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Abstract. Let D be the open unit disk of the complex plane; its boundary, the unit circle

of the complex plane, is denoted by ∂D. Let Pc
n denote the set of all algebraic polynomials

of degree at most n with complex coefficients. For λ ≥ 0, let

Kλ
n

def
=

{

Pn : Pn(z) =

n
∑

k=0

akk
λzk , ak ∈ C , |ak| = 1

}

⊂ Pc
n .

The class K0
n is often called the collection of all (complex) unimodular polynomials of degree

n. Given a sequence (εn) of positive numbers tending to 0, we say that a sequence (Pn) of

polynomials Pn ∈ Kλ
n is {λ, (εn)}-ultraflat if

(1− εn)
nλ+1/2

√
2λ+ 1

≤ |Pn(z)| ≤ (1 + εn)
nλ+1/2

√
2λ+ 1

, z ∈ ∂D , n ∈ N0 .

Although we do not know, in general, whether or not {λ, (εn)}-ultraflat sequences of poly-

nomials Pn ∈ Kλ
n exist for each fixed λ > 0, we make an effort to prove various interesting

properties of them. These allow us to conclude that there are no sequences (Pn) of either

conjugate, or plain, or skew reciprocal unimodular polynomials Pn ∈ K0
n such that (Qn) with

Qn(z)
def
= zP ′

n(z) + 1 is a {1, (εn)}-ultraflat sequence of polynomials.

1. Introduction

Let N0 denote the nonnegative integers. Let D be the open unit disk of the complex plane;
its boundary, the unit circle of the complex plane, is denoted by ∂D. For n ∈ N0, let Pc

n

denote the set of all algebraic polynomials of degree at most n with complex coefficients.
For λ ≥ 0, let

Kλ
n

def
=

{
Pn : Pn(z) =

n∑

k=0

akk
λzk, ak ∈ C , |ak| = 1

}
⊂ Pc

n .
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The class K0
n is often called the collection of all (complex) unimodular polynomials of

degree n.

For λ ≥ 0, let

Lλ
n

def
=

{
Pn : Pn(z) =

n∑

k=0

akk
λzk, ak ∈ {−1, 1}

}
⊂ Pc

n .

Elements of L0
n are often called real unimodular polynomials or Littlewood polynomials of

degree n.

Parseval’s formula yields

(∫ 2π

0

|Pn(e
it)|2 dt

)1/2

= (2π + δn)
1/2 nλ+1/2

√
2λ+ 1

for all Pn ∈ Kλ
n, where the sequence (δn) converges to 0 as n → ∞, in fact, δn = O(1/n).

Therefore

min
z∈∂D

|Pn(z)| ≤
(
1 +

δn
2π

)1/2
nλ+1/2

√
2λ+ 1

≤ max
z∈∂D

|Pn(z)| .

Given λ ≥ 0 and n ∈ N0, we say that P ∈ Pc
n is {λ, n, ε}-flat if P ∈ Kλ

n and

(1− ε)
nλ+1/2

√
2λ+ 1

≤ |P (z)| ≤ (1 + ε)
nλ+1/2

√
2λ+ 1

, z ∈ ∂D .

Generalizing flatness, we say that a sequence (Pn) of polynomials is {λ, (εn)}-ultraflat if,
for each n ∈ N0, we have Pn ∈ Kλ

n and

(1− εn)
nλ+1/2

√
2λ+ 1

≤ |Pn(z)| ≤ (1 + εn)
nλ+1/2

√
2λ+ 1

, z ∈ ∂D , n ∈ N0 .

Here and throughout this paper, when we talk about a sequence of {λ, (εn)}-ultraflat
polynomials, we always assume that λ ≥ 0 and that the sequence (εn) of positive numbers
converges to 0 as n → ∞.

Similarly, given an increasing sequence (jn) of nonnegative integers, we say that a sequence
(Pjn) of polynomials is {λ, (εjn)}-ultraflat if, for each jn, we have Pjn ∈ Kλ

jn
and

(1− εjn)
jn

λ+1/2

√
2λ+ 1

≤ |Pjn(z)| ≤ (1 + εjn)
jn

λ+1/2

√
2λ+ 1

, z ∈ ∂D , n ∈ N0 .

Here and throughout this paper, when we talk about a sequence of {λ, (εjn)}-ultraflat
polynomials, we always assume that λ ≥ 0, (jn) is an increasing sequence of nonnegative
integers, and that the sequence (εjn) of positive numbers converges to 0 as n → ∞.
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A motivation to study polynomials Pn ∈ Kλ
n in general is the fact that Pn ∈ Kλ

n implies
that for Qn defined by Qn(z) = zP ′

n(z) ± 1 we have Qn ∈ Kλ+1
n . In this paper we do

not attempt to study more general classes related to unimodular polynomials although
we have no doubt that our methods employed in this paper leave some room for further
generalizations.

In 1957, the existence of a {0, (εn)}-ultraflat sequence (Pn) seemed very unlikely in view
of a conjecture of P. Erdős, see Problem 22 in [Er], asserting that, for all Pn ∈ K0

n with
n ∈ N,

max
z∈∂D

|Pn(z)| ≥ (1 + ε)n1/2 ,

where ε > 0 is an absolute constant. Yet, combining some probabilistic lemmas from
Körner’s paper [Kö] with some constructive methods using Gauss polynomials and other
tools, that were completely unrelated to the deterministic part of Körner’s paper, Ka-
hane [Ka] proved that there exists a sequence (Pn) that is {0, (εn)}-ultraflat, where εn =
O
(
n−1/17

