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1. Introduction

The classical Markov inequality

(1.1) max
a≤x≤b

|p′n(x)| ≤
2n2

b− a
max
a≤x≤b

|pn(x)|

where pn ∈ Πn (=the set of algebraic polynomials of degree at most n), as well as the
Bernstein inequality

(1.2) |p′n(x)| ≤
n

√

(x− a)(b− x)
max
a≤y≤b

|pn(y)| (a < x < b)

play an important role in approximation theory. Various generalizations in several direc-
tions are well-known; for a survey of these results see the recent monograph of P. Borwein
and T. Erdélyi [2]. A number of papers study possible extensions of Markov-type inequal-
ities to compact sets K ⊂ R when the geometry of K is known apriori (Cantor type
sets, finitely many intervals, etc.; cf. W. Pleśniak [7] and the references therein, as well as
Borwein and Erdélyi [1], Totik [9], [10]), and this determines the approach to the above
mentioned inequalities.

In this paper we consider another possible path of generalizations. Instead of the
knowledge of the geometry of the set, we define some density functions of the set in the
neighborhood of a point, and estimate the derivative at this point. With this approach we
will be able to settle the problem for many interesting sets, and when this method breaks
down then we use an interpolation theoretic approach. In both situations, we distinguish
Markov type inequalities (when we use information about the polynomial only on one side
of the point), and Bernstein type inequalities (when information is provided on both sides
of the point). Although our results are formulated for one point, with a proper modification
of the density functions we could establish uniform estimates on the whole set.

1 Research supported, in part, by NSF Grant No. DMS-9623156.
2 Research supported by OTKA No. T017425 and T023441.
3 Research supported by OTKA No. T017425, T022943 and T023441.

1



2. A density function measuring the “longest gaps”

Let K be an arbitrary compact set on the real line, and define the one-sided density
function of K at 0 as

ϕK(t) =
1

t
max{b− a : (a, b) ⊂ [0, t], (a, b)∩K = ∅} (t > 0).

We shall suppose that this continuous function is positive for all t > 0 (otherwise K would
be dense in a right neighborhood of 0 and the problem is trivial). Since in general, it
is difficult to determine the density function exactly, and since it is not necessarily an
increasing function, we shall work with its strictly increasing majorants. Also let

Mn(K) = sup{|p′n(0)| : pn ∈ Πn, sup
x∈K

|pn(x)| ≤ 1}

be the n-th Markov-factor of the set K at 0.
First we present a Markov type inequality.

THEOREM 1. Assume that

(2.1) lim
t→0+

ϕK(t) = 0,

and consider any strictly monotone increasing function fK(t) for t ≥ 0 such that fK(0) = 0
and ϕK(t) ≤ fK(t) (t ≥ 0). Then

(2.2) Mn(K) ≤ 36n2

f−1
K

(

1
5n

) .

PROOF. Let pn ∈ Πn be an arbitrary polynomial such that

(2.3) sup
x∈K

|pn(x)| ≤ 1.

(2.1) implies 0 ∈ K, thus without loss of generality we may assume that pn(0) = 0.
Consider

(2.4) qn(x) = pn(x)

(

1− x

hn

)n

∈ Π2n,

where

(2.5) hn = f−1
K

(

1

5n

)

, i.e. ϕK(t) ≤ fK(t) ≤ 1

5n
if t ≤ hn.
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This is a so-called incomplete polynomial at hn of type 1/2. A fundamental result con-
cerning incomplete polynomials says that

An = max
0≤x≤hn

|qn(x)| = max
0≤x≤3hn/4

|qn(x)|

(cf. M. von Golitschek, G. G. Lorentz and Y. Makovoz [4], Hc. 3, Corollary 1.4). Suppose
An is attained at ξn ∈ (0, 3hn/4]. Then by the definition of the density function there
exists xn ∈ K, 0 ≤ xn < ξn such that 0 < ξn − xn ≤ ξnϕK(ξn). Using the Mean Value
Theorem in the interval [xn, ξn], as well as the Bernstein inequality (1.2) in the interval
[0, hn] we obtain by (2.3)

An − 1 ≤ |qn(ξn)− qn(xn)| = (ξn − xn)|q′n(ηn)| ≤
ξnϕK(ξn)2nAn
√

ηn(hn − ηn)
≤

≤ 2nAnξnϕK(ξn)
√

xnhn/4
(xn < ηn < ξn).

