

n!
(n− 2)!

µ∏

j=3

1

(j + 2)(j − 2)
=

1

n(n− 1)

(µ!)2

1
4!
(µ+ 2)!(µ− 2)!

≤ 4!

n(n− 1)
=

12(
n
2

) .

Observe also that if k ∈ {1, 2, . . . , µ}, then

|Qn(k
2)| = 2

(µ!)2

n!

∏

j∈Dn

j 6=k2

|k2 − j| 1

|k2 − 2|
∏

j∈Dµ
j 6=k

1

(k + j)|k − j|

= 2
(µ!)2

n!
(k2)!(n− k2)!

2k (k − 1)!

(k + µ)!k!(µ− k)!|k2 − 2|

= 4
(k2)!(n− k2)!

n!

(µ!)2

(µ+ k)!(µ− k)!

1

|k2 − 2| .

Hence (5.1) yields

|Qn(k
2)| ≤ 4(

n
k2

) 1

|k2 − 2| ≤
4(
n
k2

) 1

k2/2
≤ 8

k2
(
n
k2

) , k = 1, 2, . . . , µ .

Note that if we did not include the number 2 in Sn, then the upper bound for |Qn(k
2)|

would be much weaker, without the factor 1/k2. �

Proof of Lemma 4.3. Let

Lk(x) :=

m∏

j=0

j 6=k

x− xj

xk − xj
, L∗

k(x) :=

m∏

j=0

j 6=k

x− x∗
j

x∗
k − x∗

j

, k = 0, 1, . . . , m .

Note that the assumptions on y, xj , and x∗
j imply that

0 < (−1)kL∗
k(y) ≤ (−1)kLk(y) , k = 0, 1, . . . , m ,

and the lemma follows from (4.2).

Proof of Lemma 4.5. To prove the inequality of the lemma in the case when, together with
L < 16n we also have n < 656L, let m ≤

√
nL/16 < n and P ∈ Pm. Let

xj := j + 1 , j = 0, 1, . . . , m ,
9



Em := {x0, x1, . . . , xm} ⊂ Fn ,

and let the basic Lagrange interpolating polynomials Lk defined by (4.2). Observe that

Lk(0) = (−1)k
m+ 1

k

(
m

k

)
, k = 0, 1, . . . , m ,

and hence

max
0 6=P∈Pm

|P (0)|
max
x∈Fn

|P (x)| = max
0 6=P∈Pm

|P (0)|
max
x∈Em

|P (x)|

m∑

k=0

|Lk(0)| =
m∑

k=0

(−1)kLk(0)

≤(m+ 1)

m∑

k=0

(
m

k

)
≤ n2n ≤ 656L exp(656L) .

This finishes the proof of the inequality of the lemma in the case when together with
L < 16n we also have n < 656L.

Now assume that n ≥ 328L. Without loss of generality we may assume that both n
and L/16 are squares, so m ≥ 1 defined by m2 = (nL)/16 is an integer. Let Tm be the
Chebyshev polynomial of degree m on the interval [−1, 1], that is,

Tm(x) = cos(m arccosx) , x ∈ [−1, 1] .

Let Qm be the Chebyshev polynomial Tm transformed linearly from [−1, 1] to the interval
[164L, n], that is,

Qm(x) := Tm

(
2x

n− 164L
− n+ 164L

n− 164L

)
, x ∈ [164L, n] .

Using the explicit form

Tm(x) =
1

2

((
x+

√
x2 − 1

)m
+
(
x−

√
x2 − 1

)m)
, x ∈ R \ [−1, 1] ,

of the Chebyshev polynomial Tm, with the notation

s :=
328L

n− 164L
≤ 656L

n
≤ 2

we can easily deduce that

|Qm(0)| =|Tm(−1− s)| = Tm(1 + s) ≤
(
1 + s+

√
2s+ s2

)m

≤
(
1 + 4

√
s
)m

≤ exp
(
4m26

√
L/n

)
≤ exp

(
26

√
Ln
√
L/n

)

≤ exp(26L) .