√
log n

)
, see p. 240 in [Ka]. Thus the Erdős conjecture was disproved for the

classes K0
n. For the more restricted class L0

n the analogous Erdős conjecture is unsettled
to this date (Erdős offered $50 for a solution). It is a common belief that the analo-
gous Erdős conjecture for L0

n is true, and consequently there is no ultraflat sequence of
polynomials Pn ∈ L0

n. For an account of some of the work done till the mid 1960’s, see
Littlewood’s book [L] and [QS]. For a more recent survey on polynomials with Littlewood-
type coefficient constraints, see [E4]. The structure of {0, (εn)}-ultraflat sequences (Pn) of
unimodular polynomials Pn ∈ K0

n produced by Kahane in [Ka] is examined by Queffélec
and Saffari [QS], where several interesting properties of Kahane’s ultraflat sequences of uni-
modular polynomials have been observed and proved. The structure of ultraflat sequences
of unimodular polynomials in general is studied in [E1], [E2], [E3], and [E5], where several
conjectures of Saffari raised in [S] and [QS] are proved for all {0, (εn)}-ultraflat sequences
(Pn) of polynomials in general, not necessarily those produced by Kahane in [Ka]. In this
paper, following the techniques used in [E1], [E2], [E3], and [E5] earlier, we prove some
extensions of these conjectures.

A recent paper [BB] by Bombieri and Bourgain is devoted to the construction of ultraflat
sequences of unimodular polynomials. In particular, one obtains a much improved estimate
for the error term. A major part of this paper deals also with the long-standing problem
of the effective construction of ultraflat sequences of unimodular polynomials.

Whether or not {λ, (εjn)}-ultraflat sequences of (Pjn) with Pjn ∈ Kλ
jn

exist for every fixed
λ > 0, seems a natural question. For λ > 0 the answer to this question is not known, not
even for λ = 1. It is possible that modifications of the techniques used by Kahane [Ka],
Queffélec and Saffari [QS], and Bombieri and Bourgain [BB], give the existence of such
{λ, (εjn)}-ultraflat sequences for every fixed λ > 0 as well. This looks an interesting but
perhaps rather difficult and long project that we do not try to attempt in this paper.
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In what follows, given a polynomial

Pn(z) =
n∑

j=0

ajz
j , aj ∈ C ,

of exact degree n, we define the conjugate n-reverse polynomial , or, simply the reverse
polynomial P ∗

n by

(1.1) P ∗
n(z)

def
= znPn(1/z) =

n∑

j=0

an−jz
j

which is of degree at most n. This is a standard definition albeit no standard terminology
seems to exist for it.

Associated with a polynomial Pn of the above form we also define

Pn(z)
def
=

n∑

j=0

ajz
j .

A polynomial Pn of the above form is called conjugate reciprocal if aj = an−j for each
j = 0, 1, . . . , n, that is, P ∗

n = Pn.

A polynomial Pn of the above form is called plain reciprocal if aj = an−j for each j =

0, 1, . . . , n, that is, P ∗
n = Pn.

A polynomial Pn of the above form is called skew reciprocal if aj = (−1)jan−j for each
j = 0, 1, . . . , n, that is, P ∗

n(z) = Pn(−z) for each z ∈ C.

The Lebesgue measure of a measurable set A ⊂ R or {·} will be denoted by m(A) or m{·},
respectively.

Suppose (Pn) is a {λ, (εn)}-ultraflat sequence of polynomials. We write

(1.2) Pn(e
it) = Rn(t)e

iαn(t) , Rn(t) = |Pn(e
it)| .

It is simple to show that αn can be chosen to be in C∞(R). This is going to be our
understanding throughout the paper. It is easy to find a formula for αn(t) in terms of Pn.
This was done by Saffari and it asserts that

(1.3) α′
n(t) = Re

(
eitP ′

n(e
it)

Pn(eit)

)
,

see formulas (7.1) & (7.2) on p. 564 and (8.2) on p. 565 in [S]. The angular function α∗
n

and modulus function R∗
n associated with the polynomial P ∗

n are defined by

P ∗
n(e

it) = R∗
n(t)e

iα∗

n
(t) , R∗

n(t) = |P ∗
n(e

it)| .

Similarly to αn, the angular function α∗
n can also be chosen to be in C∞(R) on R.
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2. The Phase Problem: Results and Conjectures of Saffari

For the case λ = 0, Saffari conjectured the following two theorems, Theorems 2.1 and 2.2,
see p. 560 in [S]; we borrowed his terminology. For the case λ = 0 Theorems 2.1 and 2.2
were proved in [E2].

Theorem 2.1 (Uniform Distribution Theorem for the Angular Speed). Let (Pn) be a
{λ, (εn)}-ultraflat sequence of polynomials. Then

(2.1) m {t ∈ [0, 2π] : 0 ≤ α′
n(t) ≤ nx} = 2πx2λ+1 + on(x) , x ∈ [0, 1],

where limn→∞ on(x) = 0 uniformly in [0, 1]. In addition,

(2.2) m

{
t ∈ [0, 2π] : |P ′

n(e
it)| ≤ nλ+3/2x

(2λ+ 1)1/2

}
= 2πx2λ+1 + on(x) , x ∈ [0, 1],

where limn→∞ on(x) = 0 uniformly in [0, 1].

When λ = 0, Saffari’s basis of conjecturing Theorem 2.1 was that for the special {0, (εn)}-
ultraflat sequence of unimodular polynomials produced by Kahane [Ka], (2.1) is indeed
true. In Section 4 we prove Theorem 2.1 for every λ ≥ 0.

In the general case, by integration, (2.1) can be reformulated equivalently in terms of the
moments of the angular speed α′

n(t). We will present the proof of this equivalence in
Section 4 and will verify Theorem 2.1 by proving the following result first.

Theorem 2.2 (Reformulation of the Uniform Distribution Theorem). Let (Pn) be a
{λ, (εn)}-ultraflat sequence of polynomials. Then, for every q > 0, we have

(2.3)
1

2π

∫ 2π

0

|α′
n(t)|q dt =

(2λ+ 1)nq

q + 2λ+ 1
+ on,qn

q

with suitable constants on,q converging to 0 as n → ∞.