Hence by xn ≥ ξn(1− ϕK(ξn)) and hn ≥ 4ξn/3

An − 1 ≤ 2
√
3nAnϕK(ξn)

√

1− ϕK(ξn)
.

Here by (2.5) and ξn ≤ hn we have ϕK(ξn) ≤ 1
5n ≤ 1/5, whence An − 1 ≤

√
15
5 An,

i.e. An ≤ 9/2. Thus applying the Markov inequality (1.1) for qn(x) in the interval [0, hn]
we get by (2.5)

|p′n(0)| = |q′n(0)| ≤
8n2

hn
An ≤ 36n2

f−1
K

(

1
5n

) .

Now we state a Bernstein type inequality. For this purpose we define a corresponding
two-sided density function of the compact set K at 0 as

ΦK(t) =
1

t
max{b− a : (a, b) ⊂ [−t, t], (a, b)∩K = ∅} (t > 0).

THEOREM 2. Assume that limt→0+ ΦK(t) = 0, and consider any strictly monotone
increasing function FK(t) for t ≥ 0 such that FK(0) = 0 and ΦK(t) ≤ FK(t) (t ≥ 0).
Then⋆

(2.6) Mn(K) = O

(

n

F−1
K

(

1
7n

)

)

.

⋆ Here and in what follows the O always refers to n → ∞. The implied constants are
independent of n but may depend on other parameters.
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The proof is very similar to that of Theorem 1, so we only sketch it. We take a
polynomial pn ∈ Πn such that (2.3) holds, and instead of (2.4) we define

qn(x) = pn(x)

(

1− x2

h2n

)n

∈ Π3n,

where

hn = F−1
K

(

1

7n

)

.

Now this is an incomplete polynomial at ±hn of type 1/3 and therefore

Bn = max
|x|≤hn

|qn(x)| = max
|x|≤7hn/9

|qn(x)|.

Again, we can prove that Bn = O(1), and applying Bernstein’s inequality (1.2) for qn at 0
on the interval [−hn, hn] we get the statement of the theorem.

A natural question is the sharpness of the above estimates. Unfortunately, in this
generality we are unable to answer this question. Nevertheless in the special case when K
is a monotone sequence of points we shall provide some lower bounds showing that (2.2)
and (2.6) are sharp, in general.

THEOREM 3. If K = {xk}∞k=1 ∪ {0} with xk ↓ 0 as k → ∞, then we have

(2.7) Mn(K) ≥ 1

2
max

(

n2

x[n/2]
,
1

xn

)

.

REMARK. This result shows that the Markov factor can be arbitrarily large depending
on the sequence K.

PROOF. Let m = [n/2] + 1 and

pn(x) = Tm(x)

m−2
∏

k=1

(

1− x

xk

)

∈ Πn,

where Tm(x) is the transformed Chebyshev polynomial of degreem on the interval [0, x[n/2]]
normalized so that

Tm(0) = 0 and 0 ≤ Tm(x) ≤ 1 (0 ≤ x ≤ x[n/2]).

Then evidently supx∈K |pn(x)| ≤ 1, and

p′n(0) = T ′
m(0) =

2([n/2] + 1)2

x[n/2]
≥ n2

2x[n/2]
.

This proves the first statement in (2.7). The second statement easily follows by considering

the polynomial pn(x) =
∏n
k=1

(

1− x
xk

)

∈ Πn.
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The analogue of the above result for oscillating sequences is the following:

THEOREM 4. Let K = {−x′k}∞k=1 ∪ {xk}∞k=1 ∪ {0} where x′k, xk ↓ 0 as k → ∞, and set
yn = max{x′n, xn}. Then we have

(2.8) Mn(K) ≥ 1

6
max

(

n

y[n/3]
,

1

y[n/2]

)

.

PROOF. Let

pn(x) = Tm(x)

[n/3]−1
∏

k=1

(

1− x

xk

)(

1 +
x

x′k

)

∈ Πn,

where m = 2[n/6] + 1 is odd, and Tm(x) is the transformed Chebyshev polynomial of
degree m < n/3 on the interval [−y[n/3], y[n/3]] normalized to have uniform norm 1 on this
interval and Tm(0) = 0. This polynomial shows the first inequality in (2.8). The second
can be seen by using the polynomial

pn(x) =
x

y[n/2]

[n/2]−1
∏

k=1

(

1− x

xk

)(

1 +
x

x′k

)

∈ Πn.

