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Abstract. Let

Kn :=

{

Qn : Qn(z) =

n
∑

k=0

akz
k, ak ∈ C , |ak| = 1

}

.

A sequence (Pn) of polynomials Pn ∈ Kn is called ultraflat if (n+ 1)−1/2|Pn(eit)| converge
to 1 uniformly in t ∈ R. In this paper we prove that

1

2π

∫ 2π

0

∣

∣(Pn − P ∗

n)(e
it)

∣

∣

q
dt ∼

2qΓ
(

q+1

2

)

Γ
( q
2
+ 1

)√
π

nq/2

for every ultraflat sequence (Pn) of polynomials Pn ∈ Kn and for every q ∈ (0,∞), where P ∗

n

is the conjugate reciprocal polynomial associated with Pn, Γ is the usual gamma function,

and the ∼ symbol means that the ratio of the left and right hand sides converges to 1 as
n → ∞. Another highlight of the paper states that

1

2π

∫

2π

0

∣

∣(P ′

n − P ∗′

n )(eit)
∣

∣

2
dt ∼ 2n3

3

for every ultraflat sequence (Pn) of polynomials Pn ∈ Kn. We prove a few other new results
and reprove some interesting old results as well.

1. Introduction

Let

Kn :=

{
Qn : Qn(z) =

n∑

k=0

akz
k, ak ∈ C , |ak| = 1

}
.
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The class Kn is often called the collection of all (complex) unimodular polynomials of
degree n. Let

Ln :=

{
Qn : Qn(z) =

n∑

k=0

akz
k, ak ∈ {−1, 1}

}
.

The class Ln is often called the collection of all (real) unimodular polynomials of degree
n. By Parseval’s formula,

∫ 2π

0

∣∣Pn(e
it)
∣∣2 dt = 2π(n+ 1)

for all Pn ∈ Kn. Therefore

min
t∈R

|Pn(e
it)| ≤

√
n+ 1 ≤ max

t∈R

|Pn(e
it)| .

An old problem (or rather an old theme) is the following.

Problem 1.1 (Littlewood’s Flatness Problem). How close can a polynomial Pn ∈ Kn

or Pn ∈ Ln come to satisfying

(1.1) |Pn(e
it)| =

√
n+ 1 , t ∈ R?

Obviously (1.1) is impossible if n ≥ 1. So one must look for less than (1.1), but then there
are various ways of seeking such an “approximate situation”. One way is the following. In
his paper [Li1] Littlewood had suggested that, conceivably, there might exist a sequence
(Pn) of polynomials Pn ∈ Kn (possibly even Pn ∈ Ln) such that (n + 1)−1/2|Pn(e

it)|
converge to 1 uniformly in t ∈ R. We shall call such sequences of unimodular polynomials
“ultraflat”. More precisely, we give the following definition.

Definition 1.2. Given a positive number ε, we say that a polynomial Pn ∈ Kn is ε-flat if

(1− ε)
√
n+ 1 ≤ |Pn(e

it)| ≤ (1 + ε)
√
n+ 1 , t ∈ R .

Definition 1.3. Let (nk) be an increasing sequence of positive integers. Given a sequence
(εnk

) of positive numbers tending to 0, we say that a sequence (Pnk
) of polynomials Pnk

∈
Knk

is (εnk
)-ultraflat if each Pnk

is εnk
-flat. We simply say that a sequence (Pnk

) of
polynomials Pnk

∈ Knk
is ultraflat if it is (εnk

)-ultraflat with a suitable sequence (εnk
) of

positive numbers tending to 0.

The existence of an ultraflat sequence of unimodular polynomials seemed very unlikely,
in view of a 1957 conjecture of P. Erdős (Problem 22 in [Er]) asserting that, for all Pn ∈ Kn

with n ≥ 1,

(1.2) max
t∈R

|Pn(e
it)| ≥ (1 + ε)

√
n+ 1 ,
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where ε > 0 is an absolute constant (independent of n). Yet, refining a method of Körner
[Kö], Kahane [Ka] proved that there exists a sequence (Pn) with Pn ∈ Kn which is (εn)-
ultraflat, where εn = O

(
n−1/17

√
logn

)
. (Kahane’s paper contained though a slight error

which was corrected in [QS2].) Thus the Erdős conjecture (1.2) was disproved for the
classes Kn. For the more restricted class Ln the analogous Erdős conjecture is unsettled
to this date. It is a common belief that the analogous Erdős conjecture for Ln is true, and
consequently there is no ultraflat sequence of polynomials Pn ∈ Ln. An interesting result
related to Kahane’s breakthrough is given in [Be]. For an account of some of the work
done till the mid 1960’s, see Littlewood’s book [Li2] and [QS2]. Littlewood polynomials
with small L4 norm have also been intensively studied, see [BM], [BC1], [BC2],[BC3], and
[JKSch], for example.

