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Abstract. The principal result of this paper is a Remez-type inequality for Müntz
polynomials:

p(x) :=
n∑

i=0

aix
λi ,

or equivalently for Dirichlet sums:

P (t) :=
n∑

i=0

aie
−λit,

where (λi)
∞
i=0 is a sequence of distinct real numbers. The most useful form of this

inequality states that for every sequence (λi)
∞
i=0 satisfying

∞∑

i=0
λi 6=0

1

|λi|
< ∞

there is a constant c depending only on (λi)
∞
i=0, A, α, and β (and not on n or A) so

that the inequality
‖p‖[α,β] ≤ c ‖p‖A

holds for every Müntz polynomial p, as above, associated with (λi)∞i=0, for every set
A ⊂ [0,∞) of positive Lebessgue measure, and for every

[α, β] ⊂ (ess inf A, ess sup A).

Here ‖ · ‖A denotes the supremum norm on A.

This Remez-type inequality allows us to resolve several problems. Most notably
we show that the Müntz-type theorems of Clarkson, Erdős, and Schwartz on the
denseness of

span{xλ0 , xλ1 , . . . }, λi ∈ R distinct

on [a, b], a > 0, remain valid with [a, b] replaced by an arbitrary compact set A ⊂
(0,∞) of positive Lebesgue measure. This extends earlier results of the authors under
the assumption that the numbers λi are nonnegative.
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1. Introduction

Müntz’s classical theorem characterizes sequences Λ := (λi)
∞
i=0 with

0 = λ0 < λ1 < λ2 < · · ·

for which the Müntz space

span{xλ0 , xλ1 , . . . }

is dense in C[0, 1]. Here, and in what follows, span{xλ0 , xλ1 , . . . } denotes the collec-
tion of finite linear combinations of the functions xλ0 , xλ1 , . . . with real coefficients,
and C(A) is the space of all real-valued continuous functions on A ⊂ [0,∞) equipped
with the uniform norm. Müntz’s Theorem [11, 18, 27, 30] states the following.

Theorem 1.1. Suppose (λi)
∞
i=0 is an increasing sequence of nonegative real num-

bers with λ0 = 0. The Müntz space span{xλ0 , xλ1 , . . . } is dense in C[0, 1] if and
only if

∑∞
i=1 1/λi = ∞.

The original Müntz Theorem proved by Müntz [16] in 1914, by Szász [27] in
1916, and anticipated by Bernstein [3] was only for sequences of exponents tending
to infinity. The point 0 is special in the study of Müntz spaces. Even replacing
[0, 1] by an interval [a, b] ⊂ (0,∞) in Müntz’s Theorem is a non-trivial issue. This
is, in large measure, due to Clarkson and Erdős [12] and Schwartz [24] whose
works include the result that if

∑∞
i=1 1/λi < ∞, then every function belonging

to the uniform closure of span{xλ0 , xλ1 , . . . } on [a, b] can be extended analytically
throughout the region

{z ∈ C \ (−∞, 0] : |z| < b}.

There are many generalizations and variations of Müntz’s Theorem [1, 4, 5, 6,
7, 8, 9, 16, 17, 19, 24, 26, 28, 29]. There are also still many open problems. For
example, the proper generalizations to many variables are still open.

Schwartz [24] extended the results of Clarkson and Erdős to sequences (λi)
∞
i=0

of arbitrary real numbers. His main results in this direction are formulated by the
next two theorems.

Theorem 1.2. Suppose (λi)
∞
i=0 is a sequence of distinct real numbers. Suppose

0 < a < b, and q ∈ (0,∞). Then

span{xλ0 , xλ1 , . . . }

is dense in Lq[a, b] if and only if

∞
∑

i=0
λi 6=0

1

|λi|
< ∞.
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Theorem 1.3. Suppose (λi)
∞
i=−∞ is a sequence of distinct real numbers satisfying

∞
∑

i=−∞
λi 6=0

1

|λi|
< ∞

with λi < 0 for i < 0 and λi ≥ 0 for i ≥ 0. Suppose 0 < a < b, and q ∈ (0,∞).
Then span{xλi : i ∈ Z} is not dense in Lq[a, b].

