BERNSTEIN INEQUALITIES FOR POLYNOMIALS WITH CONSTRAINED ROOTS

T. Erdélyi ${ }^{1}$ and J. Szabados ${ }^{2}$

Abstract

We prove Bernstein type inequalities for algebraic polynomials on the finite interval $I:=[-1,1]$ and for trigonometric polynomials on \mathbf{R} when the roots of the polynomials are outside of a certain domain of the complex plane. The case of real vs. complex coefficients are handled separately. In case of trigonometric polynomials with real coefficients and root restriction, the $L_{p^{-}}$ situation will also be considered. In most cases, the sharpness of the estimates will be shown.

1. Introduction

Let \mathcal{P}_{n} and \mathcal{P}_{n}^{c} denote the set of all algebraic polynomials of degree at most n with real and complex coefficient, respectively. By making appropriate restrictions on these sets of polynomials, there are many ways of improving the classical Markov-Bernstein inequalities

$$
\left|p_{n}^{\prime}(x)\right| \leq \min \left(n^{2}, \frac{n}{\sqrt{1-x^{2}}}\right)\left\|p_{n}\right\|_{I} \quad\left(x \in I, p_{n} \in \mathcal{P}_{n}^{c}\right)
$$

(Here $\|\cdot\|_{I}$ means supremum norm on the interval $I=[-1,1]$. All variables and arguments in this paper will be real, except for z and ζ which denote complex numbers.) For example, the sharp inequalities

$$
\begin{equation*}
\left|p_{n}^{\prime}(x)\right| \leq c \min \left(n, \sqrt{\frac{n}{1-x^{2}}}\right)\left\|p_{n}\right\|_{I} \quad(x \in I) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|p_{n}^{\prime}(x)\right| \leq c n \log \min \left(n, \frac{e}{1-x^{2}}\right)\left\|p_{n}\right\|_{I} \quad(x \in I) \tag{1.2}
\end{equation*}
$$

with an absolute constant $c>0$ are valid for all $p_{n} \in \mathcal{P}_{n}$ and $p_{n} \in \mathcal{P}_{n}^{c}$, respectively, whose roots are outside the open unit disk $|z|<1$ (cf. G. G. Lorentz [6], P. Borwein and T. Erdélyi [2], and T. Erdélyi [4]).

[^0]In this paper we generalize (1.1) - (1.2) for the following subset of algebraic polynomials \mathcal{P}_{n} of degree at most n :

$$
\begin{equation*}
\mathcal{P}_{n}(\varepsilon):=\left\{p \in \mathcal{P}_{n} \mid p(z) \neq 0 \text { if } x^{2}+y^{2} / \varepsilon^{2}<1(z=x+i y)\right\} \tag{1.3}
\end{equation*}
$$

Although the ellipse appearing in this definition is a simple homogeneous transformation of the unit disk, it will turn out that the corresponding results are by no means easy consequences of the inequalities (1.1) - (1.2). In most cases, the inequalities to be presented prove to be sharp.

Also, with respect to the classical Bernstein inequality

$$
\left\|t^{\prime}\right\|_{\mathbf{R}} \leq n\|t\|_{\mathbf{R}}
$$

valid for all \mathcal{T}_{n} (=the set of all trigonometric polynomials of order n with real coefficients), we will consider the subset

$$
\mathcal{T}_{n}(r):=\left\{t \in \mathcal{T}_{n} \mid t(z) \neq 0 \text { for }|\operatorname{Im} z|<r\right\} \quad(0<r<1)
$$

and prove a Bernstein-type inequality in L_{p}-metric, including the case $p=\infty$.

2. Trigonometric polynomials with real coefficients

Let us introduce the notation

$$
\begin{equation*}
\Delta=\max \left(\frac{1}{n}, r\right) \quad(0<r \leq 1, n=1,2, \ldots) \tag{2.1}
\end{equation*}
$$

Theorem 1. We have

$$
\begin{equation*}
\sup _{0 \neq t \in \mathcal{T}_{n}(r)} \frac{\left\|t^{\prime}\right\|_{\mathbf{R}}}{\|t\|_{\mathbf{R}}} \sim \sqrt{\frac{n}{\Delta}} . \tag{2.2}
\end{equation*}
$$

Here and in what follows, \sim means that the ratio of the left and right hand sides remains between two positive absolute constants.

