BERNSTEIN INEQUALITIES FOR POLYNOMIALS
WITH CONSTRAINED ROOTS

T. Erdélyi! and J. Szabados?

Abstract. We prove Bernstein type inequalities for algebraic polynomials
on the finite interval I := [—1, 1] and for trigonometric polynomials on R when
the roots of the polynomials are outside of a certain domain of the complex
plane. The case of real vs. complex coefficients are handled separately. In case
of trigonometric polynomials with real coefficients and root restriction, the L,-
situation will also be considered. In most cases, the sharpness of the estimates
will be shown.

1. Introduction

Let P,, and P denote the set of all algebraic polynomials of degree at most n with real
and complex coefficient, respectively. By making appropriate restrictions on these sets of
polynomials, there are many ways of improving the classical Markov—Bernstein inequalities

n

Y llle e T € P

17! (2)] < min (n
1—=2

(Here || - ||; means supremum norm on the interval I = [—1,1]. All variables and arguments
in this paper will be real, except for z and ¢ which denote complex numbers.) For example,
the sharp inequalities

. n
(1) ) < cnin ([ Y Illy e D)
and
. (&
(1.2 ) < cntogin (n, =Y lalls— (2 € 1)

with an absolute constant ¢ > 0 are valid for all p, € P, and p, € P, respectively,
whose roots are outside the open unit disk |z| < 1 (cf. G. G. Lorentz [6], P. Borwein and
T. Erdélyi [2], and T. Erdélyi [4]).
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In this paper we generalize (1.1) — (1.2) for the following subset of algebraic polyno-
mials P,, of degree at most n:

(1.3) Pule) :={pePn|p(z) #0if 2% +y?/c®> <1 (2 =z + iy)}.

Although the ellipse appearing in this definition is a simple homogeneous transformation
of the unit disk, it will turn out that the corresponding results are by no means easy
consequences of the inequalities (1.1) — (1.2). In most cases, the inequalities to be presented
prove to be sharp.

Also, with respect to the classical Bernstein inequality

1tl|lr < nllt|lr

valid for all T, (=the set of all trigonometric polynomials of order n with real coefficients),
we will consider the subset

To(r) :={t € T, |t(z) # 0 for [Im z| < r} (0<r<1),

and prove a Bernstein-type inequality in L,-metric, including the case p = oo.

2. Trigonometric polynomials with real coefficients

Let us introduce the notation

(2.1) A = max (%,r) 0<r<l,n=12,...).

Theorem 1. We have

1t']|r n
(2.2) sup T ~ /.
0F#t€Tn () ||t||R A

Here and in what follows, ~ means that the ratio of the left and right hand sides
remains between two positive absolute constants.

For the proof we need a lemma in connection with the class 7, (r). In what follows, ¢
will denote positive absolute constants, not necessarily the same at different occurrences.

Lemma 1. We have

1
ltn(x +iy)| < c||tn]lr  forall t, € Ta(r), z,y € R, |y| < c\/g, - <r<l.



Proof. It is sufficient to prove the lemma for z = 0, since for  # 0 we can consider
the polynomial T;,(§) := t,,({ + z) € T, (r) and apply the result for £ = 0. Evidently,

Gn(2) = tn(2)tn(=2) € Tan(r)

is an even trigonometric polynomial. Let

Pn(2) = gn(arccos z) € Pay,.

Denote arccos z = u + 7, then z = cosw cosh r +¢sinusinhr := x + 4y, i.e. p,, has no roots
in the ellipse
2 2

T
LY

= 1.

2 )
cosh“r  sinh“r

An easy calculation shows that this ellipse contains the disks

(x — 1+ 2tanh®r)? +9®> < 4tanh*s and (z+ 1 — 2tanh®r)? +¢% < 4tanh*r,

and hence, according to Lemma 4.1 in [5],

16(|z| — 1)n
V2 tanhr

Using this with « = coshy we get

|pn ()| < exp( ) lpnllr for 1< |z|<14 2tanh®r.

16(coshy — 1)n
) llls <

tn (i) = ¢, (1Y) = |pn(cosiy)| = |p, (cosh <ex
a0 = 00(0) = (o8] = oo )] < exp (FLTE

<dlpallr <clltalle  (yl < ev/r/n<er).