Suppose the gap condition

inf{λi − λi−1 : i ∈ Z} > 0

holds. Then every function f ∈ Lq[a, b] belonging to the Lq[a, b] closure of

span{xλi : i ∈ Z}

can be represented as

f(x) =

∞
∑

i=0

aix
λi , x ∈ (a, b).

If the above gap condition does not hold, then every function f ∈ Lq[a, b] belong-
ing to the Lq[a, b] closure of

span{xλ0 , xλ1 . . . }

can still be represented as an analytic function on

{z ∈ C \ (−∞, 0] : a < |z| < b}.

In [8] the authors extended Theorem 1.1 and other related results by replacing
[0, 1] by an arbitrary compact set A ⊂ [0,∞) of positive Lebesgue measure. The
main results of this paper, Theorems 3.6 and 3.7, extend Theorems 1.2 and 1.3
to arbitrary compact sets A ⊂ (0,∞) of positive Lebesgue measure. Moreover,
Theorems 3.6 and 3.7 extend to weighted Lq

w(A) spaces, where w is a nonnegative
integrable weight function on A with

∫

A
w > 0.

Theorems 3.6 and 3.7 can be proved fairly simply, once one has established the
bounded Remez-type inequality of Theorem 3.1 for non-dense Müntz spaces

span{xλ0 , xλ1 , . . . }.

This is the central result of the paper, and is a result we believe should be a basic
tool for dealing with problems about Müntz spaces.

Let Pn denote the set of all algebraic polynomials of degree at most n with real
coefficients. For a fixed s ∈ (0, 1) let

Pn(s) := {p ∈ Pn : m({x ∈ [0, 1] : |p(x)| ≤ 1}) ≥ s}
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where m(·) denotes linear Lebesgue measure. The classical Remez inequality con-
cerns the problem of bounding the uniform norm of a polynomial p ∈ Pn on [0, 1]
given that its modulus is bounded by 1 on a subset of [0, 1] of Lebesgue mea-
sure at least s. That is, how large can ‖p‖[0,1] (the uniform norm of p on [0, 1])
be if p ∈ Pn(s) ? The answer is given in terms of the Chebyshev polynomials.
The extremal polynomials for the above problem are the Chebyshev polynomials
±Tn(x) := ± cos(n arccosh(x)), where h is a linear function that scales [0, s] or
[1− s, 1] onto [−1, 1].

For various proofs, extensions, and applications, see [13, 14, 15, 22, 23].

Our bounded Remez-type inequality of Theorem 3.1 states the following. If
(λi)

∞
i=0 is a sequence of distinct real numbers satisfying

∞
∑

i=0
λi 6=0

1

|λi|
< ∞,

then there is a constant c depending only on (λi)
∞
i=0, A, α, and β (and not on the

number of terms in p) so that

‖p‖[α,β] ≤ c ‖p‖A

for every Müntz polynomial p ∈ span{xλ0 , xλ1 , . . . }, for every set A ⊂ [0,∞) of
positive Lebessgue measure, and for every [α, β] ⊂ (ess inf A, ess sup A).

This extends the Remez-type inequality of the authors [***], where the exponents
λi are nonnegative. One might note that the existence of such a bounded Remez-
type inequality for a Müntz space span{xλ0 , xλ1 , . . . } is equivalent to the non-
denseness of span{xλ0 , xλ1 , . . . } in C[a, b], 0 < a < b.

The key to the proof of Theorem 3.1 is Theorem 3.2. This thteorem states that
for the “positive and negative parts” p+ and p− of a p ∈ span{xλi}∞i=−∞, the
inequalities that

‖p+‖A ≤ c ‖p‖A

and
‖p−‖A ≤ c ‖p‖A

hold with a constant c depending only on (λi)
∞
i=−∞ and A (but not on the number

of terms in p).

Yet another remarkable consequence of the bounded Remez-type inequality of
Theorem 3.1 is that the pointwise and locally uniform convergence of a sequence
(pn)

∞
n=1 ⊂ span{xλ0 , xλ1 , . . . } on (0, 1) are equivalent whenever

∞
∑

i=0
λi 6=0

1

|λi|
< ∞.