An immediate consequence of (2.3) is the remarkable fact that, for large values of n ∈ N,
the Lq(∂D) Bernstein-M. Riesz-Zygmund factors

∫ 2π

0
|P ′

n(e
it)|q dt

∫ 2π

0
|Pn(eit)|q dt

of the elements of ultraflat sequences of polynomials (Pn) are essentially independent of
the polynomials. More precisely (2.3) implies the following result.
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Theorem 2.3 (Bernstein-M. Riesz-Zygmund Factors). Let (Pn) be a {λ, (εn)}-ultraflat
sequence of polynomials. Then, for every fixed q > 0, we have

∫ 2π

0
|P ′

n(e
it)|q dt

∫ 2π

0
|Pn(eit)|q dt

=
(2λ+ 1)nq

q + 2λ+ 1
+ on,qn

q ,

and, as a limiting case,
max0≤t≤2π |P ′

n(e
it)|

max0≤t≤2π |Pn(eit)|
= n+ onn .

with suitable constants on,q and on that converge to 0 as n → ∞.

In Section 3 we will show the following result which turns out to be stronger than Theo-
rem 2.2.

Theorem 2.4 (Negligibility Theorem for Higher Derivatives). Let (Pn) be a {λ, (εn)}-
ultraflat sequence of polynomials. Then, for every fixed integer r ≥ 2, we have

max
0≤t≤2π

|α(r)
n (t)| ≤ on,rn

r

with suitable constants on,r that converge to 0 as n → ∞.

We will show in Section 4 how Theorem 2.1 follows from Theorem 2.4.

We also give an extension of Saffari’s Uniform Distribution Conjecture to higher derivatives;
the proof will be in Section 4 as well.

Theorem 2.5. Let (Pn) be a {λ, (εn)}-ultraflat sequence of polynomials. Then

m

{
t ∈ [0, 2π] : |P (r)

n (eit)| ≤ nr+λ+1/2xr

(2λ+ 1)1/2

}
= 2πx2λ+1 + or,n(x) , x ∈ [0, 1],

where, for every fixed r ∈ N, we have limn→∞ or,n(x) = 0 uniformly in [0, 1].

As a consequence of Theorems 2.1 and 2.4 we obtain the following theorem.

Theorem 2.6. Let (P ′
n) be a {λ+ 1, (εn)}-ultraflat sequence of polynomials. Then

lim
n→∞

n−(λ+1/2) max
t∈R

|Pn(e
it)| = ∞ .

Theorem 2.6 together with Lemma 4.5 implies
6



Theorem 2.7. Let (Pjn) be a sequence of polynomials Pjn ∈ K0
jn

so that

max
z∈∂D

|P ∗
jn

′(z)| = max
z∈∂D

|P ′
jn(z)| , n ∈ N0 .

Then (Qjn) with Qjn(z)
def
= zP ′

jn
(z)+1 is not a {1, (εjn)}-ultraflat sequence of polynomials.

Corollary 2.8. Let (jn) be an increasing sequence of nonnegative integers. There are no
sequences (Pjn) of either conjugate, or plain, or skew reciprocal unimodular polynomials

Pjn ∈ K0
jn

such that (Qjn) with Qjn(z)
def
= zP ′

jn
(z) + 1 is a {1, (εjn)}-ultraflat sequence of

polynomials.

Remark 2.9 Theorems 2.1–2.6 remain true if n is replaced by jn, where (jn) is an in-
creasing sequence of nonnegative integers, and the classes

Kλ
n

def
=

{
Pn : Pn(z) =

n∑

k=0

akk
λzk, ak ∈ C , |ak| = 1

}

are replaced by

Kλ
jn
(Γjn)

def
=

{
Pjn : Pjn(z) =

jn∑

k=0

akk
λzk, ak ∈ C , |ak| = γk,jn

}
,

where
Γjn := {γ0,jn, γ1,jn, . . . , γjn,jn} ⊂ R

and for every ε > 0 there is an N such that

|γk,jn − 1| < ε , N ≤ k ≤ jn, , n ∈ N0 .

The above remark is needed to prove Theorem 2.7 as a consequence of Theorem 2.6. The
reader will easily see that the proofs of Theorems 2.1–2.6 in Section 4 can be modified in
a straightforward fashion (by simply replacing n by jn) to conclude Remark 2.9. We will
use the terminology that Pjn are asymptotically in Kλ

jn
if Pjn ∈ Kλ

jn
(Γjn) with some Γjn ,

n ∈ N0, satisfying the assumptions given in Remark 2.9.

3. Proof of Theorem 2.4

To prove Theorem 2.4, we need a few lemmas. The first one is a standard polynomial
inequality sometimes attributed to Bernstein. Its proof is a simple exercise in complex
analysis consisting of a straightforward application of the Maximum Principle; it may be
found in a number of books, see e.g., [BE, p. 390]. We will use the notation

D(z0, R)
def
= {z ∈ C : |z − z0| < R} , ∂D(z0, R)

def
= {z ∈ C : |z − z0| = R} ,

and ‖f‖A def
= supz∈A |f(z)| for a complex-valued function f defined on a set A. As before,

let D
def
= D(0, 1) and ∂D

def
= ∂D(0, 1).

7



Lemma 3.1. We have
|P (z)| ≤ |z|n‖P‖∂D, |z| > 1 ,

for every polynomial P of degree at most n with complex coefficients. In addition, we have

|T (t)| ≤ en|Im(t)|‖T‖R, t ∈ C,

for every trigonometric polynomial T of the form

T (t) =

n∑

k=−n

ake
ikt , ak ∈ C .

Note that the second inequality of Lemma 3.1 follows from the first one applied to a

polynomial P of degree at most 2n with complex coefficients defined by P (eit)
def
= eintT (t).1

The main tool to prove Theorem 2.4 is Jensen’s Formula; for a proof, see, for example,
E.10 c] of Section 4.2 in[BE].