Proof of Theorem 1. Using Cauchy’s integral formula and Lemma 1 we get
tn (C)
——=d
— )2 ¢

%c—m_c\/g (¢ < C\/?WnHR (z € R),

which proves the upper estimate in (2.2) for » < 1/n. For r > 1/n it follows from the
classical Bernstein inequality.
In order to prove the lower estimate, consider the trigonometric polynomial

t < —
@) < 5

(2.3) tn(2) = (cosma + 2)"A],

where m = [1/A]. First we show that t,, € T,(r). Indeed, for the roots z = = + iy of (2.3)
we have



cosm(z + iy) + 2 = cosma coshmy + 2 + i sinmax sinh my = 0,

whence coshmy > 2, i.e. |y > = > r. Now, if r < 1/n then (2.3) takes the form t,(z) =
cosnz + 2, and here [|t],||[r = n = Z[|t,||r indeed. If r > 1/n, then let 29 € R be such
that cosmag = 1 — -=. Then sinmzy > \/%, and hence

y ( B . ; 1 [nr]—1 N o
w(xo) = [nr] - msinmag - >c ;thHR

3. Algebraic polynomials with real coefficients

In analogy with (2.1), let us introduce the notation

1
(3.1) §:max<ﬁ,€) 0<e<l,n=1,2...).

Theorem 2. We have

C1/ﬁ Zf ZC2§1—52,
|

p'(x)

- < _ Vv _ 52 2 s
B B il < | T L8 <t <l
c2 if 1-%5<2*<1

Proof. In case 0 < ¢ < % the statements of the theorem are identical with the
classical Bernstein inequality (the second possibility does not arise in this case). Thus
we may assume that - < e < 1. Let p, € Pu(¢), |[[pnllr = 1, and consider the even
trigonometric polynomial

(3.3) tn(2) :=pplacosz) € Tp,

where the parameter 0 < a < 1 will be determined later. Let z = x + iy, and suppose that
2
acosz = u + iv is on the ellipse u? + =z = 1. This means that

sin? z sinh? y 1

2 2 _

cos“xcosh”y + ——— = —.
€ a

Hence
12 e2 +a’sin’z
cosh”y = — - -
a? 2 4 (1 — £2) sin?

xT
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Calculating the extrema of this rational function of the variable sin® z, we obtain
2
1+5 if a® <1-¢?
cosh?y > a? ’
y_{a% it 1-e2<a?<1.

Hence the trigonometric polynomial ¢, (z) has no roots in the strip

ly| < cmin(e, V1 — a?).

By (3.3), t/,(2) = —asin z - p],(a cos z), whence by Theorem 1 we obtain

||t/ ||R min(e,v1—a?)
3.4 ' (x)] < ” <c
( ) ‘pn( )| = m = m

(|z| < a).

First let 22 < 1 — 2. Then choosing a® = 1 — %, (3.4) yields the corresponding

estimate in (3.2). Now if 22 > 1—¢2, then a? = # results in the second estimate in (3.2).
However, this bound becomes worse than the last estimate in (3.2) if 1 — f;//z <z <1

This last estimate follows from a more general theorem of the first named author. Namely,
if p, € Pn(e) then it is easy to see that p, has no roots in the circles with diameters
[—1,—1+€?] and [1 — €2, 1], and Theorem 1 of [3] applies.

We now show that in most part of the interval I, the estimates of Theorem 2 are
sharp.

Theorem 3. With the notation (3.1) we have

/ n2 : 2<1_52
(3.5) sup |p(w)|>{cvé(1_x) ifats ’

otpePae) Pl | cn if 1-2<a2?<1.

Proof. Let first 0 < x < 1/2 be fixed, and consider the polynomial

(3.6) Paly) = {Tm (% + g) + 4}[n5] € P,

where m = [1/6], T, (y) = cos(marccosy) is the Chebyshev polynomial and £ < z is the
nearest point to x such that

(3.7) Tn() =1— —.

Then |52 +£[ <1 (Jy| < 1), |lpallr = 57 and p,, € Pn(8) C Pn(e). (3.7) implies that
sin(m arccos §) > ﬁ, whence



sin(m arccos §)

Ji-e

n 1 (o] n
>cy/=|5H—— > ey =|lpnllr
- ) no - ) ’

which proves the first estimate in (3.5) when 0 <z <1/2.
Now let 1/2 < = < 1. Define £ < x and m as above and consider the polynomial

(3.9) ply) = {Tm (gy) +4}M,

Again, it is easily seen that p, € P,(e), and similarly to (3.8) we obtain

(3.8) [pr, ()| > endm {Tn(8) + 4371 >

/ é\/EHanI \/7||pn||l
(3.10) [pn(2)] 2 - Noeri @

Here, since m > 3,

1-2<1 -2 +202-¢<1—2a? + “(V1-22+1/m) < c(l—2?)