(See Theorem 3.5.) In fact, one can characterize the non-dense Müntz spaces within
the Müntz spaces span{xλ0 , xλ1 , . . . } as exactly those in which locally uniform and
pointwise convergence on (0, 1) are equivalent.
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2. Notation

The notations

‖p‖A := sup
x∈A

|p(x)|,

‖p‖Lq
w(A) :=

(
∫

A

|p(x)|qw(x) dx

)1/q

,

and

‖p‖Lq(A) :=

(
∫

A

|p(x)|q dx

)1/q

are used throughout this paper for measurable functions p defined on a measurable
set A ⊂ [0,∞), for nonnegative measurable weight functions w defined on A, and
for q ∈ (0,∞). The space of all real-valued continuous functions on a set A ⊂ [0,∞)
equipped with the uniform norm is denoted by C(A).

The nonnegative-valued functions xλi are well-defined on [0,∞). For a fixed
sequence (λi)

∞
i=0, the collection of Müntz polynomials

p(x) =

n
∑

i=0

aix
λi , ai ∈ R, n ∈ N

is denoted by

span{xλ0 , xλ1 , . . . }.

Similarly, for a fixed sequence (λi)
∞
i=−∞, the collection of Müntz polynomials

p(x) =
n
∑

i=−n

aix
λi , ai ∈ R, n ∈ N

is denoted by

span{xλi : i ∈ Z}.

The above spaces are called Müntz spaces.

For a measurable set A ⊂ R, we use the notation

ess inf A := sup{x ∈ R : m((−∞, x] ∩ A) = 0}

and

ess sup A := sup{x ∈ R : m([x,∞) ∩ A) = 0}

where m(·) denotes 0ne-dimensional Lebesgue measure.

3. New Results

The central result of this paper is the following theorem.
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Theorem 3.1. Suppose (λi)
∞
i=0 is a sequence of distinct real numbers satisfying

∞
∑

i=0
λi 6=0

1

|λi|
< ∞.

Then there is a constant c depending only on (λi)
∞
i=0, A, α, and β (and not on the

number of terms in p) so that

‖p‖[α,β] ≤ c ‖p‖A

for every Müntz polynomial p ∈ span{xλ0 , xλ1 , . . . } for every set A ⊂ [0,∞) of
positive Lebesgue measure, and for every [α, β] ⊂ (ess inf A, ess sup A).

Theorem 3.2. Suppose (λi)
∞
i=−∞ is a sequence of distinct real numbers satisfying

∞
∑

i=−∞
λi 6=0

1

|λi|
< ∞

with λi < 0 for i < 0 and λi ≥ 0 for i ≥ 0. Associated with

p(x) :=

n
∑

i=−n

aix
λi , n = 0, 1, . . .

let

p−(x) :=

−1
∑

i=−n

aix
λi and p+(x) :=

n
∑

i=0

aix
λi .

Let A ⊂ [0,∞) be a set of positive Lebesgue measure. Then there exists a constant
c depending only on (λi)

∞
i=−∞ and A (and not on the number of terms in p) so that

‖p+‖A ≤ c ‖p‖A

and
‖p−‖A ≤ c ‖p‖A

for every p ∈ span{xλi : i ∈ Z}.

Theorem 3.3. Suppose (λi)
∞
i=−∞ is a sequence of distinct real numbers satisfying

∞
∑

i=−∞
λi 6=0

1

|λi|
< ∞

with λi < 0 for i < 0 and λi ≥ 0 for i ≥ 0. Suppose A ⊂ [0,∞) is a compact set of
positive Lebesgue measure. Let a := ess inf A and b := ess sup A. Let f ∈ C(A),
and suppose there exist pn ∈ span{xλi : i ∈ Z} of the form

pn(x) =

kn
∑

i=−kn

ai,nx
λi , n = 1, 2, . . .
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so that lim
n→∞

‖pn − f‖A = 0.