Now we state a sharp result as a corollary of the above estimates. In what follows
an ∼ bn means that there exists a constant c > 0 independent of n such that c ≤ an/bn ≤
1/c. Also, for xk ↓ 0 as k → ∞ set ∆xk = xk−1 − xk (k ≥ 2).

COROLLARY 1. If K = {xk}∞k=1 ∪ {0} with xk ↓ 0 as k → ∞ is such that

(2.9) M = sup
k≥2

k∆xk
xk

<∞

holds, then

Mn(K) ∼ n2

xn
.

PROOF. The lower estimate follows from the first part of Theorem 3. To see this we
have to prove that under the condition (2.9), u ∼ v implies xu ∼ xv. Namely if e. g. u > v
then

(2.10) xu ≥ xu−1

1 + M
u

≥ xu−2
(

1 + M
u

)

(

1 + M
u−1

) ≥ . . . ≥ xv
(

1 + M
v

)u−v ≥ e−M( u
v −1)xv.

In order to prove the upper estimate we will apply Theorem 1. For this purpose define
the strictly monotone increasing function fK(t) by
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(2.11) fK(xk) =
M

k
(k = 1, 2, . . .),

and let fK(t) be linear in each interval [xk+1, xk] (k = 1, 2 . . .). Let t > 0 be arbitrary,
t ∈ [xn, xn−1], say. Then by the definition of the density function ϕK there exists a k ≥ n
such that

ϕK(t) ≤ ∆xk
t

≤ ∆xk
xk

.

Hence and by (2.9) and (2.11) we get

ϕK(t) ≤ M

k
≤ M

n
= fK(xn) ≤ fK(t),

since fK is monotone increasing. Using again (2.11)

fK(x5([M ]+1)n) =
M

5([M ] + 1)n
<

1

5n
,

i.e. x5([M ]+1)n < f−1
K

(

1
5n

)

. Thus (2.2) and (2.10) yield

Mn(K) ≤ 36n2

x5([M ]+1)n
≤ cn2

xn
.

Similarly, for oscillating sequences we can prove the following (using Theorems 2 and
4):

COROLLARY 2. If K = {−xk}∞k=1 ∪ {xk}∞k=1 ∪ {0} where xk ↓ 0 as k → ∞ and (2.9)
holds, then

Mn(K) ∼ n

xn
.

We now present some examples.

EXAMPLE 1. We have

Mn(K) ∼ n2 logα n if K = {log−α k}∞k=1 ∪ {0} (α > 0).

Namely, in this case (2.9) holds and Corollary 1 applies. Similarly, Corollary 2 implies

Mn(K) ∼ n logα n if K = {− log−α k}∞k=1 ∪ {log−α k}∞k=1 ∪ {0} (α > 0).

EXAMPLE 2. We have

Mn(K) ∼ n2+α if K = {k−α}∞k=1 ∪ {0} (α > 0).
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Again, this follows from Corollary 1. Similarly, Corollary 2 implies

Mn(K) ∼ n1+α for K = {−k−α}∞k=1 ∪ {kα}∞k=1 ∪ {0} (α > 0).

EXAMPLE 3. For K = {e− logα k}∞k=1 ∪ {0} we have

elog
α n ≤Mn(K) ≤ e(1+o(1)) log

α n (α > 1).

Here the lower estimate is a consequence of the second part of Theorem 3. To see the
upper estimate, we use a Taylor expansion for logα x and ex to obtain

ϕK(t) ≤ ∆xk
xk

= elog
α k−logα(k−1) − 1 = O

(

logα−1 k

k

)

= O

(

(

log
1

t

)1−1/α

e− log1/α(1/t)

)

for some k with e− logα k ≤ t. Thus we can choose f−1
K (t) ∼ e−(1+o(1)) logα(1/t), and Theorem

1 yields the desired result.

Now we consider a case when K is a monotone sequence of intervals.