(5.2)
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We denote the extreme points of Qm on [164L, n] by

164L = ξ0 < ξ1 < · · · < ξm = n ,

that is,

ξj :=
1

2
(n− 164L) cos

(m− j)π

m
+

1

2
(n+ 164L) , j = 0, 1, . . . , m ,

and

(5.3) Qm(ξj) = (−1)m−j , j = 0, 1, . . . , m .

Let ηj be the smallest integer greater than ξj. Observe that n ≥ 328L implies

m =
1

4

√
nL ≥ 1

4

√
328L2 ≥ 4L ,

and hence

1− cos
Lπ

m
= 2 sin2

Lπ

2m
≥ 2L2

m2
.

So

164L+ (n− 164L)
L2

m2
≤ ξj ≤ n− (n− 164L)

L2

m2
, j ∈ [L,m− L] .

Moreover, using also m2 = (nL)/16 and n ≥ 328L, we deduce that

164L+ (n− 164L)
L2

m2
≤ ξL < ηm−L−1 ≤ n− (n− 164L)

(L+ 1)2

m2
+ 1

≤ n− (n− 164L)
L2

m2
.

(5.4)

Using the Mean Value Theorem, Bernstein’s inequality (see p. 233 of [B-95], for instance),
and (5.4) we obtain

|Qm(ξj)−Qm(x)| ≤ (x− ξj) max
ξ∈[ηj,ξj ]

|Q′
m(ξ)|

≤ 2m2

(n− 164L)L
≤ 4m2

nL

≤ 1

4
, x ∈ [ξj , ηj] , j ∈ [L,m− L− 1] .

(5.5)

Also,

ξj+1 − ξj =
1

2
(n− 164L)

(
cos

(m− (j + 1))π

m
− cos

(m− j)π

m

)

≤1

2
(n− 164L)

π

m
sin

Lπ

m
≤ 1

2

π2nL

m2
≤ 80 ,

(5.6)
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j ∈ [0, L− 1] ∪ [m− L,m− 1] .

Combining (5.3) and (5.5) we get

(−1)m−jQm(x) ≥ 3

4
, x ∈ [ξj, ηj ] , j ∈ [L,m− L− 1] ,

and hence

(5.7) (−1)m−jQm(ηj) ≥
3

4
, j ∈ [L,m− L− 1] ,

and

(5.8) ξj < ηj < ξj+1 , j ∈ [L,m− L− 1] .

We define

xj := ξj , j ∈ [0, L− 1] ∪ [m− L,m] ,

xj := ηj , j ∈ [L,m− L− 1] ,

and let Em = {x0, x1, · · · , xm}. Recalling (5.7) we have Em = {x0 < x1 < · · · < xm}.
Now we define E∗

m = {x∗
0 < x∗

1 < · · · < x∗
m} ⊂ Fn = {1, 2, . . . , n} as follows. Let

x∗
j := n− 80(m− j) , j ∈ [m− L,m] ,

x∗
j := ηj − 80L , j ∈ [L,m− L− 1] ,

x∗
j := ηL − 1− 80L− 80(L− j) , j ∈ [0, L− 1] .

Observe that (5.6) implies that the assumptions of Lemma 4.3 on Em and E∗
m withQ = Qm

are satisfied. iNow the inequality of the lemma follows from Lemma 4.4 and (5.2).
Now we prove that the inequality of the lemma is sharp up to the constant c > 0 in the

exponent. Without loss of generality we may assume that both n and L/16 are squares,
so m ≥ 1 defined by m2 = (nL)/16 is an integer. Let Tm be the Chebyshev polynomial of
degree m on the interval [−1, 1], that is,

Tm(x) = cos(m arccosx) , x ∈ [−1, 1] .