Suppose the gap condition

inf{λi − λi−1 : i ∈ Z} > 0

holds. Then f is of the form

f(x) =
∞
∑

i=−∞

aix
λi , x ∈ (a, b),

where

f+(x) :=

∞
∑

i=1

aix
λi , x ∈ [0, b),

f−(x) :=

−1
∑

i=−∞

aix
λi , x ∈ (a,∞), lim

x→∞
f−(x) = 0.

Furthermore, f can be extended analytically throughout the region

{z ∈ C \ (−∞, 0] : a < |z| < b},

and
lim
n→∞

ai,n = ai, i ∈ Z.

If the above gap condition does not hold then f can still be extended analytically
throughout the region

{z ∈ C \ (−∞, 0] : a < |z| < b}.

Theorem 3.4. Suppose (λi)
∞
i=0 is a sequence of distinct real numbers. Suppose

A ⊂ (0,∞) is a compact set of positive Lebesgue measure. Then

span{xλ0 , xλ1 . . . }

is dense in C(A) if and only if

∞
∑

i=0
λi 6=0

1

|λi|
< ∞.

Theorem 3.5. Suppose (λi)
∞
i=0 is a sequence of distinct real numbers satisfying

∞
∑

i=0
λi 6=0

1

|λi|
< ∞.

Let A ⊂ [0,∞) be a set of positive Lebesgue measure, and let a := ess inf A and
b := ess sup A. Assume (pn)

∞
n=1 ⊂ span{xλ0 , xλ1 , . . . } and

pn(x) → f(x), x ∈ A.

Then (pn)
∞
n=1 converges uniformly on every closed subinterval of (a, b).
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Theorem 3.6. Suppose (λi)
∞
i=−∞ is a sequence of distinct real numbers satisfying

∞
∑

i=−∞
λi 6=0

1

|λi|
< ∞

with λi < 0 for i < 0 and λi ≥ 0 for i ≥ 0. Suppose A ⊂ [0,∞) is a set of
positive Lebesgue measure with inf A > 0, w is a nonnegative-valued, integrable
weight function on A with

∫

A
w > 0, and q ∈ (0,∞). Then

span{xλi : i ∈ Z}

is not dense in Lq
w(A).

Suppose the gap condition

inf{λi − λi−1 : i ∈ Z} > 0

holds. Then every function f ∈ Lq
w(A) belonging to the Lq

w(A) closure of

span{xλ0 , xλ1 . . . }

can be represented as

f(x) =

∞
∑

i=0

aix
λi , x ∈ A ∩ (aw, bw),

where

aw := inf

{

y ∈ [0,∞) :

∫

A∩(0,y)

w(x) dx > 0

}

and

bw := sup

{

y ∈ [0,∞) :

∫

A∩(y,∞)

w(x) dx > 0

}

.

If the above gap condition does not hold, then every function f ∈ Lq
w(A) belonging

to the Lq
w(A) closure of

span{xλ0 , xλ1 . . . }

can still be represented as an analytic function on

{z ∈ C \ (−∞, 0] : aw < |z| < bw}

restricted to A.

Theorem 3.7. Suppose (λi)
∞
i=0 is a sequence of distinct real numbers. Suppose

A ⊂ (0,∞) is a bounded set of positive Lebesgue measure, inf A > 0, w is a
nonnegative-valued integrable weight function on A with

∫

A w > 0, and q ∈ (0,∞).
Then

span{xλ0 , xλ1 . . . }

is dense in Lq
w(A) if and only if

∞
∑

i=0
λi 6=0

1

|λi|
< ∞.
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4. Tools

In this section we collect various previously known results concerning Müntz
spaces with exponents of the same sign. In Section 5 the proof of the new results
from Section 3, which deal with Müntz spaces with arbitrary exponents, will be
reduced to the results of this section. Our most important tool is the following
Remez-type inequality established in [8].

Theorem 4.1. Let (λi)
∞
i=0 be a sequence of distinct nonnegative exponents satis-

fying
∞
∑

i=0
λi 6=0

1

λi
< ∞.

Then there exists a constant c depending only on (λi)
∞
i=0, s, and supA (and not on

A or the number of terms in p) so that

‖p‖[0,infA] ≤ c ‖p‖A

for every p ∈ span{xλ0 , xλ1 , . . . } and for every compact set A ⊂ [0,∞) of Lebesgue
measure at least s > 0.