Lemma 3.2 (Jensen’s Formula). Suppose h is a nonnegative integer and

f(z) =

∞∑

k=h

ckz
k , ch 6= 0 ,

is analytic in a disk D(0, R∗) with some R∗ > R. Suppose that the zeros of f in D(0, R)\{0}
are a1, a2, . . . , am, where each zero is listed as many times as its multiplicity. Then

log |ch|+ h logR+
m∑

k=1

log
R

|ak|
=

1

2π

∫ 2π

0

log |f(Reiθ)| dθ .

Our next two lemmas are straightforward extensions of the corresponding lemmas used in
[E2] and their proofs are quite similar to them.

Lemma 3.3. Suppose (εn) is a sequence of numbers from (0, 1/3) tending to 0 as n → ∞.
Let (Pn) be a {λ, (εn)}-ultraflat sequence of polynomials. Then each Pn has no zeros in
the open annulus {

z ∈ C : 1− 1

2nδn
< |z| < 1 +

1

2nδn

}
,

where the positive numbers

δn
def
= max

{
2

− log(3 εn)
,
1

n

}

1The second inequality of Lemma 3.1 is stated as Lemma 3.1 in [E2] with a typo as Im(t) in the exponent

should be replaced with |Im(t)|.
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tend to 0 as n → ∞.

Proof of Lemma 3.3. Let (Pn) be a {λ, (εn)}-ultraflat sequence of polynomials, that is,
Pn ∈ Kλ

n satisfies

(1− εn)
nλ+1/2

√
2λ+ 1

< |Pn(z)| < (1 + εn)
nλ+1/2

√
2λ+ 1

, z ∈ ∂D.

Then

(1− εn)
2 n

2λ+1

2λ+ 1
< z−nPn(z)P

∗
n(z) = |Pn(z)|2 < (1 + εn)

2 n
2λ+1

2λ+ 1
, z ∈ ∂D.

We define

(3.2) Qn(z)
def
= Pn(z)P

∗
n(z)−

n2λ+1

2λ+ 1
zn .

Then Qn is a polynomial of degree 2n and

−3 εn
n2λ+1

2λ+ 1
< z−nQn(z) = |Pn(z)|2 −

n2λ+1

2λ+ 1
< 3 εn

n2λ+1

2λ+ 1
, z ∈ ∂D.

From this we conclude that

(3.3) |Qn(z)| < 3 εn
n2λ+1

2λ+ 1
z ∈ ∂D.

Using Lemma 3.1 and (3.3), we obtain that

(3.4) |Qn(z)| ≤ |z|2n3εn
n2λ+1

2λ+ 1
<

n2λ+1

2λ+ 1

for every z ∈ C that satisfies

1 ≤ |z| < 1 +
1

nδn
,

where δn is defined in the lemma. Suppose that Pn has a zero in the annulus
{
z ∈ C : 1− 1

2nδn
< |z| < 1 +

1

2nδn

}
.

Then PnP
∗
n has a zero z0 in the annulus

{
z ∈ C : 1 ≤ |z| < 1 +

1

nδn

}
.

Hence, by (3.2), we have

|Qn(z0)| =
∣∣∣∣Pn(z0)P

∗
n(z0)−

n2λ+1

2λ+ 1
zn0

∣∣∣∣ =
n2λ+1

2λ+ 1
|z0|n ≥ n2λ+1

2λ+ 1
,

which is impossible by (3.4). �
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Lemma 3.4. Let ε ∈ (0, 1/3), n ∈ N, 1/n ≤ R, and let z0 ∈ ∂D. If P is a {λ, n, ε}-flat
polynomial, then P has at most 5nR zeros in the disk D(z0, R).

Proof. We use Jensen’s formula on the disk D(z0, 2R). Note that since P is {λ, n, ε}-flat,
we have

log |P (z0)| ≥ log(1− ε) + (λ+ 1/2) logn− 1

2
log (2λ+ 1)

≥ −1

2
+ (λ+ 1/2) logn− 1

2
log (2λ+ 1) ,

and then Lemma 3.1 yields

|P (z)| ≤ (1 + ε)
nλ+1/2

√
2λ+ 1

(1 + 2R)n , z ∈ ∂D(z0, 2R) ,

that is,

log |P (z)| ≤ 1

3
+ (λ+ 1/2) logn− 1

2
log (2λ+ 1) + n(2R) , z ∈ ∂D(z0, 2R) .

Now, if m denotes the number of zeros of P in D(z0, R), then by Jensen’s formula

−1

2
+ (λ+ 1/2) logn− 1

2
log (2λ+ 1) +m log 2

≤ 1

3
+ (λ+ 1/2) logn− 1

2
log (2λ+ 1) + 2nR ,

whence

m ≤ 3nR

log 2
≤ 5nR ,

and, thus, the lemma has been proved. �

Our next lemma is a well-known inequality in approximation theory; see [Ne] for the
reasons we attribute it to M. Riesz even if until recently it was associated with Bernstein’s
name.

Lemma 3.5 (M. Riesz’s Inequality). We have

‖P ′‖∂D ≤ n‖P‖∂D

for every P ∈ Pc
n.

Now we are ready for the proof of Theorem 2.4.
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Proof of Theorem 2.4. Observe that if (zj) denote the zeros of Pn, then

zP ′
n(z)

Pn(z)
=

n∑

j=1

z

z − zj
=

n∑

j=1

(
1 +

zj
z − zj

)
.

Since Pn ∈ Kλ
n, we have

(3.5) |z1|, |z2|, . . . , |zn| < 2 .

To see this, let

Pn(z) =

n∑

j=0

jλajz
j , aj ∈ C , |aj| = 1 .