If Qn is a polynomial of degree n of the form

Qn(z) =

n∑

k=0

akz
k , ak ∈ C ,

then its conjugate polynomial is defined by

Q∗
n(z) := znQn(1/z) :=

n∑

k=0

an−kz
k ,

where Qn denotes the polynomial whose coefficients are the complex conjugates of the
corresponding coefficients of the polynomial Q.

Let (εn) be a sequence of positive numbers tending to 0. Let the sequence (Pn) of
polynomials Pn ∈ Kn be (εn)-ultraflat. We write

(1.3) Pn(e
it) = Rn(t)e

iαn(t) , Rn(t) = |Pn(e
it)| , t ∈ R .

It is simple to show that αn can be chosen to be in C∞(R). This is going to be our
understanding throughout the paper. It is easy to find a formula for αn(t) in terms of Pn.
We have

(1.4) α′
n(t) = Re

(
eitP ′

n(e
it)

Pn(eit)

)
,

see formulas (7.1) and (7.2) on p. 564 and (8.2) on p. 565 in [Sa1]. The angular function
α∗
n and modulus function R∗

n = Rn associated with the polynomial P ∗
n are defined by

P ∗
n(e

it) = R∗
n(t)e

iα∗

n
(t) , R∗

n(t) = |P ∗
n(e

it)| .

Similarly to αn, the angular function α∗
n can also be chosen to be in C∞(R) on R. By

applying formula (1.4) to P ∗
n , it is easy to see that

(1.5) α′
n(t) + α∗

n
′(t) = n , t ∈ R .
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The structure of ultraflat sequences of unimodular polynomials is studied in [Er1], [Er2],
[Er3], [Er4], and [Er5], where several conjectures of Saffari are proved. In [Er6], based on
the results in [Er1], we proved yet another conjecture of Queffelec and Saffari, see (1.30) in
[QS2]. Namely we proved asymptotic formulas for the Lq norms of the real part and the
derivative of the real part of ultraflat unimodular polynomials on the unit circle. A recent
paper of Bombieri and Bourgain [BB] is devoted to the construction of ultraflat sequences
of unimodular polynomials. In particular, they obtained a much improved estimate for the
error term. A major part of their paper deals also with the long-standing problem of the
effective construction of ultraflat sequences of unimodular polynomials.

For λ ≥ 0, let

Kλ
n :=

{
Pn : Pn(z) =

n∑

k=0

akk
λzk, ak ∈ C , |ak| = 1

}
.

Ultraflat sequences (Pn) of polynomials Pn ∈ Kλ
n are defined and studied thoroughly in

[EN] where various extensions of Saffari’s conjectures have been proved.
In [Er2] we examined how far an ultraflat unimodular polynomial is from being conjugate

reciprocal, and we proved the following three theorems.

Theorem 1.4. Let (Pn) be an ultraflat sequence of polynomials Pn ∈ Kn. We have

1

2π

∫ 2π

0

(
|P ′

n(e
it)| − |P ∗′

n (eit)|
)2

dt =

(
1

3
+ γn

)
n3 ,

where (γn) is a sequence of real numbers converging to 0.

Theorem 1.5. Let (Pn) be an ultraflat sequence of polynomials Pn ∈ Kn. If the coeffi-
cients of Pn are denoted by ak,n, that is,

Pn(z) =
n∑

k=0

ak,nz
k , k = 0, 1, . . . , n, n = 1, 2, . . . ,

then
n∑

k=0

k2 |ak,n − an−k,n|2 =
1

2π

∫ 2π

0

∣∣(P ′
n − P ∗′

n )(eit)
∣∣2 dt ≥

(
1

3
+ hn

)
n3 ,

where (hn) is a sequence of real numbers converging to 0.

Theorem 1.6. Let (Pn) be an ultraflat sequence of polynomials Pn ∈ Kn. Using the
notation of Theorem 1.5 we have

n∑

k=0

|ak,n − an−k,n|2 =
1

2π

∫ 2π

0

∣∣(Pn − P ∗
n)(e

it)
∣∣2 dt ≥

(
1

3
+ hn

)
n ,

where (hn) is the same sequence of real numbers converging to 0 as in Theorem 1.5.