For the proof we need a lemma in connection with the class $\mathcal{T}_{n}(r)$. In what follows, c will denote positive absolute constants, not necessarily the same at different occurrences.

Lemma 1. We have

$$
\left|t_{n}(x+i y)\right| \leq c\left\|t_{n}\right\|_{\mathrm{R}} \quad \text { for all } \quad t_{n} \in \mathcal{T}_{n}(r), x, y \in \mathbf{R},|y| \leq c \sqrt{\frac{r}{n}}, \frac{1}{n} \leq r \leq 1
$$

Proof. It is sufficient to prove the lemma for $x=0$, since for $x \neq 0$ we can consider the polynomial $T_{n}(\xi):=t_{n}(\xi+x) \in \mathcal{T}_{n}(r)$ and apply the result for $\xi=0$. Evidently,

$$
q_{n}(z):=t_{n}(z) t_{n}(-z) \in \mathcal{T}_{2 n}(r)
$$

is an even trigonometric polynomial. Let

$$
p_{n}(z):=q_{n}(\arccos z) \in \mathcal{P}_{2 n}
$$

Denote $\arccos z=u+i r$, then $z=\cos u \cosh r+i \sin u \sinh r:=x+i y$, i.e. p_{n} has no roots in the ellipse

$$
\frac{x^{2}}{\cosh ^{2} r}+\frac{y^{2}}{\sinh ^{2} r}=1
$$

An easy calculation shows that this ellipse contains the disks

$$
\left(x-1+2 \tanh ^{2} r\right)^{2}+y^{2}<4 \tanh ^{4} r \quad \text { and } \quad\left(x+1-2 \tanh ^{2} r\right)^{2}+y^{2}<4 \tanh ^{4} r,
$$

and hence, according to Lemma 4.1 in [5],

$$
\left|p_{n}(x)\right| \leq \exp \left(\frac{16(|x|-1) n}{\sqrt{2} \tanh r}\right)\left\|p_{n}\right\|_{I} \quad \text { for } \quad 1 \leq|x| \leq 1+2 \tanh ^{2} r
$$

Using this with $x=\cosh y$ we get

$$
\begin{aligned}
\left|t_{n}(i y)\right|^{2}=q_{n}(i y) & =\left|p_{n}(\cos i y)\right|=\left|p_{n}(\cosh y)\right| \leq \exp \left(\frac{16(\cosh y-1) n}{\sqrt{2} \tanh r}\right)\left\|p_{n}\right\|_{I} \leq \\
& \leq c\left\|p_{n}\right\|_{I} \leq c| | t_{n} \|_{\mathbf{R}}^{2} \quad(|y| \leq c \sqrt{r / n} \leq c r) .
\end{aligned}
$$

Proof of Theorem 1. Using Cauchy's integral formula and Lemma 1 we get

$$
\left|t_{n}^{\prime}(x)\right| \leq \frac{1}{2 \pi}\left|\oint_{|\zeta-x|=c \sqrt{\frac{r}{n}}} \frac{t_{n}(\zeta)}{(\zeta-x)^{2}} d \zeta\right| \leq c \sqrt{\frac{n}{r}}\left\|t_{n}\right\|_{\mathbf{R}} \quad(x \in \mathbf{R})
$$

which proves the upper estimate in (2.2) for $r<1 / n$. For $r \geq 1 / n$ it follows from the classical Bernstein inequality.

In order to prove the lower estimate, consider the trigonometric polynomial

$$
\begin{equation*}
t_{n}(x)=(\cos m x+2)^{[n \Delta]} \tag{2.3}
\end{equation*}
$$

where $m=[1 / \Delta]$. First we show that $t_{n} \in \mathcal{T}_{n}(r)$. Indeed, for the roots $z=x+i y$ of (2.3) we have