Now if z0 ∈ C and |z0| ≥ 2, then

∣∣∣∣∣∣

n∑

j=0

jλajz
j
0

∣∣∣∣∣∣
≥ nλ|z0|n − nλ(|z0|n−1 + |z0|n−2 + · · ·+ |z0|1 + |z0|0)

= nλ

(
|z0|n − |z0|n − 1

|z0| − 1

)
> 0 ,

so that P (z0) 6= 0. Using (1.3) and (3.5) and substituting z0 = eit0 , we can estimate

|α(r)
n (t0)| as follows.

|α(r)
n (t0)| =

∣∣∣∣
dr−1

dtr−1

(
Re

(
eitP ′

n(e
it)

Pn(eit)

))
(t0)

∣∣∣∣ ≤
∣∣∣∣
dr−1

dtr−1

(
eitP ′

n(e
it)

Pn(eit)

)
(t0)

∣∣∣∣

=

∣∣∣∣∣

r−1∑

m=0

Am
dm

dzm

(
zP ′

n(z)

Pn(z)

)
(z0) e

imt0

∣∣∣∣∣

=

∣∣∣∣∣

r−1∑

m=0

Am
dm

dzm

(
n∑

k=1

(
1 +

zk
z − zk

))
(z0) e

imt0

∣∣∣∣∣

≤
∣∣∣∣A0

z0P
′
n(z0)

Pn(z0)

∣∣∣∣+
r−1∑

m=1

|Am|m!
n∑

k=1

|zk||z0 − zk|−(m+1)

≤
∣∣∣∣A0

z0P
′
n(z0)

Pn(z0)

∣∣∣∣+ 2

r−1∑

m=1

|Am|m!

n∑

k=1

|z0 − zk|−(m+1) ,

(3.6)

where the constants Am depend only on m. Now we define the annulus

Eµ = D(z0, 2
µ(2nδn)

−1) \D(z0, 2
µ−1(2nδn)

−1) , µ ∈ N ,
11



where δn
def
= max{2/(− log(3εn)), 1/n} as in Lemma 3.3. We denote the number of zeros

of Pn in Eµ by mµ. By Lemma 3.4, we have mµ ≤ 5n2µ/(2nδn). Combining this with
(3.6) and Lemmas 3.5 & 3.3, we obtain

|α(r)
n (t)| ≤ C0

n(1 + εn)(2λ+ 1)−1/2nλ+1/2

(1− εn)(2λ+ 1)−1/2nλ+1/2
+ Cr

r−1∑

m=1

n∑

k=1

|z0 − zk|−(m+1)

≤ 2C0n+ Cr

r−1∑

m=1

∞∑

µ=1

mµ

(
2µ−1

2nδn

)−(m+1)

≤ 2C0n+ Cr

r−1∑

m=1

∞∑

µ=1

5n2µ

2nδn

(
2µ−1

2nδn

)−(m+1)

≤ 2C0n+ Cr

r−1∑

m=1

∞∑

µ=1

2 · 2−(µ−1)m5n(2nδn)
m

≤ 2C0n+ C∗
rn

rδn ≤ C∗∗
r nrδn ,

where Cr, C
∗
r , and C∗∗

r are positive constants depending only on r. Since

δn
def
= max{2/(− log(3εn)), 1/n}

tends to 0 together with εn > 0 as n → ∞, the theorem is proved. �

4. Proof of Theorems 2.1, 2.2, 2.3, 2.5, and 2.6

First we prove Theorem 2.2 for q ∈ N. To this end we need the following lemmas.

Lemma 4.1 (Pólya’s Companion to Dini’s Theorem). If (fn) is a sequence of in-

creasing functions on a closed interval ∆ such that f(x)
def
= limn→∞ fn(x) exists for every

x ∈ ∆ and f is continuous on ∆, then the convergence of (fn) is uniform in ∆.

For Lemma 4.1, see [PSz, Problem 127, §3, Part II, Chap. 3, p. 81] and [Bo, Sec. 17,
p. 113]. Sometimes, this is called “Pólya’s extension of Dini’s theorem” which is, of course,
misleading.

Lemma 4.2 (Bernstein Inequality for Trigonometric Polynomials). We have

max
0≤t≤2π

|T (m)(t)| ≤ nm max
0≤t≤2π

|T (t)| , m ∈ N ,

for every trigonometric polynomial T of degree at most n with complex coefficients.

Although there is an intimate relationship between Lemmas 3.5 and 4.2, we stated them
separately for the sake of historical accuracy; see [N1] and [N2].

Our next lemma appeared in [S] first and then used in [E2] too. For the sake of brevity
we give a short proof of it here as well.

12



Lemma 4.3. Suppose (Pn) is a {λ, (εn)}-ultraflat sequence of polynomials. Using the
notation (1.2) defining αn, we have

−on ≤ α′
n(t)

n
≤ 1 + on , t ∈ R ,

for some real numbers on > 0 tending to 0 as n → ∞.

Proof of Lemma 4.3. Combining (1.3) with Lemma 3.5 and the ultraflatness of (Pn), we
obtain the upper bound of the lemma. In addition to the {λ, (εn)}-ultraflat sequence
(Pn), we also look at the {λ, (εn)}-ultraflat sequence (P ∗

n) of the corresponding reverse
polynomials. By applying formula (1.3) to P ∗

n , it is easy to see that

α′
n(t) + α∗

n
′(t) = n, t ∈ R .

Since the upper bound of the lemma is valid for α∗
n as well, the lower bound in the lemma

follows from the latter. �

Lemma 4.4. Suppose (εn) is a sequence of numbers from (0, 1/3) tending to 0 as n → ∞.
Suppose (Pn) is a {λ, (εn)}-ultraflat sequence of polynomials. Using the notation (1.2)
defining Rn, we have

(4.1) max
0≤t≤2π

|R(m)
n (t)| = on,mnm+λ+1/2 , m ∈ N ,

with suitable constants on,m converging to 0 as n → ∞ for every m ∈ N.

Proof of Lemma 4.4. The proof is very similar to that of Lemma 3.3. Let

δn
def
= max

{
2

− log(3 εn)
,
1

n

}

as in the proof Lemma 3.3. Let (Pn) be a {λ, (εn)}-ultraflat sequence of polynomials, that
is, let Pn ∈ Kλ

n satisfy2

(4.2) (1− εn)
nλ+1/2

(2λ+ 1)1/2
< |Pn(z)| < (1 + εn)

nλ+1/2

(2λ+ 1)1/2
, z ∈ ∂D .