There are quite a few recent publications on or related to ultraflat sequences of unimod-
ular polynomials. Some of them (not mentioned before) are are [Bo], [Sa2], [QS1], [Od],
and [Mo].
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2. Results

Theorems 2.1–2.4 and 2.6 are new, Theorems 2.5 and 2.7 recapture old results.
In our results below Γ denotes the usual gamma function, and the ∼ symbol means that

the ratio of the left and right hand sides converges to 1 as n → ∞.

Theorem 2.1. If (Pn) is an ultraflat sequence of polynomials Pn ∈ Kn and q ∈ (0,∞),
then

1

2π

∫ 2π

0

∣∣(Pn − P ∗
n)(e

it)
∣∣q dt ∼ 2qΓ

(
q+1
2

)

Γ
(
q
2 + 1

)√
π

nq/2 .

Our next theorem is a special case (q = 2) of Theorem 2.1. Compare it with Theorem
1.6.

Theorem 2.2. Let (Pn) be an ultraflat sequence of polynomials Pn ∈ Kn. If the coeffi-
cients of Pn are denoted by ak,n, that is,

Pn(z) =

n∑

k=0

ak,nz
k , k = 0, 1, . . . , n, n = 1, 2, . . . ,

then
n∑

k=0

|ak,n − an−k,n|2 =
1

2π

∫ 2π

0

∣∣(Pn − P ∗
n)(e

it)
∣∣2 dt ∼ 2n .

Our next theorem should be compared with Theorem 1.5.

Theorem 2.3. Let (Pn) be an ultraflat sequence of polynomials Pn ∈ Kn. Using the
notation in Theorem 2.2 we have

n∑

k=0

k2 |ak,n − an−k,n|2 =
1

2π

∫ 2π

0

∣∣(P ′
n − P ∗′

n )(eit)
∣∣2 dt ∼ 2n3

3
.

We also prove the following result.

Theorem 2.4. If (Pn) is an ultraflat sequence of polynomials Pn ∈ Kn and q ∈ (0,∞),
then

1

2π

∫ 2π

0

∣∣∣∣
d

dt
|(Pn − P ∗

n)(e
it)|
∣∣∣∣
q

dt ∼ Γ
(
q+1
2

)

(q + 1)Γ
(
q
2 + 1

)√
π

n3q/2 .

As a Corollary of Theorem 2.2 we can recapture Saffari’s “near orthogonality conjecture”
raised in [Sa] and proved first in [Er4].

Theorem 2.5. Let (Pn) be an ultraflat sequence of polynomials Pn ∈ Kn. Using the
notation in Theorem 2.2 we have

n∑

k=0

ak,nan−k,n = o(n) .

As a Corollary of Theorem 2.3 we can easily prove a new “near orthogonality” formula.
5



Theorem 2.6. Let (Pn) be an ultraflat sequence of polynomials Pn ∈ Kn. Using the
notation in Theorem 2.2 we have

n∑

k=0

k2ak,nan−k,n = o(n3) .

Finally we recapture the asymptotic formulas for the real part and the derivative of the
real part of ultraflat unimodular polynomials proved in [Er6] first.

Theorem 2.7. If (Pn) is an ultraflat sequence of unimodular polynomials Pn ∈ Kn, and
q ∈ (0,∞), then for fn(t) := Re(Pn(e

it)) we have

1

2π

∫ 2π

0

|fn(t)|q dt ∼ Γ
(
q+1
2

)

Γ
(
q
2 + 1

)√
π

nq/2

and
1

2π

∫ 2π

0

|f ′
n(t)|

q
dt ∼ Γ

(
q+1
2

)

(q + 1)Γ
(
q
2 + 1

)√
π

n3q/2 .

We remark that trivial modifications of the proof of Theorem 2.1–2.7 yield that the
statement of the above theorem remains true if the ultraflat sequence (Pn) of polynomials
Pn ∈ Kn is replaced by an ultraflat sequence (Pnk

) of polynomials Pnk
∈ Knk

, where (nk)
is an increasing sequence of positive integers.

3. Lemmas

To prove Theorems 2.1 and 2.2 we need a few lemmas. The first two are from [Er1].

Lemma 3.1 (Uniform Distribution Theorem for the Angular Speed). Suppose
(Pn) is an ultraflat sequence of polynomials Pn ∈ Kn. Then, with the notation (1.3), in
the interval [0, 2π], the distribution of the normalized angular speed α′

n(t)/n converges to
the uniform distribution as n → ∞. More precisely, we have

meas({t ∈ [0, 2π] : 0 ≤ α′
n(t) ≤ nx}) = 2πx+ γn(x)

for every x ∈ [0, 1], where lim
n→∞

max
x∈[0,1]

|γn(x)| = 0.