EXAMPLE 4. If

(2.12) Kα,β =
∞
⋃

k=1

[

1

(k + 1)α
+

α

4(k + 1)β
,
1

kα

]

⋃

{0} (1 < α + 1 < β),

then

Mn(Kα,β) = O
(

n2+ α
β−α

)

.

Namely, we obtain for k−α ≤ t < (k − 1)−α that

ϕK(t) =
α

4(k + 1)βt
≤ α

4
tβ/α−1,

and thus Theorem 1 with f−1
K (t) ∼ t

α
β−α yields the result. Later we will see that this

estimate can be improved for some α, β.

3. An interpolatory method

When condition (2.1) is not satisfied then we cannot apply Theorem 1. We now
present a result applicable for a wider family of sets.

THEOREM 5. Assume that K ⊃ {xk}∞k=1 with xk ↓ 0 as k → ∞, and let
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(3.1) dn = max
2≤k≤n

xk
∆xk

(n = 2, 3, . . .).

Then

Mn(K) ≤ (cdn)
dn

xn

with an absolute constant c > 0.

Combining this with (2.7) yields the next

COROLLARY 3. If K = {xk}∞k=1 ∪ {0} with xk ↓ 0 as k → ∞ and supk≥2
xk

∆xk
< ∞,

then

Mn(K) ∼ 1

xn
.

PROOF OF THEOREM 5. Again, let pn ∈ Πn be an arbitrary polynomial such that (2.3)
holds. Evidently, we may assume that pn(0) = 0. Then using Lagrange interpolation on
the nodes 0, x1, . . . , xn we obtain

(3.2) pn(x) = x
n
∑

j=1

pn(xj)

xj

n
∏

k=1
k 6=j

x− xk
xj − xk

,

whence

(3.3) |p′n(0)| =

∣

∣

∣

∣

∣

∣

∣

n
∑

j=1

pn(xj)

xj

n
∏

k=1
k 6=j

xk
xj − xk

∣

∣

∣

∣

∣

∣

∣

≤
n
∑

j=1

1

xj

n
∏

k=1
k 6=j

xk
|xj − xk|

≤ 1

xn

n
∑

j=1

n
∏

k=1
k 6=j

xk
|xj − xk|

.

Using the definition (3.1) of dn we get

xj
xk

=

j
∏

s=k+1

(

xs−1

xs

)−1

=

j
∏

s=k+1

(

1 +
∆xs
xs

)−1

≤
(

1 +
1

dn

)k−j
(k < j),

which coupled with the inequalities

(1 + a)l ≥ 1 + la+
l(l − 1)

2
a2 (a > 0, l ≥ 1integer) and 1 + u < eu,

yields
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∏

k<j

xk
xk − xj

=
∏

k<j

1

1− xj

xk

≤
∏

k<j

1

1−
(

1 + 1
dn

)k−j =
∏

k<j

(

1 + 1
dn

)j−k

(

1 + 1
dn

)j−k
− 1

<

<
∏

k<j

1 + j−k
dn

+ (j−k)(j−k−1)
2d2n

j−k
dn

+ (j−k)(j−k−1)
2d2n

=
∏

k<j



1 +
dn

(j − k)
(

1 + j−k−1
2dn

)



 ≤

≤ e
dn
∑

k<j

1

(j−k)(1+ j−k−1
2dn

) .

Here, in case j ≤ [dn] + 2,

∑

k<j

1

(j − k)
(

1 + j−k−1
2dn

) ≤
j−1
∑

k=1

1

j − k
< log j ≤ log(dn + 2),

while in case j ≥ [dn] + 3,

∑

k<j

1

(j − k)
(

1 + j−k−1
2dn

) ≤ 2dn

j−[dn]−2
∑

k=1

1

(j − k − 1)2
+

j−1
∑

k=j−[dn]−1

1

j − k
≤

≤ 2dn
[dn] + 1

+ log([dn] + 1) ≤ 2 + log(dn + 1).

Thus

∏

k<j

xk
xk − xj

≤ e2dn+dn log(dn+2).

Similarly, for k > j

xj
xk

=
k
∏

s=j+1

xs−1

xs
=

k
∏

s=j+1

(

1 +
∆xs
xs

)

≥
(

1 +
1

dn

)k−j
≥ 1 +

k − j

dn
,

and hence

∏

k>j

xk
xj − xk

=
∏

k>j

1
xj

xk
− 1

≤ dn−jn

∏

k>j

1

k − j
=

dn−jn

(n− j)!
.