Step 1. By Lemma 3.3,

(4.3) Tn(t)
def
= e−intPn(e

it)P ∗
n(e

it)

2In fact, in this proof we don’t need that Pn ∈ Kλ
n, we will use only that Pn’s are polynomials of degree

n with complex coefficients that satisfy (4.2).
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has no zeros in the strip

En def
=

{
z ∈ C : |Im(z)| ≤ 1

4nδn

}
.

Therefore,

T̃n(t)
def
=
√

Tn(t) =
√

e−intPn(eit)P ∗
n(e

it)

is a well-defined analytic function in the strip En. Note also that Tn is a trigonometric
polynomial of degree n with real coefficients and Tn(t) ≥ 0 for all t ∈ R.

Step 2. We show that

|T̃ ′
n(t)| ≤ onn

λ+3/2 , t ∈ R ,

with suitable constants on converging to 0 as n → ∞. Note that (4.2) and the fact that
Tn(t) ≥ 0 for all t ∈ R imply that

(4.4) −3 εn
n2λ+1

2λ+ 1
< Tn(t)−

n2λ+1

2λ+ 1
< 3 εn

n2λ+1

2λ+ 1
, t ∈ R .

Combining this with Lemma 4.2, we obtain

max
0≤t≤2π

|T ′
n(t)| = max

0≤t≤2π

∣∣∣∣
d

dt

(
Tn(t)−

n2λ+1

2λ+ 1

)∣∣∣∣

≤ n max
0≤t≤2π

∣∣∣∣Tn(t)−
n2λ+1

2λ+ 1

∣∣∣∣ ≤ n 3 εn
n2λ+1

2λ+ 1
≤ 3 εn

2λ+ 1
n2λ+2 .

(4.5)

Now

|T̃ ′
n(t)| =

∣∣∣∣∣
T ′
n(t)

2
√
Tn(t)

∣∣∣∣∣ ≤
3 εn

2λ+ 1
× n2λ+2

2(1− εn)(2λ+ 1)−1/2nλ+1/2

≤ 3εn
2(1− εn)

nλ+3/2 ≤ 9

4
εnn

λ+3/2 = onn
λ+3/2 , t ∈ R ,

with suitable constants on converging to 0.

Step 3. Let

Fc,n
def
=
{
z ∈ C : |Im(z)| ≤ c

n

}
.

We will show that there is a sufficiently small absolute constant c > 0 such that

|T̃ ′
n(t)| ≤ onn

λ+3/2 , t ∈ Fc,n ,

with suitable constants on converging to 0 as n → ∞. To see this, first note that

(4.6) |T̃ ′
n(t)| =

∣∣∣∣∣
T ′
n(t)

2
√
Tn(t)

∣∣∣∣∣ ,

14



where Tn is defined by (4.3). Using (4.5) and Lemma 3.1 we obtain that

(4.7) |T ′
n(t)| ≤ o∗nn

2λ+2en(c/n) = onn
2λ+2 , t ∈ Fc,n,

with suitable constants o∗n and on converging to 0 as n → ∞ and with a sufficiently small
absolute constant c > 0. Similarly, (4.4), εn ∈ (0, 1/3), and Lemma 3.1 give

∣∣∣∣Tn(t)−
n2λ+1

2λ+ 1

∣∣∣∣ < 3 εn
n2λ+1

2λ+ 1
enc/n ≤ 3 εn

n2λ+1

2λ+ 1
ec , t ∈ R ,

and hence

(4.8) |Tn(t)| ≥
n2λ+1

2(2λ+ 1)
, t ∈ Fc,n ,

for a sufficiently small absolute constant c > 0. Now (4.6), (4.7), and (4.8) imply that

|T̃ ′
n(t)| ≤ onn

λ+3/2 , t ∈ Fc,n ,

with suitable constants on converging to 0 as n → ∞ and with a sufficiently small absolute
constant c > 0.

Step 4. From Step 3 we conclude by the Cauchy Integral Formula that

|T̃ (m)
n (t)| = (m− 1)!

2π

∣∣∣∣∣

∫

∂D(t,c/n)

T̃ ′
n(ξ) dξ

(ξ − t)m

∣∣∣∣∣

≤ c

n
(m− 1)! on,1n

λ+3/2
( c
n

)−m

= on,mnm+λ+1/2 ,

with suitable constants on,m converging to 0 as n → ∞ for every fixed m ∈ N.

Step 5. Note that for t ∈ R we have

(4.9) Rn(t) = |Pn(e
it)| =

√
e−intPn(eit)P ∗

n(e
it) = T̃n(t) ,

and, thus, by Step 4,
max

0≤t≤2π
|R(m)

n (t)| = on,mnm+λ+1/2

with suitable constants on,m converging to 0 as n → ∞ for every fixed m ∈ N. This proves
the lemma. �

Now we are ready to prove Theorem 2.2 for q ∈ N.

Proof of Theorem 2.2 for q ∈ N. Let (Pn) be a {λ, (εn)}-ultraflat sequence of polynomials.
We define

(4.10) Sn(t)
def
= Pn(e

it) =
n∑

k=0

kλak,ne
ikt , |ak,n| = 1 .

15



We will evaluate
1

2π

∫ 2π

0

S(q)
n (t)Sn(t) dt

in two different ways. On one hand, using orthogonality, we have

(4.11)
1

2π

∫ 2π

0

S(q)
n (t)Sn(t) dt = iq

n∑

k=0

kq+2λ|ak,n|2 = iq
nq+2λ+1

q + 2λ+ 1
+ on,qn

q+2λ+1 ,

with suitable constants on,q converging to 0 as n → ∞ for every fixed nonnegative integer
q.