Our next lemma is a simple observation of Saffari [Sa1], which follows from (1.4), Bern-
stein’s inequality, and the ultraflatness property given by Definition 1.3.

Lemma 3.2. Suppose (Pn) is an ultraflat sequence of polynomials Pn ∈ Kn. Then, with
the notation (1.3), we have

(3.1) onn ≤ α′
n(t) ≤ n− onn , t ∈ R ,

with real numbers on converging to 0.
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Lemma 3.3 (Negligibility Theorem for Higher Derivatives). Suppose (Pn) is an
ultraflat sequence of polynomials Pn ∈ Kn. Then, with the notation (1.3), for every integer
r ≥ 2, we have

max
0≤t≤2π

|α(r)
n (t)| ≤ γn,rn

r

with real numbers γn,r > 0 converging to 0 for every fixed r = 2, 3, . . . .

Our next lemma is a special case of Lemma 4.2 from [Er1].

Lemma 3.4. Suppose (Pn) is an ultraflat sequence of polynomials Pn ∈ Kn. Using nota-
tion (1.3), we have

max
0≤t≤2π

|R′
n(t)| = ϕnn

3/2 , n = 1, 2, . . . ,

with real numbers ϕn converging to 0.

The next lemma follows simply from the ultraflatness property given by Definition 1.3.

Lemma 3.5. Let q ∈ (0,∞). Using the notation (1.3) and

βn(t) :=
1

2
(αn(t)− α∗

n(t)) = αn(t)−
nt

2
− t0

we have

1

2π

∫ 2π

0

∣∣(Pn − P ∗
n)(e

it)
∣∣q dt =

∫ 2π

0

∣∣∣n1/2(1 + δn(t))2 sin(βn(t))
∣∣∣
q

dt

with real numbers δn(t) converging to 0 uniformly on [0, 2π].

Lemma 3.5*. Let (Pn) be an ultraflat sequence of unimodular polynomials Pn ∈ Kn,
q ∈ (0,∞), and fn(t) := Re(Pn(e

it)). Using the notation (1.3) we have

1

2π

∫ 2π

0

|fn(t)|q dt =

∫ 2π

0

∣∣∣n1/2(1 + δn(t)) cos(αn(t))
∣∣∣
q

dt

with real numbers δn(t) converging to 0 uniformly on [0, 2π].

The next lemma follows simply from the ultraflatness property given by Definition 1.3
and Lemma 3.4.

Lemma 3.6. Let q ∈ (0,∞). Using the notation (1.3) and

βn(t) :=
1

2
(αn(t)− α∗

n(t)) = αn(t)−
nt

2
− t0

we have
1

2π

∫ 2π

0

∣∣∣∣
d

dt
|(Pn − P ∗

n)(e
it)|
∣∣∣∣
q

dt

=

∫ 2π

0

∣∣∣n1/2(1 + δn(t))2 cos(βn(t))β
′
n(t) + ηn(t)n

3/2
∣∣∣
q

dt

with real numbers δn(t) and ηn(t) converging to 0 uniformly on [0, 2π].
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Lemma 3.6*. Let (Pn) be an ultraflat sequence of unimodular polynomials Pn ∈ Kn,
q ∈ (0,∞), and fn(t) := Re(Pn(e

it)). Using the notation (1.3) we have

1

2π

∫ 2π

0

|f ′
n(t)|

q
dt

=

∫ 2π

0

∣∣∣n1/2(1 + δn(t)) sin(αn(t))α
′
n(t) + ηn(t)n

3/2
∣∣∣
q

dt

with real numbers δn(t) converging to 0 uniformly on [0, 2π].

To prove Lemmas 3.8 and 3.9 we need the technical lemma below that follows by a
simple calculation using formulas (6.2.1), (6.2.2), and (6.1.8) on pages 258 and 255 in [AS].

Lemma 3.7. Assume that A,B ∈ R, B 6= 0, q > 0, and I ⊂ [0, 2π] is an interval. Then

∫

I

|cos(Bt+ A)|q dt = K(q)meas(I) + δ1(A,B, q)

and ∫

I

|sin(Bt+A)|q dt = K(q)meas(I) + δ2(A,B, q) ,

where

K(q) :=
1

2π

∫ 2π

0

|sin t|q dt =
Γ
(
q+1
2

)

Γ
(
q
2 + 1

)√
π

and
|δ1(A,B, q)| ≤ π |B|−1

and |δ2(A,B, q)| ≤ π |B|−1
.

Our next lemma takes care of the most difficult part of the proof of Theorem 2.1.