By the substitution y = x−1 Theorem 4.1 implies the followoing.

Theorem 4.2. Let (λi)
∞
i=0 be a sequence of distinct nonpositive exponents satisfy-

ing
∞
∑

i=0
λi 6=0

1

|λi|
< ∞.

Then there exists a constant c depending only on (λi)
∞
i=0, s, and inf A (and not on

A or the number of terms in p) so that

‖p‖[supA,∞) ≤ c ‖p‖A

for every p ∈ span{xλ0 , xλ1 , . . . } and for every compact set A ⊂ [0,∞) of Lebesgue
measure at least s > 0.

The following Bernstein-type inequality for non-dense Müntz spaces is also es-
tablished in [8].

Theorem 4.3. Let (λi)
∞
i=0 be a sequence of distinct nonnegative exponents satis-

fying
∑∞

i=1 1/λi < ∞. Suppose λ0 = 0 and λ1 ≥ 1. Then for every ǫ ∈ (0, 1), there
is a constant cǫ depending only on ǫ and (λi)

∞
i=0 (but not on the number of terms

in p) so that

‖p′‖[0,1−ǫ] ≤ cǫ‖p‖[0,1]

for every p ∈ span{xλ0 , xλ1 , . . . }.
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Theorem 4.4. Let Λ := (λi)
∞
i=0 be a sequence of distinct nonnegative exponents

satisfying
∞
∑

i=0
λi 6=0

1

λi
< ∞.

Let 0 ≤ a < b. Suppose

(pn)
∞
n=1 ⊂ span{xλ0 , xλ1 , . . . }

and ‖pn‖[a,b] ≤ 1 for each n. Then there is a subsequence of (pn)
∞
n=1 that converges

uniformly on every closed subinterval of [0, b).

Proof. Note that the assumptions of the Arzela-Ascoli Theorem are satisfied by
Theorems 4.1 and 4.3. �

By the substitution y = x−1 Theorem 4.4 implies the following.

Theorem 4.5. Let (λi)
∞
i=0 be a sequence of distinct nonpositive exponents satisfy-

ing
∞
∑

i=0
λi 6=0

1

|λi|
< ∞.

Let 0 ≤ a < b. Suppose

(pn)
∞
n=1 ⊂ span{xλ0 , xλ1 , . . . }

and ‖pn‖[a,b] ≤ 1 for each n. Then there is a subsequence of (pn)
∞
n=1 that converges

uniformly on every closed subinterval of (a,∞).

The following theorem is from Schwartz [24].

Theorem 4.6. Let (λi)
∞
i=0 be a sequence of distinct nonnegative exponents satis-

fying
∞
∑

i=0
λi 6=0

1

λi
< ∞.

Let 0 ≤ a < b. Suppose the sequence

(pn)
∞
n=1 ⊂ span{xλ0 , xλ1 , . . . }

converges to a function f uniformly on [a, b]. Then f can be extended analytically
throughout the region

{z ∈ C \ (−∞, 0] : |z| < b}.

By the substitution y = x−1 Theorem 4.6 implies the following.
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Theorem 4.7. Let (λi)
∞
i=0 be a sequence of distinct nonpositive exponents satisfy-

ing
∞
∑

i=0
λi 6=0

1

|λi|
< ∞.

Let 0 ≤ a < b. Suppose the sequence

(pn)
∞
n=1 ⊂ span{xλ0 , xλ1 , . . . }

converges to a function f uniformly on [a, b]. Then f can be extended analytically
throughout the region

{z ∈ C \ (−∞, 0] : a < |z|}.

The following two results are also from Schwartz [24].

Theorem 4.8. Let (λi)
∞
i=0 be a sequence of distinct nonnegative exponents satis-

fying
∞
∑

i=0
λi 6=0

1

λi
< ∞.

Let (γi)
∞
i=0 be a sequence of distinct negative exponents satisfying

∞
∑

i=0
γi 6=0

1

|γi|
< ∞.