Let Qm be the Chebyshev polynomial Tm transformed linearly from [−1, 1] to the interval
[0, n], that is,

Qm(x) := Tm

(
2x

n
− 1

)
=

2

nn

m∏

k=1

(x− xk) , x ∈ [0, n] ,

where, for 1 ≤ k ≤ L′ := L/80 we have

0 <xk =
n

2

(
1 + cos

2k − 1

2m
π

)
= n sin2

2k − 1

4m
π

≤ nk2π2

4m2
≤ 4nk2π2

nL
≤ 40k2

L
≤ k

2
.
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Now we define the polynomial Pm of degree m by

Pm(x) := Qm(x)

L′∏

k=1

x− k

x− xk
.

Then, we have

|Pm(j)| ≤ |Qm(j)| ≤ 1 , j ∈ [L′ + 1, n] ∩ Fn ,

and

|Pm(j)| = 0 < 1 , j ∈ [1, L′] ∩ Fn ,

hence

|Pm(j)| ≤ 1 , j ∈ Fn .

This, together with

|Pm(0)| ≥ |Qm(0)|
L′∏

k=1

∣∣∣∣
k

xk

∣∣∣∣ ≥
L′∏

k=1

k

k/2
≥ 2L

′ ≥ 2L/80−1

finishes the proof of the fact that the inequality of the lemma is sharp up to the absolute
constant c > 0 in the exponent. �

Proof of Lemma 4.6. We use the notation introduced in Section 2. Let Dn := {0, 1, . . . , n}.
Let Xn be the vector space of all symmetric multi-linear polynomials p : {−1, 1}n → R

over R, equipped with the scalar product defined in Section 2. Let Yn be the vector space
of all polynomials Dn → R of a single variable over R, equipped with the scalar product
defined in Section 2.

Let F and P be the polynomials Dn → R of a single variable induced by f ∈ Xn and
p ∈ Xn, respectively. That is,

f(x) = F (|x|) , x = (x1, x2, . . . , xn) ∈ {−1, 1}n ,

and

p(x) = P (|x|) , x = (x1, x2, . . . , xn) ∈ {−1, 1}n .

Let M = exp(2cL), where the constant c > 0 is the same as in Lemma 4.5. Let m ≥ 0 be

the largest integer not greater than
√
nL/16 and we define

U := {f ∈ Xn : F (0) ≥ exp(2cL) , |F (j)| ≤ 1 , j = 1, 2, . . . , n} .

Let

Vm = {p ∈ Xn : P ∈ Pm} ,

where, as before, Pm denotes the set of all polynomials of degree at most m with real
coefficients. Lemma 4.5 tells us that U ∩ Vm = ∅. Since any two disjoint convex sets in

13



a finite dimensional vector space can be separated by a hyper-plane, there is a symmetric
polynomial g ∈ Xn such that

(5.9) 〈g, p〉 = 〈G,P 〉 = 0 , P ∈ Pm ,

and

(5.10) 〈g, f〉 = 〈G,F 〉 ≥ α > 0 , f ∈ U ,

where G is the polynomial Dn → R of a single variable induced by g ∈ Xn, that is,

G(x) = g(|x|) , x = (x1, x2, . . . , xn) ∈ {−1, 1}n .

From (5.9) we easily deduce that the pure high degree of g ∈ Xn is at least m + 1. It
follows from (5.10) that

n∑

k=0

εk

(
n

k

)
G(k) ≥ α > 0

whenever
ε0 = exp(2cL) , εk ∈ {−1, 1} , k = 1, 2, . . . , n .

Hence

exp(2cL)G(0)−
n∑

k=1

(
n

k

)
|G(k)| > 0 ,

that is,

G(0) > exp(−2cL)

n∑

k=1

(
n

k

)
|G(k)| .

Now let g̃ ∈ Xn be the symmetric multi-linear polynomial defined by

g̃(x1, x2, . . . , xn) := (x1x2 · · ·xn)g(x1, x2, . . . , xn) ,

and let G̃ ∈ Pn be the polynomial Dn → R of a single variable induced by g̃ ∈ Xn, that is,

g̃(x) = G̃(|x|) , x = (x1, x2, . . . , xn) ∈ {−1, 1}n .