Lemma 3.8. Suppose that βn, n = 1, 2, . . . , are real-valued functions defined on [0, 2π]
such that their second derivatives β′′

n are continuous on [0, 2π]. Suppose also that

(3.2) meas({t ∈ [0, 2π] : |2β′
n(t)| ≤ nx}) = γ(x) + γn(x) , x ∈ [0, 1] ,

where

(3.3) lim
x→0+

γ(x) = lim
n→∞

max
x∈[0,1]

|γn(x)| = 0 ,

and

(3.4) max
0≤t≤2π

|β′′
n(t)| ≤ γn,2n

2

with real numbers γn,2 > 0 converging to 0. Then

(3.5)
1

2π

∫ 2π

0

|sin(βn(t))|q dt ∼ K(q) :=
Γ
(
q+1
2

)

Γ
(
q
2 + 1

)√
π
.
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Proof of Lemma 3.8. Let ε > 0 be fixed. Let Ln := γ
−1/4
n,2 . We divide the interval [0, 2π)

into subintervals

Im := [am−1, am) :=

[
(m− 1)Ln

n
,
mLn

n

)
, m = 1, 2, . . . , N − 1 :=

⌊
2πn

Ln

⌋
,

and

IN := [aN−1, aN ) :=

[
(N − 1)Ln

n
, 2π

)
.

For the sake of brevity let

Am−1 := βn(am−1) , m = 1, 2, . . . , N ,

and

Bm−1 := β′
n(am−1) , m = 1, 2, . . . , N .

Using Taylor’s Theorem and assumption (3.4) we obtain that

|βn(t)− (Am−1 +Bm−1(t− am−1)| ≤ γn,2n
2(Ln/n)

2 ≤ γn,2γ
−1/2
n,2 ≤ γ

1/2
n,2

for every t ∈ Im, where lim
n→∞

γ
1/2
n,2 = 0. Hence the functions

Gn,q(t) :=





| sin(A0 +B0(t− a0))|q,
| sin(A1 +B1(t− a1))|q,

...

| sin(AN−1 +BN−1(t− aN−1))|q,

t ∈ I1 ,

t ∈ I2 ,

...

t ∈ IN ,

and

Fn,q(t) := |sin(βn(t))|q

satisfy

lim
n→∞

sup
t∈[0,2π)

|Gn,q(t)− Fn,q(t)| = 0 .

Therefore, in order to prove (3.5), it is sufficient to prove that

(3.6)

∫ 2π

0

Gn,q(t) dt ∼ 2πK(q) .

If |Bm−1| ≥ nε, then Lemma 3.7 gives

∣∣∣∣
∫

Im

Gn,q(t) dt−K(q)meas(Im)

∣∣∣∣ ≤
π

nε
.
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By assumption (3.4) we have lim
n→∞

Ln = lim
n→∞

γ
−1/4
n,2 = ∞, and hence

∣∣∣∣∣
∑

m

∫

Im

Gn,q(t) dt−K(q)
∑

m

meas(Im)

∣∣∣∣∣ ≤ N
π

nε
≤
(
2πn

Ln
+ 1

)
π

nε

≤ ηn(ε) ,

(3.7)

where the summation is taken over all m = 1, 2, . . . , N for which |Bm−1| ≥ nε, and where
(ηn(ε)) is a sequence of real numbers tending to 0. Now let

En,ε :=
⋃

m: |Bm−1|≤nε

Im .

If |Bm−1| ≤ nε, then by assumption (3.4) we have

|β′
n(t)| ≤ |Bm−1|+

Ln

n
max
t∈Im

|β′′
n(t)| ≤ |Bm−1|+

γ
−1/4
n,2

n
γn,2n

2 ≤ 2nε

for every t ∈ Im if n is sufficiently large. So

En,ε ⊂ {t ∈ [0, 2π] : |β′
n(t)| ≤ 2nε}

for every sufficiently large n. Hence, by assumptions (3.2) we have

meas(En,ε) ≤ γ(4ε) + γn(4ε)

for every sufficiently large n. Combining this with 0 ≤ Gn,q(t) ≤ 1, t ∈ [0, 2π), we obtain

(3.8)

∣∣∣∣∣
∑

m

∫

Im

Gn,q(t) dt−K(q)
∑

m

meas(Im)

∣∣∣∣∣ ≤ (γ(4ε) + γn(4ε))(1 +K(q)) ,

for every sufficiently large n, where the summation is taken over all m = 1, 2, . . . , N for
which |Bm−1| < nε, and where lim

ε→0+
γ(4ε) = 0 and lim

n→∞
γn(4ε) = 0 by assumption (3.3).