Let 0 ≤ a < b. Suppose f ∈ C[a, b] is a function so that both of the sequences

(pn)
∞
n=1 ⊂ span{xλ0 , xλ1 , . . . }

and
(qn)

∞
n=1 ⊂ span{xγ0 , xγ1 , . . . }

converge to f uniformly on [a, b]. Then f = 0 on [a, b].

Theorem 4.9. Suppose (λi)
∞
i=−∞ is a set of distinct real numbers satisfying

∞
∑

i=−∞
λi 6=0

1

|λi|
< ∞

with λi < 0 for i < 0 and λi ≥ 0 for i ≥ 0. Suppose 0 < a < b. Let f ∈ C[0, 1], and
suppose there exist pn ∈ span{xλi : i ∈ Z} of the form

pn(x) =

kn
∑

i=−kn

ai,nx
λi , n = 1, 2, . . .
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so that lim
n→∞

‖pn − f‖[a,b] = 0.

Suppose the gap condition

inf{λi − λi−1 : i ∈ Z} > 0

holds. Then f is of the form

f(x) =

∞
∑

i=−∞

aix
λi , x ∈ (a, b),

where

f+(x) :=

∞
∑

i=1

aix
λi , x ∈ [0, b),

f−(x) :=

−1
∑

i=−∞

aix
λi , x ∈ (a,∞), lim

x→∞
f−(x) = 0,

f can be extended analytically throughout the region

{z ∈ C \ (−∞, 0] : a < |z| < b},

and
lim
n→∞

ai,n = ai, i ∈ Z.

If the above gap condition does not hold then f can still be extended analytically
throughout the region

{z ∈ C \ (−∞, 0] : a < |z| < b}.

5. Proofs

Proof of Theorem 3.2. It is sufficient to prove only the first inequality, the second
inequality follows from the first one by the substitution y = x−1. If the first
inequality fails to hold then there exists a sequence (pn)

∞
n=1 ⊂ span{xλi : i ∈ Z} so

that
‖p+n ‖A = 1, n = 1, 2, . . . , and lim

n→∞
‖pn‖A = 0.

Since p = p+ + p−, the above relations imply that

‖p−n ‖A ≤ K < ∞, n = 1, 2, . . . .

For the sake of brevity, let a := ess inf A and b := ess sup A. By Theorems 4.1,
4.2, 4.4, and 4.5, there exists a subsequence (p+ni

)∞i=1 that converges uniformly to a
function f on every closed subinterval of [0, b), while (p−ni

)∞i=1 converges uniformly
to a function g on every closed subinterval of (a,∞). Now lim

i→∞
‖pni

‖A = 0 and
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pni
= p+ni

+p−ni
imply that f +g = 0 on A∩ (a, b). By Theorem 4.6, f is analytic on

(0, b). By Theorem 4.7, g is analytic on (a,∞). So f + g is analytic on (a, b). Since
f + g = 0 on A ∩ (a, b), and since m(A ∩ (a, b)) > 0, we conclude by the Unicity
Theorem that f + g = 0 on (a, b). Now Theorem 4.8 implies that f = g = 0 on
(a, b).

Hence, for every y ∈ (a, b),

lim
i→∞

‖p+ni
‖[infA, y] = 0

and
lim
i→∞

‖p+ni
‖[y, supA] = lim

i→∞
‖pni

− p−ni
‖A∩[y, supA] = 0.

Therefore
lim
i→∞

‖p+ni
‖A = 0

which contradicts the fact that ‖p+n ‖A = 1, n = 1, 2, . . . . �

Proof of Theorem 3.1. The result is a straightforward consequence of Theorems
4.1, 4.2, and 3.2. �

Proof of Theorem 3.3. The result is a straightforward consequence of Theorems 3.1
and 4.9. �

Proof of Theorem 3.4. Suppose

∞
∑

i=−∞
λi 6=0

1

|λi|
= ∞.

Let f ∈ C(A). By Tietze’s Theorem there exists an f̃ ∈ C[inf A, supA] so that

f̃(x) = f(x) for every x ∈ A. By Müntz’s Theorem there is a sequence

(pi)
∞
i=1 ⊂ span{xλ0 , xλ1 , . . . }

so that
lim
i→∞

‖f̃ − pi‖[0,1] = 0.