On the other hand, with the notation for Rn and αn introduced in (1.2), Theorem 2.4 and
Lemmas 4.2, 4.3, and 4.4 yield

S(q)
n (t) =

q∑

k=0

(
q

k

)
dk

dtk

(
eiαn(t)

)
R(q−k)

n (t)

=
dq

dtq

(
eiαn(t)

)
Rn(t) +

q−1∑

k=0

(
q

k

)
dk

dtk

(
eiαn(t)

)
R(q−k)

n (t)

=
dq

dtq

(
eiαn(t)

)
Rn(t) +

q−1∑

k=0

(
q

k

)
cn,k(t)n

kon,q−k(t)n
q−k+λ+1/2

=
(
eiαn(t)α′

n(t)
qiq + o∗n,q(t)n

q
)
Rn(t) + o∗∗n,q(t)n

q+λ+1/2

(4.12)

with suitable numbers on,q−k(t), cn,k(t), o
∗
n,q(t), and o∗∗n,q(t), where

lim
n→∞

max
0≤t≤2π

|on,q−k(t)| = 0

for every fixed q and k = 0, 1, . . . , q − 1,

sup
n∈N

max
0≤t≤2π

|cn,k(t)| < ∞

for every fixed k = 0, 1, . . . , q − 1, and

lim
n→∞

max
0≤t≤2π

|o∗n,q(t)| = 0 & lim
n→∞

max
0≤t≤2π

|o∗∗n,q(t)| = 0

for every fixed q. Now (4.2), (4.9), (4.10), and (4.12) yield

1

2π

∫ 2π

0

S(q)
n (t)Sn(t) dt

=
1

2π

∫ 2π

0

((
eiαn(t)α′

n(t)
q
iq + o∗n,q(t)n

q
)
Rn(t) + o∗∗n,q(t)n

q+λ+1/2
)
Rn(t)e

−iαn(t) dt

=
1

2π

∫ 2π

0

(
n2λ+1

2λ+ 1
(1− on(t))

(
α′
n(t)

q
iq + o∗n,q(t)n

q
)
+ o∗∗∗n,q (t)n

q+λ+1/2+λ+1/2

)
dt

=
1

2π

∫ 2π

0

iq
(
n2λ+1

2λ+ 1
(1− on(t))

)
α′
n(t)

q
dt+ o∗∗∗∗n,q nq+2λ+1 ,

(4.13)
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with suitable functions on(t), o
∗
n,q(t), o

∗∗
n,q(t), and o∗∗∗n,q (t), and numbers o∗∗∗∗n,q , where all

max
0≤t≤2π

|on(t)| & max
0≤t≤2π

|o∗n,q(t)| & max
0≤t≤2π

|o∗∗n,q(t)| & max
0≤t≤2π

|o∗∗∗n,q (t)| & o∗∗∗∗n,q

converge to 0 as n → ∞ for every fixed q.

Now (4.11) and (4.13) give the statement of the theorem for integers q ∈ N. �

One may simply note that the fact that Theorem 2.1 as well as the case q > 0 in Theorem
2.2 follow from the case q ∈ N in Theorem 2.2 is well known. Nevertheless, for the sake of
completeness, we present detailed proofs of these as well.

Proof of Theorem 2.1. We introduce the normalized distribution functions

(4.14) Fn(x)
def
= m{t ∈ [0, 2π] : 0 ≤ α′

n(t) ≤ nx} , x ∈ [0, 1] .

Each Fn is continuous and nondecreasing on [0, 1], and

0 ≤ Fn(x) ≤ 2π , x ∈ [0, 1] .

Suppose (2.1) is not true. Then we can find a subsequence (Fnk
) of (Fn) and numbers

y ∈ [0, 1] & ε > 0 such that

(4.15) |Fnk
(y)− 2πy2λ+1| ≥ ε , k ∈ N .

Then by Helly’s Selection Theorem, there is a subsequence (mk) of (nk) such that

(4.16) F (x)
def
= lim

k→∞
Fmk

(x)

exists for every x ∈ [0, 1]. Using Theorem 2.2, (4.14), Lemma 4.3, and Lebesgue’s Domi-
nated Convergence Theorem we obtain that

∫ 1

0

xq dF (x) =
2π(2λ+ 1)

q + 2λ+ 1
, q ∈ N .

Hence, all the corresponding moments of the measures dF (x) and dG(x) with G(x)
def
=

2πx2λ+1 are the same on [0, 1]. Therefore, using the uniqueness part of the Riesz Repre-
sentation Theorem describing all continuous linear functionals on C([0, 1]), we obtain that
F (x) ≡ 2πx2λ+1 for all x ∈ [0, 1]. However, this contradicts (4.15) and (4.16). Conse-
quently,

m{t ∈ [0, 2π] : 0 ≤ α′
n(t) ≤ nx} = 2πx2λ+1 + on(x)

for every x ∈ [0, 1], where limn→∞ on(x) = 0 for every x ∈ [0, 1]. By Lemma 4.1, the
convergence is uniform in [0, 1].
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To see the second statement of the theorem, we argue as follows. Using notation (1.2) and
Lemma 4.4 we have R′

n(t) = on(t)n
λ+3/2 with a constant on(t) tending to 0 as n → ∞ for

every t ∈ R. Therefore,

|P ′
n(e

it)| = |R′
n(t)e

iαn(t) + iα′
n(t)e

iαn(t)Rn(t)|

= on(t)n
λ+3/2 + |α′

n(t)|(1 + εn)
nλ+1/2

√
2λ+ 1

,

(4.17)

where on(t) and εn tend to 0 as n → ∞ for every t ∈ R. Now (2.2) follows from (2.1) and
the convergence in [0, 1] is uniform again by Lemma 4.1. �

Proof of Theorem 2.2 for all real q > 0. This follows from the already proved Theorem 2.1
in the following way. Let Fn(x) be defined for x ∈ [0,∞) by (4.14). Let on(x) be the same
as in Theorem 2.1. Using integration by parts, Lemma 4.3, and Theorem 2.1, we obtain