Substituting these estimates into (3.3) we get

|p′n(0)| ≤
e2dn+dn log(dn+2)

xn

n
∑

j=1

dn−jn

(n− j)!
<
e3dn+dn log(dn+2)

xn
.
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THEOREM 6. If K ⊃ ({−xk}∞k=1 ∪ {xk}∞k=1) with xk ↓ 0 as k → ∞, then

Mn(K) ≤ (cd[n/2])
d[n/2]

x[n/2]

with an absolute constant c > 0.

For the proof one has to interpolate pn ∈ Π2n at the nodes 0,±x1, . . . ,±xn.
EXAMPLE 5. For K = {e−kα}∞k=1 ∪ {0} we have

en
α ≤Mn(K) ≤











ecn
α

1−α
if 0 < α ≤ 3−

√
5

2 ,

ncn
1−α

en
α

if 3−
√
5

2
< α < 1,

cen
α

if α ≥ 1,

where c > 0 depends only on α. Here the lower estimate follows from the second inequality
in Theorem 3. The first upper estimate follows from Theorem 1, since by (2.11) we have

ϕK(t) = O(kα−1) for some k with e−k
α ≤ t, i.e. we can choose fK(t) = c log1−1/α 1

t
with

a suitable constant c > 0. The second and third upper estimates follow from Theorem 5,
since by (3.1)

dn ∼
{

n1−α if 0 < α < 1,
1 if α ≥ 1.

Note that in case α ≥ 1 the lower and upper estimates are of the same magnitude.

4. Another density function

While the previous results settle the problem fairly well when K is “thin”, for denser
sets (like an infinite sequence of intervals) they are less satisfactory. In particular, it
should be noted that applying Theorems 1 or 2 we can never achieve the bounds Mn(K) =
O(n2) and Mn(K) = O(n), respectively. Therefore we define another right handed density
function which will yield better estimates for some sets. Let

ψK(t) = sup
h≤t

m([0, h] \K)

h
(t > 0),

where m is the Lebesgue measure. Again we assume that this is a positive function
for t > 0. In connection with the density function defined in Section 2 we note that
ϕK(t) = O(ψK(t)).

We will make use of the following theorem of Remez (cf. e.g. [4], Theorem 7.1 and
inequality (7.6) in Ch. 2): if I is an interval and H ⊂ I, m(H) ≤ 1

2m(I) is a measurable
set then

max
x∈I

|p(x)| ≤ eλn
√
m(H)/m(I) max

x∈I\H
|p(x)| (p ∈ Πn),
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where λ > 0 is an absolute constant. This λ will appear in the formulation of the next
theorem.

THEOREM 7. If K is such that

lim
t→0+

ψK(t) = 0,

then

(4.1) Mn(K) = O(n2)

(

∫ 1

ψ−1
K ( 1

λ2n2 )

√

ψK(t)

t3/2
dt

)2

.

PROOF. Let the polynomial pn ∈ Πn satisfy (2.3). Without loss of generality we may
assume that pn(0) = 0. By the definition of the density function and the above mentioned
theorem of Remez applied to I = [0, x] and H = I \K we get

(4.2) |pn(x)| ≤ eλn
√
ψK(x) max

y∈K∩I
|pn(y)| ≤ eλn

√
ψK(x) (0 < x ≤ ψ−1

K (1/2)).

Now we apply a fundamental result concerning fast decreasing polynomials (see e.g. Totik
[11], p. 79): If Ω(x) is an even, right continuous and increasing function on [0,1] such that
Ω(0) ≤ 0, then there exist polynomials qm ∈ Πm such that

(4.3) qm(0) = 1, |qm(x)| ≤ e−Ω(
√
x) (0 ≤ x ≤ 1),

and

(4.4) m ≤ 12 sup
Ω−1(0)≤y<min(Ω−1(1),1/2)

√

Ω(y)

y2

+6

∫ 1/2

min(Ω−1(1),1/2)

Ω(y)

y2
dy + 6 sup

1/2≤y<1

Ω(y)

− log(1− y)
+ 6.

(This is a slightly transformed form of the original statement which gives bounds for
the polynomial on [−1, 1]. Using symmetry and substituting x for x2 yields the above
formulation.)