provided 1/2 < z < v/1 — §2. Substituting this into (3 10) we obtain the first estimate in
(3.5). Finally, by the Mean Value Theorem for cos 57— < { <1 we get

T (1) — T (8) 1
2<—<T’< L>< L P LT () =m? < —
co =" cos 5 ) < ¢ <T,(1) mts 53
whence and from (3.7)
) 1 co
3.11 — < <1—-¢< —
(3:-11) n — mnd — = n
Thus if 22 > 1 — é > cos 5~ then the ¢ defined for x is indeed in the interval cos 5, 7

and (3.10)—(3.11) 1mply the second lower estimate in (3.5). In case 1 — < < cos 3 We have
§<ec/nand 1 — 2 > cos 3%, whence 1 —¢? > -% > 5 and (3.10) ylelds 1pl,(z)] > cn?
which proves the second estlmate in (3.5) in this case.

4. Algebraic polynomials with complex coefficients

In analogy with (1.3), define



Pile) :i={p € Pulp(z) £ 0if 2 +y*/e*> <1 (z =z +iy)}.
In this setting, using the notation (3.1), we have the following sharp result:

Theorem 4. We have

/ = if 2* <1-62,
(41) @)l { v

otpere(e) Pl | §log p2fi. if 1-62<a? <1

In particular, this result implies the relation

/
sup |1P]|1 Scnlog(2\/§n5),
o£pepe(e) [Pl 0

which is equivalent to the upper estimate from Theorem 2.2 of [5].

Proof. If ¢ < 1/n, then (4.1) is equivalent to

/ n . 2 . 2
(4.2) P’ ()] N{m if 22 <1—1/n?

0#£pEPE (¢) |pl|1 n? if 1-— l/n2 <z? < 1,

which is nothing but a weaker version (with respect to the constants) of the combined
Bernstein—-Markov inequality for any algebraic polynomial. In this case the lower estimate
in (4.2) can be easily seen by considering the polynomial T, (z) 4+ 2 (with real coefficients!)
and its modifications obtained by linear transformations of the variable, similarly to the
proof of Theorem 3.

Now if 1/n < &(< 1), then normalize p € P such that ||p||; < e™8, and use Nevan-
linna’s inequality

log |p(t)]

. || /°°
1 < dt
og lp(z +iy)| < = oot

(cf. Boas [1], pp. 92-93) with

x+rcosp and rsing (xel,r>0,0<p<2m)

in place of x and y, respectively.
We split the right hand side integral into three parts:

M/ _ vl / —|—/ —|—/ =11 + I + I3,
T J-—co @ [t|<14e/n 1+e/n< |t <1462 [t]|>1+e2
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and estimate these quantities separately. Since p € PS(e), it is readily seen that p has
no roots in the open circles with diameters [—1, —1 + 2¢?] and [1 — 2¢2,1], and hence by

Lemma 4.1 of [5],
= 1) —1) (1<t <1+e2).

n(|t] —1
13) toglp(o)] <" = s rog s <5 (UL

Thus maxpyj<iye/n [p(t)] < 1,16 I; <O0.
Using again (4.3), as well as

t| — 1-—
44) |t —|a|—r > L= (0“3%’ |t|21+5/n,a:61>
we get
8 tl—1
L< 2 i ——dt <
TE Jite/m<|t|<i4e2 (t —x —rcosg)? +r2sin®p
32nr / dt 64nr 1—|z| + €2
< < og <
7€ Jite/n<|t|<ite2 [t] — || TE 1—l|z|+¢e/n
cnre : 2 2
s it 22 <1—¢”, 1—|z|+¢/n
< 23 ) 5 5 0<r< ——MmM ).

Finally, using the Chebyshev inequality

p(®)] < \Tu@lllpllr < expleny/I[tl = Dlplr (1t =1)

and (4.4) again we obtain

'|t|_1 dt<cnr/ L<
B >14e2 ([t = [z])3/2 ~

I3 < cnr/ —_—
t>14e2 ([t — |z[)?