Since ε > 0 is arbitrary, (3.6) follows from (3.7) and (3.8). As we have already pointed out
(3.5) follows from (3.6). �

Our final lemma takes care of the most difficult part of the proof of Theorem 2.4.

Lemma 3.9. Suppose that βn, n = 1, 2, . . . , are real-valued functions defined on [0, 2π]
such that their second derivatives β′′

n are continuous on [0, 2π] and

(3.9) meas({t ∈ [0, 2π] : |2β′
n(t)| ≤ nx}) = 2πx+ γn(x) , x ∈ [0, 1] ,

where (3.3) holds (with γ(x) := 2πx). Suppose also that (3.4) holds and

(3.10) max
t∈[0,2π]

|β′
n(t)| ≤ cn

10



with an absolute constant c > 0. Then

(3.11)
1

2π

∫ 2π

0

∣∣cos(βn(t))n−1β′
n(t)

∣∣q dt ∼ K(q)

2q(q + 1)
:=

Γ
(
q+1
2

)

2q(q + 1)Γ
(
q
2 + 1

)√
π
.

We note that conditions (3.9), (3.3), and (3.10) imply in a standard fashion that

(3.12)
1

2π

∫ 2π

0

|2β′
n(t)|

q
dt =

nq

q + 1
+ δn,qn

q

with real numbers δn,q converging to 0 for every fixed q > 0.

Proof of Lemma 3.9. Let ε > 0 be fixed. Let Ln := γ
−1/4
n,2 be the same as in Lemma 3.8.

Let the intervals Im := [am−1, am) and the numbers Am−1 and Bm−1, m = 1, 2, . . . , N ,
be the same as in the proof of Lemma 3.8. We define

Fn,q(t) := |cos(βn(t))|q ,

(3.13) F̃n,q(t) := Fn,q(t)
∣∣n−1β′

n(t)
∣∣q ,

Gn,q(t) :=






| cos(A0 +B0(t− a0))|q,
| cos(A1 +B1(t− a1))|q,

...

| cos(AN−1 +BN−1(t− aN−1))|q,

t ∈ I1 ,

t ∈ I2 ,

...

t ∈ IN ,

Hn,q(t) :=






|n−1B0|q,
|n−1B1|q,

...

|n−1BN−1|q,

t ∈ I1 ,

t ∈ I2 ,

...

t ∈ IN ,

and

(3.14) G̃n,q(t) := Gn,q(t)Hn,q(t) .

Similarly to the corresponding argument in the proof of Lemma 3.8, we obtain

(3.15) lim
n→∞

sup
t∈[0,2π)

|Gn,q(t)− Fn,q(t)| = 0 .

It follows from assumption (3.4) that
∣∣∣∣n−1β′

n(t)
∣∣−
∣∣n−1Bm−1

∣∣∣∣ =
∣∣∣∣n−1β′

n(t)
∣∣−
∣∣n−1β′

n(am−1)
∣∣∣∣

≤
∣∣n−1β′

n(t)− n−1β′
n(am−1)

∣∣

≤Ln

n
max
t∈Im

∣∣n−1β′′
n(t)

∣∣ ≤
γ
−1/4
n,2

n
n−1γn,2n

2 = γ
3/4
n,2
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for every t ∈ Im, where lim
n→∞

γ
3/4
n,2 = 0. Hence

(3.16) lim
n→∞

sup
t∈[0,2π)

∣∣∣Hn,q(t)−
∣∣n−1β′

n(t)
∣∣q
∣∣∣ = 0 .

Observe that

(3.17) sup
t∈[0,2π)

|cos(βn(t))|q ≤ 1 ,

and by assumption (3.10) we have

(3.18) sup
t∈[0,2π)

∣∣n−1β′
n(t)

∣∣q ≤ cq .

Now (3.13)–(3.18) imply

lim
n→∞

sup
t∈[0,2π)

|G̃n,q(t)− F̃n,q(t)| = 0 .

Therefore, in order to prove (3.11), it is sufficient to prove that

(3.19)

∫ 2π

0

G̃n,q(t) dt ∼
2πK(q)

q + 1
.

As a special case of (3.18), we have

(3.20)
∣∣n−1Bm−1

∣∣q ≤ cq , m = 1, 2, . . . , N .

If |Bm−1| ≥ nε, then (3.14), (3.20), and Lemma 3.7 give that
∣∣∣∣
∫

Im

G̃n,q(t) dt−K(q)meas(Im)
∣∣n−1Bm−1

∣∣q
∣∣∣∣ ≤ cq

π

nε
.