We use this result with

Ω(x) = λn
√

ψK(x2)− 1.

In this setting min(Ω−1(1), 1/2) =
√

ψ−1
K

(

4
λ2n2

)

for sufficiently large n’s, and (4.2)-

(4.4) yield for the polynomial r(x) = pn(x)qm(x) ∈ Πn+m that |r(x)| ≤ e for all x ∈
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[0, ψ−1
K (1/2)], and using Ω−1(0) =

√

ψ−1
K

(

1
λ2n2

)

, as well as a substitution t = x2 in the

integral we get

m ≤ 12
√

ψ−1
K

(

1
λ2n2

)

+ 3λn

∫ 1/4

ψ−1
K ( 4

λ2n2 )

√

ψK(t)

t3/2
dt+

6λn

log 2
ψK(1) + 6 =

= O(n)

∫ 1

ψ−1
K ( 1

λ2n2 )

√

ψK(t)

t3/2
dt

for sufficiently large n’s. Finally, applying Markov’s inequality (1.1) to r(x) at 0 on the
interval [0, ψ−1

K (1/2)] we get |p′n(0)| = |r′(0)| = O(m2), which is equivalent to the statement
of the theorem.

Similarly, introducing a corresponding symmetric density function

ΨK(t) = sup
0<h≤t

m([−h, h] \K)

h
(t > 0)

and applying a stronger version of Remez’s inequality (which holds for inner subsets) yields
the next

THEOREM 8. If K is such that limt→0+ ΨK(t) = 0, then

Mn(K) = O(n)

∫ 1

1
2Ψ

−1
K ( 1

cn )

ΨK(t)

t2
dt

with some absolute constant c > 0.

COROLLARY 4. If K is such that

∫ 1

0

√

ψK(t)

t3/2
dt <∞ or

∫ 1

0

ΨK(t)

t2
dt <∞,

then

Mn(K) = O(n2) or Mn(K) = O(n),

respectively.

PROOF OF THEOREM 8. It is known (cf. Erdélyi [3]) that if

m(x ∈ [−1, 1] : |pn(x)| > 1) ≤ ε (0 < ε ≤ 1),

then

max
|x|≤1/2

|pn(x)| ≤ ec1nε

with some absolute constant c1 > 0. Hence similarly to (4.2) we have
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|pn(x)| ≤ ec2nΨK(2x) (|x| ≤ 1/2).

Now the proof can be completed by using the fast decreasing polynomials (4.3)-(4.4) and
Bernstein’s inequality on [−1, 1].

EXAMPLE 6. For the set Kα,β defined in (2.12) of Example 4, Theorem 7 yields

(4.5) Mn(Kα,β) =











O
(

n
2α

β−α−1

)

if 1 < α+ 1 < β < 2α+ 1,

O(n2 log2 n) if 1 < 2α+ 1 = β,
O(n2) if 1 < 2α+ 1 < β.

Namely, in this case ψKα,β
(t) = O

(

t
β−α−1

α

)

, and evaluating the integral in (4.1) we

obtain the statement.
The estimate (4.5) is weaker than (2.10) if β is close to α+1. However, for some values

of α, β (4.5) is better (we omit the exact calculations here). In fact, Mn(Kα,β) = O(n2) is
the optimal value (i.e. in this case Mn(Kα,β) ∼ n2).

Next we show that, under additional restriction on α, β, this optimal estimate of the
Markov factor holds not only for the point 0 but for the whole set Kα,β:

PROPOSITION 1. If β ≥ 5(α+ 1) then

sup
x∈Kα,β

|p′(x)| ≤ c1n
2 sup
x∈Kα,β

|p(x)|

for every p ∈ Πn (c1 = c1(α, β)).

PROOF. We need the following inequality proved in [1]:

LEMMA. Let 0 < a ≤ 1, and let A be a closed subset of [0, 1] with Lebesgue measure
m(A) ≥ 1− a. Then there is an absolute constant c2 > 0 such that

max
x∈I

|p′(x)| ≤ c2n
2 max
x∈A

|p(x)|

for every p ∈ Πn and for every subinterval I of A with length at least a.
Let

Ik =

[

1

(k + 1)α
+

α

4(k + 1)β
,
1

kα

]

and Jk =

[

1

(k + 1)α
,

1

(k + 1)α
+

α

4(k + 1)β

]

(k = 1, 2, . . .).