$$
\cos m(x+i y)+2=\cos m x \cosh m y+2+i \sin m x \sinh m y=0
$$

whence $\cosh m y \geq 2$, i.e. $|y|>\frac{1}{m}>r$. Now, if $r<1 / n$ then (2.3) takes the form $t_{n}(x)=$ $\cos n x+2$, and here $\left\|t_{n}^{\prime}\right\|_{\mathbf{R}}=n=\frac{n}{3}\left\|t_{n}\right\|_{\mathbf{R}}$ indeed. If $r \geq 1 / n$, then let $x_{0} \in \mathbf{R}$ be such that $\cos m x_{0}=1-\frac{1}{n r}$. Then $\sin m x_{0} \geq \frac{1}{\sqrt{n r}}$, and hence

$$
t_{n}^{\prime}\left(x_{0}\right)=[n r] \cdot m \sin m x_{0}\left(3-\frac{1}{n r}\right)^{[n r]-1} \geq c \sqrt{\frac{n}{r}}\left\|t_{n}\right\|_{\mathbf{R}}
$$

3. Algebraic polynomials with real coefficients

In analogy with (2.1), let us introduce the notation

$$
\begin{equation*}
\delta=\max \left(\frac{1}{n}, \varepsilon\right) \quad(0<\varepsilon \leq 1, n=1,2, \ldots) . \tag{3.1}
\end{equation*}
$$

Theorem 2. We have

$$
\sup _{0 \neq p \in \mathcal{P}_{n}(\varepsilon)} \frac{\left|p^{\prime}(x)\right|}{\|p\|_{I}} \leq\left\{\begin{array}{lll}
c \sqrt{\frac{n}{\delta\left(1-x^{2}\right)}} & \text { if } \quad x^{2} \leq 1-\delta^{2}, \tag{3.2}\\
c \frac{\sqrt{n}}{\left(1-x^{2}\right)^{3 / 4}} & \text { if } 1-\delta^{2} \leq x^{2}<1-\frac{\delta^{4 / 3}}{n^{2 / 3}} \\
c \frac{n}{\delta} & \text { if } 1-\frac{\delta^{4 / 3}}{n^{2 / 3}} \leq x^{2} \leq 1 .
\end{array}\right.
$$

Proof. In case $0<\varepsilon<\frac{1}{n}$ the statements of the theorem are identical with the classical Bernstein inequality (the second possibility does not arise in this case). Thus we may assume that $\frac{1}{n} \leq \varepsilon \leq 1$. Let $p_{n} \in \mathcal{P}_{n}(\varepsilon), \quad\left\|p_{n}\right\|_{I}=1$, and consider the even trigonometric polynomial

$$
\begin{equation*}
t_{n}(z):=p_{n}(a \cos z) \in \mathcal{T}_{n} \tag{3.3}
\end{equation*}
$$

where the parameter $0<a<1$ will be determined later. Let $z=x+i y$, and suppose that $a \cos z=u+i v$ is on the ellipse $u^{2}+\frac{v^{2}}{\varepsilon^{2}}=1$. This means that

$$
\cos ^{2} x \cosh ^{2} y+\frac{\sin ^{2} x \sinh ^{2} y}{\varepsilon^{2}}=\frac{1}{a^{2}} .
$$

Hence

$$
\cosh ^{2} y=\frac{1}{a^{2}} \cdot \frac{\varepsilon^{2}+a^{2} \sin ^{2} x}{\varepsilon^{2}+\left(1-\varepsilon^{2}\right) \sin ^{2} x}
$$

Calculating the extrema of this rational function of the variable $\sin ^{2} x$, we obtain

$$
\cosh ^{2} y \geq \begin{cases}1+\frac{\varepsilon^{2}}{a^{2}} & \text { if } a^{2}<1-\varepsilon^{2} \\ \frac{1}{a^{2}} & \text { if } 1-\varepsilon^{2} \leq a^{2}<1\end{cases}
$$

Hence the trigonometric polynomial $t_{n}(z)$ has no roots in the strip

$$
|y| \leq c \min \left(\varepsilon, \sqrt{1-a^{2}}\right)
$$

By (3.3), $t_{n}^{\prime}(z)=-a \sin z \cdot p_{n}^{\prime}(a \cos z)$, whence by Theorem 1 we obtain

$$
\begin{equation*}
\left|p_{n}^{\prime}(x)\right| \leq \frac{\left\|t_{n}^{\prime}\right\|_{\mathbf{R}}}{\sqrt{a^{2}-x^{2}}} \leq c \frac{\sqrt{\frac{n}{\min \left(\varepsilon, \sqrt{1-a^{2}}\right)}}}{\sqrt{a^{2}-x^{2}}} \quad(|x|<a) \tag{3.4}
\end{equation*}
$$