It follows from assumption (3.4) that lim
n→∞

Ln = lim
n→∞

γ
−1/4
n,2 = ∞, and hence

∣∣∣∣∣
∑

m

∫

Im

G̃n,q(t) dt−K(q)
∑

m

meas(Im)
∣∣n−1Bm−1

∣∣q
∣∣∣∣∣ ≤ Ncq

π

nε

≤ cq
(
2πn

Ln
+ 1

)
π

nε

≤ ηn(ε, q) ,

(3.21)

where the summation is taken over all m = 1, 2, . . . , N for which |Bm−1| ≥ nε, and where
(ηn(ε, q)) is a sequence of real numbers tending to 0 for every fixed ε > 0 and q > 0. Now
let

En,ε :=
⋃

m: |Bm−1|≤nε

Im .

12



As in the proof of Lemma 3.8 we have

meas(En,ε) ≤ 8πε+ γn(4ε) ,

for every sufficiently large n. Combining this with 0 ≤ Gn,q(t) ≤ 1, t ∈ [0, 2π), (3.14), and
(3.20), we obtain

(3.22)

∣∣∣∣∣
∑

m

∫

Im

G̃n,q(t) dt−K(q)
∑

m

meas(Im)
∣∣n−1Bm−1

∣∣q
∣∣∣∣∣ ≤ (8πε+γn(4ε))c

q(1+K(q))

for every sufficiently large n, where the summation is taken over all m = 1, 2, . . . , N for
which |Bm−1| < nε, and where

lim
n→∞

γn(4ε) = 0

by assumption (3.3). Since ε > 0 is arbitrary, from (3.21) and (3.22) we obtain that

(3.23)

∫ 2π

0

G̃n,q(t) dt ∼ K(q)

∫ 2π

0

Hn,q(t) dt .

However, (3.16) and (3.12) imply that

(3.24)

∫ 2π

0

Hn,q(t) dt ∼ n−q

∫ 2π

0

|β′
n(t)|

q
dt ∼ 2π

2q(q + 1)
.

The statement under (3.19) now follows by combining (3.23), and (3.24). As we have
remarked before, (3.19) implies (3.11). �

4. Proofs of Theorems 2.1–2.7

Proof of Theorem 2.1. Using the notation (1.3) observe that (1.5) implies that the functions

(4.1) βn(t) :=
1

2
(αn(t)− α∗

n(t)) = αn(t)−
nt

2
− t0

satisfy
β′
n(t) = α′

n(t)− n/2 , t ∈ R ,

and
β′′
n(t) = α′′

n(t) , t ∈ R ,

and hence Lemmas 3.1, 3.2, and 3.3 imply that the functions βn satisfy assumptions (3.2),
(3.3), and (3.4) of Lemma 3.8. Hence the theorem follows from Lemmas 3.5 and 3.8. �

Proof of Theorem 2.3. Using the notation (1.3) let

Pn(e
it) = Rn(t)e

iαn(t) and P ∗
n(e

it) = R∗
n(t)e

iα∗

n
(t) ,
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where

Rn(t) = |Pn(e
it)| = |P ∗

n(e
it)| = R∗

n(t) ,

and both Rn and αn are in C∞(R). Let (Pn) be an ultraflat sequence of polynomials
Pn ∈ Kn. We have

(4.2) Rn(t)
2 = n(1 + δn(t)) , t ∈ R , lim

n→∞
max

t∈[0,2π]
|δn(t)| = 0 .

Let βn(t) be defined by (4.1). Let ε > 0 be fixed. Using the cosine theorem for triangles,
Lemmas 3.2, and 3.4, and (4.1), (4.2), and (1.5), we obtain

∣∣(P ′
n − P ∗′

n )(eit)
∣∣2 −

∣∣P ′
n(e

it)
∣∣2 −

∣∣P ∗′
n (eit)

∣∣2

=2((Rn(t)α
′
n(t))

2 + (R′
n(t))

2)1/2(Rn(t)(α
∗′
n (t))

2 + (R′
n(t))

2)1/2 cos(2βn(t))

= 2(Rn(t)α
′
n(t))(Rn(t)α

∗′
n (t)) cos(2βn(t)) + ηn(t)n

3

=2(Rn(t)
2(nα′

n(t)− α′
n(t)