Let p ∈ Πn satisfy

(4.6) sup
x∈Kα,β

|p(x)| ≤ 1.

13



Let y ∈ Kα,β, that is y ∈ Ik for some k = 1, 2, . . .. By Chebyshev’s Inequality (see e.g. [1],
p. 235) and m(Jj) =

α
4
(j + 1)−β we obtain for j = 1, 2, . . .

(4.7) max
x∈Jj

|p(x)| ≤ e
3n

√

2m(Jj)

m(Ij )
max
x∈Ij

|p(x)| ≤ ec4nj
−

β−α−1
2 .

Now let

g(x) = (1− (x− y)2)cnp(x) ∈ Π(1+2c)n

where the positive integer c will be chosen later. Let

(4.8) Bk =

[

0,
1

(k + 2)α

]

∪
[

1

(k − 1)α
, 1

]

∪ Ik−1 ∪ Ik ∪ Ik+1 (k = 1, 2, . . .)

where I0 = ∅. We show that with a large enough c we have

(4.9) |g(x)| ≤ 1 (x ∈ Bk).

Since [0, 1] \Bk = Jk+1 ∪ Jk ∪ Jk−1, it suffices to consider the following three cases.
Case 1: x ∈ Kα,β. Then (4.9) follows from (4.6) and the trivial inequality

0 < (1− (x− y)2)cn ≤ 1 (x ∈ Bk ⊂ [0, 1]).

Case 2: x ∈ Jj for some j = k + 2, k + 3, . . . . Then

|x− y| > m(Ik+1) ≥ c3k
−α−1.

Combining this with (4.7), with c large enough we obtain by β ≥ 5(α+ 1) that

|g(x)| ≤ e−cn(x−y)
2

ec4nj
−

β−α−1
2 ≤ e−cc3nk

−2α−2+c4nj
−2α−2 ≤ e(c4−cc3)k

−2α−2 ≤ 1.

Case 3: x ∈ Jj for some j = 1, 2, . . . , k − 2. Then

|x− y| > m(Ij+1) ≥ c3j
−α−1.

Combining this with (4.7), for a large enough c we obtain by β ≥ 5(α+ 1) again that

|g(x)| ≤ e−cn(x−y)
2

ec4nj
−

β−α−1
2 ≤ e(c4−cc3)j

−2α−2n ≤ 1.

Now we can apply the Lemma with

A = Bk, and a = m(Ik) ≥
c3
kα+1

,
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and conclude by (4.9) that

|p′(y)| = |g′(y)| ≤ max
x∈Ik

|g′(x)| ≤ c2((1 + 2c)n)2 max
x∈Bk

|g(x)| ≤ c1n
2,

and the proposition is proved.
Except when Mn(K) ∼ n2, (4.5) is only an upper estimate; we do not know about

the sharpness of this result. In general, we can ask: if K is a sequence of intervals on one
side of 0, what is the range of increase of Mn(K)? Obviously in this case always

lim inf
n→∞

Mn(K)

n2
> 0,

and we just have seen that this lower bound indeed can be attained. (In contrast to the
case when K is a sequence of points, where the above liminf is always infinity; cf. Theorem
3.) On the other hand, if again K is a sequence of intervals, then evidently

lim sup
n→∞

Mn(K)1/n <∞.

We now show that this upper bound is also sharp, in general. This will be seen by
constructing a sequence of nonempty intervals with exponentially growing Markov factors.
Note that when the underlying set is of measure 0, examples of this nature were known
before (see, e.g. Privalov [8], Theorem 2.3). But our objective is to construct a “fat”
set K (i.e. the closure of its interior coincides with K). Such fat sets can be applied
for constructing counter-examples in the study of multivariate Markov factors (see Kroó–
Szabados [6]).

PROPOSITION 2. For any d > 1 there exists a sequence of intervals K ⊂ [0, 1] such
that 0 is in the closure of K and lim infn→∞Mn(K)1/n ≥ d.