< enr < enr cl0<r< 1—|z|+¢/n
xel, r< —mM— ).
T (Ao )2 T VT2 e 2
Since
€ 1 1 9 9
max , < - <1-—¢
(1—562 \/1—362—1—5) V1—a2 ( )
and



;<clog 2v2 (1—62§$2§1,0<7‘§w),

collecting the above estimates we obtain

o cnr if 2% <1-¢?
1Og |p({1§'+7"COS(,0+ZT SlIlQO)| S cnr 2v/2¢ if 2 2
= 10gm it 1—¢ S x S 1
1—
(0<r< 1ol rem)
2
Hence choosing
N if 22 <1-¢?,
r = clog?2 . _ 2 < 2 <
pSP—vs = if 1—e“<z°<1,
\/1—m2+1/n

by Cauchy’s integral formula we get

o

1 Ip(2)] cr
(z)] < — 74 do] < = =< el),
p'(z)| < 27 J) i Tz — 2P |dz| < 2= (zel)

which proves the upper estimate in (4.1).
As for the lower estimates in Theorem 4 in case 1/n < e < § < 4—\1/52, consider the
polynomial

T

qn(z) = Tan <\/17_7€2) + Ton (ﬁ) € Pay,.

Using the formula

an easy calculation shows that the roots of this polynomial are

2k — 1
Z = costy + iesinty <tk:(27)7r,k:1,...,2n),
n

and so ¢, € Pay,(€).

Now let p, € PS(e) be that polynomial which is obtained from ¢, by omitting the
roots with negative imaginary parts and normalized such that |p,(z)|? = |g.(z)| (z € I).
Since

o (ﬁ) 1 < gu(x) < 2Ty, (1%52) (wel),
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we have

1 1/2
@)~ Ton (g ) ~lnalls e D)
Now
—~ 1
(4.5) [P (2)] = [pn(@)] - Tm ) >
r — Zk
k=1
- esinty
> cl|py, xel),
= cllp ||I;($—COStk)2+€28in2tk ( )
and since

(x — costy)? +e?sin’ty, < e{(1 — 2?)? 4+ sin* t), + e?sin?t;,} < ce?sin’ ¢y,

<1+g 1 — 22 <k <2V2ne, 1—52§x2§1>

we obtain

1 cn 2v/2ne
/ > " E > —|lppllr log —————s——
‘pn(x)| - ch HI é‘Sintk - ¢ Hp ||I 0g %(1 _an) +1
1+ 2V1—-22<k<2V2ne

(1—52§x2§1).

This yields the second lower estimate in (4.1).

Next, we prove the first lower estimate in (4.1) (when § = ¢ < 4%/5) Let 22 < 1—¢2,
and apply the just proved lower estimate with g = v/1 — 22 > . We obtain a polynomial
Dn € Pan(€0) C Pan(e) such that

2
0l (y)| > log (®=1-¢5 <y*<1).

€0 ny/1—y2+1
In particular,
P ()] > o envV'1 — 2 S _ o
P T V1 —2? gn\/l—xz—i—l_\/l—xz

Finally, if ﬁ < e =04 <1, then the lower estimates in (4.1) follow from the sharpness
of (1.2).

(:z:2 <1-— 52).
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5. Constrained trigonometric polynomials in L,

Our main goal is to prove the following Bernstein-type inequality in L, := L, (K) for
all f € T,(r) and p € [1,0).

Theorem 5. Let x be a nonnegative, nondecreasing, convex function defined on [0, 00).

Then, with the notation (2.1),
Ay
x (va)
sup

b1« 0
ozteT.r)  Ix(ct)]|L,
In particular, with x(x) = P,
t/
Ml [

for every p € [1,00).

In the proof of Theorem 5 we need the following essentially sharp Nikolskii-type in-
equality for every t € T, (r). Both the upper and lower bounds of Lemma 2 will be needed.

Lemma 2. Let n € N, r € (0,1}, and p € (0,00). Then

[tllpe _ [m

ozteT,(r) Iz, A’

where the constants involved depend only on p.

Proof. First we prove the upper bound. Let t € T,(r). Let 7 € R be a number
where t(7) = ||t||L.. Let I, := [T— ﬁ\/%ﬂ'—l— ﬁ\/%} , where A\ > 0 is the constant

corresponding to the upper estimate in Theorem 1. Combining the Mean Value Theorem
and our Bernstein-type inequality in Lo, for t € 7, (r), we obtain that

el —40) = #r) ~#0) = 100~ (@) < 2 s B, = Ll

for every x € I, (£ € I, is a suitable number guaranteed by the Mean Value Theorem).
Therefore