Since the pure high degree of g ∈ Xn is at least m+ 1, G̃ ∈ Pn is in fact a polynomial of
degree at most n−m− 1. Here

m+ 1 ≥
√

nL/16 ≥ 1

4
√
2c

√
n logM = c1

√
n logM .

Also, since |G̃(j)| = |G(j)| for each j = 0, 1, . . . , n, we have

n∑

k=1

(
n

k

)
|G̃(k)| < exp(2cL)|G̃(0)| = M |G̃(0)| .

14



�

Proof of Lemma 4.7. Suppose P ∈ Pm and ‖P‖Fn
= 1. Pick y ∈ [0, n] so that |P (y)| =

M := ‖P‖[0,n]. Without loss of generality we may assume that P (y) > 0. Let k ∈ [1, n] be
the integer closest to y. Combining Markov’s polynomial inequality (see p. 233 of [B-95],
for instance) transformed linearly from [−1, 1] to [0, n] with the Mean Value Theorem, we
obtain

|M − P (k)| = |P (y)− P (k)| = |y − k||P ′(ξ)| < 2m2

n
M ,

hence

1 ≥ |P (k)| ≥ M − |M − P (k)| > M

(
1− 2m2

n

)
,

and the lemma follows. �

Proof of Lemma 4.8. The proof of the lemma is very similar to that of Lemma 4.6. How-
ever, at one point an application of Lemma 4.7 rather than Lemma 4.5 is needed. �

6. Proof of the Theorems

Proof of Theorem 3.1. Suppose that a polynomial P of the form

P (z) =

n∑

j=0

ajz
j , aj ∈ C ,

has a zero at 1 with multiplicity at least n− ⌊√n⌋. Then

n∑

j=0

ajQ(j) = 0

for all polynomials Q of degree at most n−⌊√n⌋− 1. Choosing Qn with the properties of
Lemma 4.1 we obtain

|a0| = |a0Qn(0)| ≤
n∑

j=1

|aj||Qn(j)| ≤
12|a2|(

n
2

) +
∑

j∈Sn\{0,2}

8|aj|
j
(
n
j

) ,

and this contradicts the assumption of the theorem. �

Proof of Theorem 3.2. Let the absolute constant c > 0 be the same as in Lemma 4.5.
If 2 ≤ e2c, then the theorem follows from Theorem 3.4. Hence we may assume that
e2c ≤ M < e32cn. Let the absolute constant c1 > 0 be the same as in Lemma 4.6. Suppose
that a polynomial P of the form

P (z) =

n∑

j=0

ajz
j , aj ∈ C ,

15



has a zero at 1 with multiplicity at least n− ⌊c1
√
n logM⌋+ 1. Then, by Lemma 4.2, we

have
n∑

j=0

ajQ(j) = 0

for all polynomials Q of degree at most n− ⌊c1
√
n logM⌋. Using the assumptions

|a0| = 1 , |aj| ≤ M−1

(
n

j

)
, j = 1, 2, . . . , n ,

we can deduce that

|Q(0)| = |a0Q(0)| ≤
n∑

j=1

|aj ||Q(j)| ≤ M−1
n∑

j=1

(
n

j

)
|Q(j)| .

However, this is impossible for the polynomial Q with the properties of Lemma 4.6. �

Proof of Theorem 3.4. The proof of the theorem is very similar to that of Theorem 3.2 in
the case of e2c ≤ M < e32cn. However, at one point an application of Lemma 4.8 rather
than Lemma 4.6 is needed. �

7. Acknowledgment. The author wishes to thank Peter Borwein and Mario Szegedy
for their comments.
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E-08a. T. Erdélyi, Extensions of the Bloch-Pólya theorem on the number of distinct real zeros of poly-
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