First let $x^{2} \leq 1-\varepsilon^{2}$. Then choosing $a^{2}=1-\frac{\varepsilon^{2}}{2}$, (3.4) yields the corresponding estimate in (3.2). Now if $x^{2}>1-\varepsilon^{2}$, then $a^{2}=\frac{x^{2}+2}{3}$ results in the second estimate in (3.2). However, this bound becomes worse than the last estimate in (3.2) if $1-\frac{\varepsilon^{4 / 3}}{n^{2 / 3}} \leq x^{2} \leq 1$. This last estimate follows from a more general theorem of the first named author. Namely, if $p_{n} \in \mathcal{P}_{n}(\varepsilon)$ then it is easy to see that p_{n} has no roots in the circles with diameters $\left[-1,-1+\varepsilon^{2}\right]$ and $\left[1-\varepsilon^{2}, 1\right]$, and Theorem 1 of [3] applies.

We now show that in most part of the interval I, the estimates of Theorem 2 are sharp.

Theorem 3. With the notation (3.1) we have

$$
\sup _{0 \neq p \in \mathcal{P}_{n}(\varepsilon)} \frac{\left|p^{\prime}(x)\right|}{\|p\|_{I}} \geq\left\{\begin{array}{lll}
c \sqrt{\frac{n}{\delta\left(1-x^{2}\right)}} & \text { if } \quad x^{2} \leq 1-\delta^{2} \tag{3.5}\\
c \frac{n}{\delta} & \text { if } \quad 1-\frac{\delta}{n} \leq x^{2} \leq 1
\end{array}\right.
$$

Proof. Let first $0 \leq x \leq 1 / 2$ be fixed, and consider the polynomial

$$
\begin{equation*}
p_{n}(y)=\left\{T_{m}\left(\frac{y-x}{2}+\xi\right)+4\right\}^{[n \delta]} \in \mathcal{P}_{n} \tag{3.6}
\end{equation*}
$$

where $m=[1 / \delta], \quad T_{m}(y)=\cos (m \arccos y)$ is the Chebyshev polynomial and $\xi \leq x$ is the nearest point to x such that

$$
\begin{equation*}
T_{m}(\xi)=1-\frac{1}{n \delta} \tag{3.7}
\end{equation*}
$$

Then $\left|\frac{y-x}{2}+\xi\right| \leq 1(|y| \leq 1),\left\|p_{n}\right\|_{I}=5^{[n \delta]}$ and $p_{n} \in \mathcal{P}_{n}(\delta) \subset \mathcal{P}_{n}(\varepsilon)$. (3.7) implies that $\sin (m \arccos \xi) \geq \frac{1}{\sqrt{n \delta}}$, whence

$$
\begin{align*}
\left|p_{n}^{\prime}(x)\right| & \geq c n \delta m \frac{\sin (m \arccos \xi)}{\sqrt{1-\xi^{2}}}\left\{T_{m}(\xi)+4\right\}^{[n \delta]-1} \geq \tag{3.8}\\
& \geq c \sqrt{\frac{n}{\delta}}\left(5-\frac{1}{n \delta}\right)^{[n \delta]} \geq c \sqrt{\frac{n}{\delta}}\left\|p_{n}\right\|_{I},
\end{align*}
$$

which proves the first estimate in (3.5) when $0 \leq x \leq 1 / 2$.
Now let $1 / 2<x \leq 1$. Define $\xi \leq x$ and m as above and consider the polynomial

$$
\begin{equation*}
p_{n}(y)=\left\{T_{m}\left(\frac{\xi}{x} y\right)+4\right\}^{[n \delta]} \tag{3.9}
\end{equation*}
$$