Therefore
lim
i→∞

‖f − pi‖A = 0

which finishes the trivial part of the theorem.

Suppose now that
∞
∑

i=−∞
λi 6=0

1

|λi|
< ∞.

Then Theorem 3.3 yields that

span{xλ0 , xλ1 , . . . }
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is not dense in C(A). �

Proof of Theorem 3.5. Let [α, β] ⊂ (a, b). Egoroff’s Theorem and the definition of
a and b imply the existence of sets B1 ⊂ A∩ (0, α) and B2 ⊂ A∩ (β,∞) of positive
Lebesgue measure so that (pi)

∞
i=1 converges uniformly on B := B1 ∩B2, hence it is

uniformly Cauchy on B. Now Theorem 3.1 yields that {pi}
∞
i=1 is uniformly Cauchy

on [α, β]. which proves the theorem. �

Proof of Theorem 3.6. Suppose f ∈ Lq
w(A) and suppose there is a sequence

(pi)
∞
i=1 ⊂ span{xλi : i ∈ Z}

so that
lim
i→∞

‖f − pi‖Lq
w(A) = 0.

Minkowski’s Inequality (if q ∈ (0, 1), then a multiplicative factor 21/q−1 is needed)
yields that (pi)

∞
i=1 is a Cauchy sequence in Lq

w(A). The assumptions on w imply
that for every (α, β) ⊂ [a, b] there exists a δ > 0 so that the sets

B1 := {x ∈ A ∩ (β,∞) : w(x) > δ}

and
B2 := {x ∈ A ∩ (0, α) : w(x) > δ}

are of positive Lebesgue measure. Note that

‖p‖Lq(Bi) ≤ δ−1‖p‖Lq
w(Bi) ≤ δ−1‖p‖Lq

w(A), i = 1, 2,

for every p ∈ Lq
w(A). Therefore, (pi)

∞
i=1 is a Cauchy sequence in Lq(B), where

B := B1 ∩ B2. So, by Theorem 3.1, (pi)
∞
i=1 is uniformly Cauchy on [α, β]. The

theorem now follows from Theorem 3.3. �

Proof of Theorem 3.7. Suppose

∞
∑

i=−∞
λi 6=0

1

|λi|
= ∞.

Let f ∈ Lq
w(A). It is standard measure theory to show that for every ε > 0 there

exists a g ∈ C[inf A, supA] so that

‖f − g‖Lq
w(A) <

ε

2
.

Now Müntz’s Theorem implies that there exists a p ∈ span{xλ0 , xλ1 , . . . } so that

‖g − p‖Lq
w(A) ≤ ‖g − p‖A

(
∫

A

w

)1/q

<
ε

2
.

Therefore span{xλ0 , xλ1 , . . . } is dense in Lq
w(A).

Suppose now that
∞
∑

i=−∞
λi 6=0

1

|λi|
< ∞.

Then Theorem 3.6 yields that span{xλ0 , xλ1 , . . . } is not dense in Lq
w(A). �
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1. J. M. Anderson, Müntz-Szász type approximation and the angular growth of lacunary
integral functions, Trans. Amer. Math. Soc. 169 (1972), 237–248.

2. J. Bak and D. J. Newman, Rational combinations of xλk , λk ≥ 0 are always dense in
C[0, 1], J. Approx. Theory 23 (1978), 155–157.

3. S. N. Bernstein, Collected Works: Vol 1. Constructive Theory of Functions (1905-
1930), English Translation, Atomic Energy Commission, Springfield, Va, 1958.

4. R. P. Boas, Entire Functions, Academic Press, New York, 1954.

5. P. B. Borwein, Zeros of Chebyshev polynomials in Markov Systems, J. Approx. Theory
63 (1990), 56–64.
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18. C. Müntz, Über den Approximationsatz von Weierstrass, H. A. Schwartz Festschrift,
Berlin (1914).
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Kharkow 13 (1936), 93–95.

23. T. J. Rivlin, Chebyshev Polynomials, 2nd ed., Wiley, New York, 1990.



16 PETER BORWEIN AND TAMÁS ERDÉLYI
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