1 P
HoY > (1 - 2—p) 1l > el

for every x € I,. Hence, noting that A > 1, we get

2 n c /A
tE > tPdo > — ./ —c|lt|F > —1/=|[t||®
I HLP_/IT O o 2 55y xelltl = /I
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and the upper bound of the lemma is proved.
Now we prove the lower bound. Let v := 1/k, where k = 2m — 1 < n/2 with a
nonnegative integer m. We define

k k
Z (14 v)’ Z(l-}—y)jz_J
7=0 Jj=0
and

Rn,u(x) = (Qk(ezx)) Ln/k] ,

where 1 > 0 is chosen so that

(5'1> |Rn 1/(0>| =1

El

Obviously R, ., € T,(v/2). We have

o [n/k]
VPSS 2m—1 7 ptjx
(5.2)  [Rou(z)] = | R () ‘Z (L+v)e?™+ 30, (L+v)e B
IRn,u(0>| S g (1+v)
. o [n/k]
(14 (14 vymeme| |35 (1 + )T el 2|n/(2k)]

' (1+ (1 +v)metm=
1+14v)m

(1+ (L v)m) (S (1 w)7)

Ln/(2k)]

2 2m m
_ (P4 (L 4+ v)*™ +2(1 + v)™ cosma < (1= e(1 = cosma)) W/ @] <

1+ +v)2m+2(1+v)m

< (1 —em?22?)M/ R < exp (—em?2?|n/(2k)]) < exp (—en(k + 1)z?)

: 6 12
for every z € R with |z < = = 5. Also

) PPN
|Rla)] _ [[E0 040 _
[ Ry, (0)] ijo (1+v)
. n/k
s I S
B |(1+v)eir —1]  (1+wv)ktl -1 -

12



<4+1

Assume that k£ + 1 > 173 the case 1
v:=1/k, we have

) [n/k] ( ) [n/k]
k

< 12 5 similar. Combining (5.2), (5.3), and

sy

IA :HN‘T

™ 12/ (k+1)
(5.4) [ aslae= [ R @+
—n —12/(k+1)
—12/(k+1) -
+f Ras@P et [ R de <
— 12/(k+1)
12/(k+1) w 5u pln/k]
< 2/ exp (—cn(k + 1)px?) dx + 2/ <—) <
0 12/(k+1)
12 —pln/k]+1 17
/ e~ du + 2(5v)PL/*] [ z } -
\/ n(k+1)p —pln/k| +1] 12
E+1
2 5 k+1 pln/k] 12
< —+2 n/k]—1)—— <
en(k+1)p (12 k ) (pln/k] )k—i—l
2 c’ !
< ————+2exp(—cpn/k) (pn/k .
o D p(— p/)(p/> SN TR

Now (5.1) and (5.4) together with R,, , € T,(v/2) give the lower bound of the theorem.
The elementary argument showing that the general case of r € (0,1] and n € N can be
reduced to the case of r = v/2 = 1/(2k) with k = 2m — 1 < n/2, m,n € N, is left to the
reader.

Proof of Theorem 5. By Lemma 2 there is a trigonometric polynomial ¢,, ,, € T, (r)
such that

[tnrllLo /1
||tn,r||L1 A

Let g € T,(r). On applying the upper bound of Lemma 2 to

(55) G = gtn,r € 7—2n<r)7

we obtain

o < ey) Plgtanl, .
0o A , L,(K)

(5.6) |lgtn,




If we apply the Bernstein-type inequality of Theorem 1 to (5.5) and use the Nikolskii-type

inequality of (5.6), we can deduce that
2n 2n  [2n

9/0)t0(0) + £, 09O < ) e llgt el < ey ey lgto I,

n [tn,(0)]

t-(00=0 and ¢4/ <

7 A th,T||L1

for every § € K. By putting § = 0, and noticing that

we get

(5.7) \/%/ 0)||tn, T||L1tnr(9) de.

Now let t € T,(r) and 7 € K be fixed. On applying (5.7) to g € T,(r) defined by
g(0) :=t(0 4+ 7), we conclude that

\/%/ ) 11| b (6 — 7) .
(5.8) \/§|t'<7>| <c[ gl

it (0 — 1) db.

(5.9) /7r Lt (0 —7)do =1,

—Tr

Jensen’s inequality and (5.8) imply that

({500 < [ oy,

If we integrate both sides with respect to 7, Fubini’s theorem and (5.9) (on interchanging
the role of 6 and 7) yield the inequality of the theorem. The following corollary is an
obvious consequence of Theorem 5 applied with p = 2.

(0 — 7) df.

Corollary. There is an absolute constant ¢ > 0 such that every real trigonometric
polynomial of the form

Q(t) =ag + Z(ak cos kt + by sin kt)
k=1

14



has at least one zero in the strip {z € C|Imz < cr} assuming

S (2 4+ )
= = - <1
=@ = e T )
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