Again, it is easily seen that $p_{n} \in \mathcal{P}_{n}(\varepsilon)$, and similarly to (3.8) we obtain

$$
\begin{equation*}
\left|p_{n}^{\prime}(x)\right| \geq c \frac{\xi}{x} \frac{\sqrt{\frac{n}{\delta}}\left\|p_{n}\right\|_{I}}{\sqrt{1-\xi^{2}}} \geq c \frac{\sqrt{\frac{n}{\delta}}| | p_{n} \|_{I}}{\sqrt{1-\xi^{2}}} \tag{3.10}
\end{equation*}
$$

Here, since $m \geq \frac{1}{2 \delta}$,

$$
1-\xi^{2} \leq 1-x^{2}+2(x-\xi) \leq 1-x^{2}+\frac{c}{m}\left(\sqrt{1-x^{2}}+1 / m\right) \leq c\left(1-x^{2}\right)
$$

provided $1 / 2<x \leq \sqrt{1-\delta^{2}}$. Substituting this into (3.10) we obtain the first estimate in (3.5). Finally, by the Mean Value Theorem for $\cos \frac{\pi}{2 m} \leq \xi \leq 1$ we get

$$
c \delta^{2} \leq \frac{c}{m^{2}} \leq T_{m}^{\prime}\left(\cos \frac{\pi}{2 m}\right) \leq \frac{T_{m}(1)-T_{m}(\xi)}{1-\xi} \leq T_{m}^{\prime}(1)=m^{2} \leq \frac{1}{\delta^{2}},
$$

whence and from (3.7)

$$
\begin{equation*}
\frac{\delta}{n} \leq \frac{1}{m^{2} n \delta} \leq 1-\xi \leq \frac{c \delta}{n} \tag{3.11}
\end{equation*}
$$

Thus if $x^{2} \geq 1-\frac{\delta}{n} \geq \cos \frac{\pi}{2 m}$ then the ξ defined for x is indeed in the interval $\left.\cos \frac{\pi}{2 m}, x\right]$ and (3.10)-(3.11) imply the second lower estimate in (3.5). In case $1-\frac{\delta}{n} \leq \cos \frac{\pi}{2 m}$ we have $\delta \leq c / n$ and $1-\frac{\delta}{n} \geq \cos \frac{3 \pi}{2 m}$, whence $1-\xi^{2} \geq \frac{c}{m^{2}} \geq \frac{c}{n^{2}}$, and (3.10) yields $\left|p_{n}^{\prime}(x)\right| \geq c n^{2}$, which proves the second estimate in (3.5) in this case.

4. Algebraic polynomials with complex coefficients

In analogy with (1.3), define

$$
\mathcal{P}_{n}^{c}(\varepsilon):=\left\{p \in \mathcal{P}_{n} \mid p(z) \neq 0 \text { if } x^{2}+y^{2} / \varepsilon^{2}<1(z=x+i y)\right\} .
$$

In this setting, using the notation (3.1), we have the following sharp result:
Theorem 4. We have

$$
\sup _{0 \neq p \in \mathcal{P}_{n}^{c}(\varepsilon)} \frac{\left|p^{\prime}(x)\right|}{\|p\|_{I}} \sim \begin{cases}\frac{n}{\sqrt{1-x^{2}}} & \text { if } x^{2} \leq 1-\delta^{2}, \tag{4.1}\\ \frac{n}{\delta} \log \frac{2 \sqrt{2} \delta}{\sqrt{1-x^{2}}+1 / n} & \text { if } 1-\delta^{2} \leq x^{2} \leq 1 .\end{cases}
$$

In particular, this result implies the relation

$$
\sup _{0 \neq p \in \mathcal{P}_{n}^{c}(\varepsilon)} \frac{\left\|p^{\prime}\right\|_{I}}{\|p\|_{I}} \leq c \frac{n \log (2 \sqrt{3} n \delta)}{\delta}
$$

which is equivalent to the upper estimate from Theorem 2.2 of [5].
Proof. If $\varepsilon<1 / n$, then (4.1) is equivalent to

$$
\sup _{0 \neq p \in \mathcal{P}_{n}^{c}(\varepsilon)} \frac{\left|p^{\prime}(x)\right|}{\|p\|_{I}} \sim \begin{cases}\frac{n}{\sqrt{1-x^{2}}} & \text { if } x^{2} \leq 1-1 / n^{2} \tag{4.2}\\ n^{2} & \text { if } 1-1 / n^{2} \leq x^{2} \leq 1\end{cases}
$$

which is nothing but a weaker version (with respect to the constants) of the combined Bernstein-Markov inequality for any algebraic polynomial. In this case the lower estimate in (4.2) can be easily seen by considering the polynomial $T_{n}(x)+2$ (with real coefficients!) and its modifications obtained by linear transformations of the variable, similarly to the proof of Theorem 3 .