2) cos(2βn(t)) + ηn(t)n
3

=2(n+ δn(t))(nα
′
n(t)− α′

n(t)
2) cos(2βn(t)) + ηn(t)n

3

=2n(nα′
n(t)− α′

n(t)
2) cos(2βn(t)) + ϕn(t)n

3 + ηn(t)n
3

=2n

(
n2

4
− β′

n(t)
2

)
cos(2βn(t)) + ϕn(t)n

3 + ηn(t)n
3

(4.3)

with some real numbers ηn(t) and ϕn(t) satisfying

max
t∈[0,2π]

|ϕn(t) + ηn(t)| < ε

for every sufficiently large n. Observe that

(4.4)

∫ 2π

0

(∣∣P ′
n(e

it)
∣∣2 +

∣∣P ∗′
n (eit)

∣∣2
)
dt = 4π

n(n+ 1)(2n+ 1)

6

by the Parseval formula. The integration by parts formula and Lemma 3.3 give that

∣∣∣∣
∫ 2π

0

β′
n(t)

2 cos(2βn(t)) dt

∣∣∣∣

=

∣∣∣∣∣

[
1

2
(sin(2βn(t))β

′
n(t))

]2π

0

−
∫ 2π

0

β′′
n(t) sin(2βn(t)) dt

∣∣∣∣∣

=

∣∣∣∣
∫ 2π

0

β′′
n(t) sin(2βn(t)) dt

∣∣∣∣ ≤
∫ 2π

0

|β′′
n(t)| dt =

∫ 2π

0

|α′′
n(t)| dt

≤2πγn,2n
2 < εn2

(4.5)

14



for every sufficiently large n. Observe also that Lemma 3.8 gives that

∫ 2π

0

cos(2βn(t)) dt =

∫ 2π

0

(
2 sin2(βn(t))− 1

)
dt = 2π(2K(2) + hn − 1)

=2π

(
2

Γ
(
3
2

)

Γ(2)
√
π
+ hn − 1

)
= 2πhn

(4.6)

with a sequence (hn) converging to 0. Combining (4.3)–(4.6) we conclude

∣∣∣∣
1

2π

∫ 2π

0

∣∣(P ′
n − P ∗′

n )(eit)
∣∣2 dt− 2n3

3

∣∣∣∣ ≤ εn3

for every sufficiently large n. As ε > 0 is arbitrary, this finishes the proof. �

Proof of Theorem 2.4. Using the notation (1.3) observe that (1.5) implies that the functions
βn defined by (4.1) satisfy

β′
n(t) = α′

n(t)− n/2 , t ∈ R ,

and
β′′
n(t) = α′′

n(t) , t ∈ R ,

and hence Lemmas 3.1, 3.2, and 3.3 imply that the functions βn satisfy assumptions (3.9),
(3.3), (3.4), and (3.10) of Lemma 3.9. Hence the theorem follows from Lemmas 3.6 and
3.9. �

Proof of Theorem 2.5. Let (Pn) be an ultraflat sequence of polynomials Pn ∈ Kn. Theorem
2.2 gives that

n∑

k=0

|ak,n − an−k,n|2 ∼ 2n ,

which is equivalent to

2Re

(
n∑

k=0

ak,nan−k,n

)
= o(n) .

Now let cn ∈ C, |cn| = 1, and let Qn be defined by Qn(z) = Pn(cnz). Observe that (Qn)
is an ultraflat sequence of polynomials Qn ∈ Kn and hence

Re

(
n∑

k=0

cnnak,nan−k,n

)
= o(n) ,

and hence ∣∣∣∣∣

n∑

k=0

ak,nan−k,n

∣∣∣∣∣ = o(n) .

�
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Proof of Theorem 2.6. Let (Pn) be an ultraflat sequence of polynomials Pn ∈ Kn. Theorem
2.3 gives that

n∑

k=0

k2 |ak,n − an−k,n|2 ∼ 2n3

3
,

which is equivalent to

2Re

(
n∑

k=0

k2ak,nan−k,n

)
= o(n3) .

Now let cn ∈ C, |cn| = 1, and let Qn be defined by Qn(z) = Pn(cnz). Observe that (Qn)
is an ultraflat sequence of polynomials Qn ∈ Kn and hence

Re

(
n∑

k=0

cnnk
2ak,nan−k,n

)
= o(n3) ,

and hence ∣∣∣∣∣

n∑

k=0

k2ak,nan−k,n

∣∣∣∣∣ = o(n3) .

�

Proof of Theorem 2.7. Using Lemma 3.5* and then applying Lemma 3.8 with β2n defined
by β2n(t) := αn(t) + π/2 we obtain the first asymptotic formula of the theorem. Using
Lemma 3.6* and then applying Lemma 3.9 with β2n defined by β2n(t) := αn(t) + π/2 we
obtain the second asymptotic formula of the theorem. �
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