PROOF. Let d > 1 be arbitrary, and

K =
∞
⋃

k=1

[d−2k − d−14k

, d−2k

],

and

pn(x) =
s
∏

j=1

(1− d2
j

x)mjn ∈ Πn,

where

(4.10) mjn =

[

2n

4j

]

+ 1 (j = 1, . . . , s),

with s = [logn/ log 2] + 1. First we show that this polynomial is bounded in the intervals

Xk = [d−2k − d−14k

, d−2k

] (k = 1, 2, . . .). Evidently, it is sufficient to show this for 1 ≤ k ≤
s− 1, since in [0, d−2s

) the polynomial is positive, monotone increasing and pn(0) = 1.
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So let x ∈ Xk, 1 ≤ k ≤ s − 1. Then for 1 ≤ j < k, 0 < 1− d2
j

x < 1, and for j = k,

0 ≤ 1− d2
k

x ≤ d2
k−14k ≤ d−12k

. Thus by (4.10)

|pn(x)| ≤ d−12kmkn

s
∏

j=k+1

d2
jmjn ≤ d−12k 2n

4k

s
∏

j=k+1

d
n

2j−1 +2j

≤

≤ d−2·3kn+ n

2k−1 +2s+1

< d−6n+n+4n = d−n < 1.

Thus pn is indeed bounded on K. On the other hand,

|p′n(0)| =
s
∑

j=1

mjnd
2j

> d2
s

> dn.

Similarly, the polynomial

pn(x) = xd2
s

s
∏

j=1

(1− d2
j+1

x2)mjn ∈ Π2n+1

is bounded on K = ∪∞
k=1(Xk ∪ −Xk), and the same relation for Mn(K) holds.

Finally, we consider a completely different type of application of our results: a Cantor
type set.

EXAMPLE 7. Set K0 = [0, 1], and let Kj (j ≥ 1) consist of 2j isometric intervals
obtained by deleting from each interval inKj−1 an open interval of length 3−(α+1)j (α > 0).
Let K = ∩∞

j=1Kj . It is shown in A. Jonsson [5] that for any connected subinterval Ij of
Kj

m(Ij) ≥ c12
−j and m(Ij \K) = c23

−(α+1)j .

Now let h > 0 and choose s so that Is+1 ⊂ [0, h] ⊂ Is. Then by the above estimates

m([0, h] \K)

h
≤ m(Is \K)

m(Is+1)
≤ c3

(

2

3α+1

)s

,

where clearly h ≥ c12
−s−1, i.e. s ≥ 1

log 2
log c2

h
. This easily implies that ψK(t) = O(tγ)

with γ = (α+ 1) log 3
log 2

− 1. Thus we obtain by (4.1) that

Mn(K) =







O(n2), if γ < 1,
O(n2 log2 n), if γ = 1,
O(n2/γ), if γ > 1.

Thus, even for Cantor type sets the Markov factors can be of order O(n2). Moreover, using
Theorem 8 and properly modifying K we can achieve the magnitude O(n).

Finally, we mention that V. Totik constructed a set of measure 0 such that the Markov
factor of the whole set is O(n2) (private communication).
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[7] W. Pleśniak, Recent progress in multivariate Markov inequality, in Approximation
Theory, In Memory of A. K. Varma, Marcel Dekker (New York, 1998), pp. 449-464.

[8] A. A. Privalov, Analogues of A. A. Markov’s inequality. Application to interpolation
and Fourier series, Trudi Math. Inst. Steklova, 164 (1983), 142-155 (in Russian).

[9] V. Totik, Markov constants for Cantor sets, Acta Sci. Math. (Szeged), 60 (1995), 715-
734.

[10] V. Totik, The Bernstein and Markoff inequalities on several intervals, manuscript.
[11] V. Totik,Weighted Approximation with Varying Weight, Lecture Notes in Mathematics

No. 1569, Springer-Verlag (Berlin, 1994).

DEPARTMENT OF MATHEMATICS
TEXAS A&M UNIVERSITY
COLLEGE STATION, TX 77843
U. S. A.
E-MAIL: TAMAS.ERDELYI@MATH.TAMU.EDU

MATHEMATICAL INSTITUTE
OF THE HUNGARIAN ACADEMY OF SCIENCES
H-1364 BUDAPEST, P. O. B. 127
E-MAIL: KROO@MATH-INST.HU
E-MAIL: SZABADOS@MATH-INST.HU

17