1

2π

∫ 2π

0

∣∣∣∣
α′
n(t)

n

∣∣∣∣
q

dt =
1

2π

∫ ∞

−∞

|x|q dFn(x) =
1

2π

∫ 1

0

xq dFn(x) + o∗n,q

=
1

2π
[xqFn(x)]

1
0 −

1

2π

∫ 1

0

qxq−1Fn(x) dx+ o∗n,q

=1− 1

2π

∫ 1

0

qxq−1
(
2πx2λ+1 + on(x)

)
dx+ o∗n,q

=1−
∫ 1

0

(qxq+2λ + (2π)−1 qxq−1on(x)) dx+ o∗n,q

=1− q

q + 2λ+ 1
+ o∗∗n,q =

2λ+ 1

q + 2λ+ 1
+ o∗∗n,q

with numbers o∗n,q and o∗∗n,q tending to 0 as n → ∞. �

Proof of Theorem 2.3. This follows immediately from Theorem 2.2 and (4.17). �

Proof of Theorem 2.5. Write, as in (1.2),

Pn(e
it) = Rn(t)e

iαn(t) ,

where, as before, Rn(t) = |Pn(e
it)|. Then

P (r)
n (z) =

r∑

k=0

(
r

k

)
R(k)

n (t)
d(r−k)

dtr−k

(
eiαn(t)

)

Now the pointwise convergence in the theorem follows from (1.2), Theorem 2.4, Lemma 4.4,
and Theorem 2.1 for every x ∈ [0, 1], and then the convergence in [0, 1] is uniform by
Lemma 4.1. �
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The next proof of Theorem 2.6 is based on Theorems 2.1 and 2.4.

Proof of Theorem 2.6. Let (P ′
n) be a {λ+1, (εn)}-ultraflat sequence of polynomials. Sim-

ilarly to (1.2), we write

P ′
n(e

it) = Rn(t)e
iαn(t) where Rn(t) = |P ′

n(e
it)| .

As mentioned after (1.2), we may assume that all αn’s are in C∞(R). We have

(1− εn)
nλ+3/2

√
2λ+ 1

≤ |Rn(t)| = |Pn(e
it)| ≤ (1 + εn)

nλ+3/2

√
2λ+ 1

, t ∈ R & n ∈ N .

Let ε > 0. For each sufficiently large n one can use Theorem 2.1 to pick t0 = t0,n ∈ R such
that

|α′
n(t0)| ≤ εn ,

then define t1 by t1
def
= t0 + (2 εn)−1, and then apply the Mean Value Theorem and

Theorem 2.4 to conclude that

(4.18) |α′
n(t)| ≤ 2εn , t ∈ [t0, t1] ,

for all sufficiently large n, namely for all n for which ε/on,2 ≥ (2 ε)−1 holds.3 Combining
(4.18) and the Mean Value Theorem again, we obtain

|αn(t)− αn(t0)| ≤ |t− t0| max
ξ∈[t0,t]

|α′
n(ξ)| ≤ (2εn)−12 εn ≤ 1 , t ∈ [t0, t1] ,

for all sufficiently large n. Hence

|Pn(e
it1)− Pn(e

it0)| =
∣∣∣∣
∫ t1

t0

P ′
n(e

it)eiti dt

∣∣∣∣ =
∣∣∣∣
∫ t1

t0

Rn(t)e
iαn(t)eiti dt

∣∣∣∣

≥
∣∣∣∣(t1 − t0)

nλ+3/2

√
2λ+ 1

eiαn(t0)eit0 i

∣∣∣∣

−
∫ t1

t0

∣∣∣∣e
iαn(t0)eit0 i

(
Rn(t)−

nλ+3/2

√
2λ+ 1

)∣∣∣∣ dt−
∫ t1

t0

∣∣∣Rn(t)(e
iαn(t)eiti− eiαn(t0)eit0 i)

∣∣∣ dt

≥ (t1 − t0)
nλ+3/2

√
2λ+ 1

− εn(t1 − t0)
nλ+3/2

√
2λ+ 1

− (t1 − t0)(1 + εn)
nλ+3/2

√
2λ+ 1

2 sin

(
1

2
+

t1 − t0
2

)

≥ (t1 − t0)
nλ+3/2

√
2λ+ 1

(
1− εn − 2 sin

(
1

2
+

t1 − t0
2

))

3We can assume that on,2 > 0.
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≥ c(t1 − t0)
nλ+3/2

√
2λ+ 1

≥ c

2ε

nλ+1/2

√
2λ+ 1

for all sufficiently large n, where c > 0 is an absolute constant. Comparing the first and
the last terms in this chain of inequalities, we see that

lim
n→∞

n−(λ+1/2) max
t∈R

|Pn(e
it)| = ∞ .

�

In order to prove Theorem 2.7, we need the following statement that is stated and proved
as Theorem 3.1.27 on page 689 of [MMR].

Lemma 4.5. We have

max
z∈∂D

(
|P ′(z)|+ |P ∗′(z)|

)
= n max

z∈∂D
|P (z)|

for every P ∈ Pn \ Pn−1.

Proof of Theorem 2.7. The theorem follows easily from Theorem 2.6, Lemma 4.5 and

the definition of a {1, (εjn)}-ultraflat sequence of polynomials. Assume that Qjn
def
= P ′

jn

is a {1, (εjn−1)}-ultraflat sequence of polynomials. Here we have that Qjn
def
= P ′

jn
are

asymptotically in Kjn−1, see Remark 2.9). Observe that the assumptions of the theorem
together with Lemma 4.5 imply that

max
z∈∂D

|P ′
jn(z)| ≥

jn
2

max
z∈∂D

|Pjn(z)| ,

which contradicts the extension of Theorem 2.6 according to Remark 2.9. �

Proof of Corollary 2.8. The corollary follows easily from Theorem 2.7 and the definitions.
Note that the assumptions of Theorem 2.7 are satisfied for sequences of conjugate, or plain,
or skew reciprocal polynomials Pjn ∈ K0

jn
. �
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