Now if $1 / n \leq \varepsilon(\leq 1)$, then normalize $p \in \mathcal{P}_{n}^{c}$ such that $\|p\|_{I} \leq e^{-8}$, and use Nevanlinna's inequality

$$
\log |p(x+i y)| \leq \frac{|y|}{\pi} \int_{-\infty}^{\infty} \frac{\log |p(t)|}{(t-x)^{2}+y^{2}} d t
$$

(cf. Boas [1], pp. 92-93) with

$$
x+r \cos \varphi \quad \text { and } \quad r \sin \varphi \quad(x \in I, r>0,0 \leq \varphi \leq 2 \pi)
$$

in place of x and y, respectively.
We split the right hand side integral into three parts:

$$
\frac{|y|}{\pi} \int_{-\infty}^{\infty}=\frac{|y|}{\pi}\left(\int_{|t| \leq 1+\varepsilon / n}+\int_{1+\varepsilon / n \leq|t| \leq 1+\varepsilon^{2}}+\int_{|t| \geq 1+\varepsilon^{2}}\right):=I_{1}+I_{2}+I_{3}
$$

and estimate these quantities separately. Since $p \in \mathcal{P}_{n}^{c}(\varepsilon)$, it is readily seen that p has no roots in the open circles with diameters $\left[-1,-1+2 \varepsilon^{2}\right]$ and $\left[1-2 \varepsilon^{2}, 1\right]$, and hence by Lemma 4.1 of [5],

$$
\begin{equation*}
\log |p(t)| \leq 8 \frac{n(|t|-1)}{\varepsilon}+\log \|p\|_{I} \leq 8\left(\frac{n(|t|-1)}{\varepsilon}-1\right) \quad\left(1 \leq|t| \leq 1+\varepsilon^{2}\right) \tag{4.3}
\end{equation*}
$$

Thus $\max _{|t| \leq 1+\varepsilon / n}|p(t)| \leq 1$, i.e. $I_{1} \leq 0$.
Using again (4.3), as well as

$$
\begin{equation*}
|t|-|x|-r \geq \frac{|t|-|x|}{2} \quad\left(0<r \leq \frac{1-|x|+\varepsilon / n}{2},|t| \geq 1+\varepsilon / n, x \in I\right) \tag{4.4}
\end{equation*}
$$

we get

$$
\begin{gathered}
I_{2} \leq \frac{8 n r}{\pi \varepsilon} \int_{1+\varepsilon / n \leq|t| \leq 1+\varepsilon^{2}} \frac{|t|-1}{(t-x-r \cos \varphi)^{2}+r^{2} \sin ^{2} \varphi} d t \leq \\
\leq \frac{32 n r}{\pi \varepsilon} \int_{1+\varepsilon / n \leq|t| \leq 1+\varepsilon^{2}} \frac{d t}{|t|-|x|} \leq \frac{64 n r}{\pi \varepsilon} \log \frac{1-|x|+\varepsilon^{2}}{1-|x|+\varepsilon / n} \leq \\
\leq\left\{\begin{array}{ll}
\frac{c n r \varepsilon}{1-x^{2}} & \text { if } x^{2} \leq 1-\varepsilon^{2}, \\
\frac{c n r}{\varepsilon} \log \frac{2 \sqrt{2} \varepsilon}{\sqrt{1-x^{2}}+1 / n} & \text { if } 1-\varepsilon^{2} \leq x^{2} \leq 1
\end{array} \quad\left(0<r \leq \frac{1-|x|+\varepsilon / n}{2}\right) .\right.
\end{gathered}
$$

Finally, using the Chebyshev inequality

$$
|p(t)| \leq\left|T_{n}(t)\right|\|p\|_{I} \leq \exp (c n \sqrt{|t|-1})\|p\|_{I} \quad(|t| \geq 1)
$$

and (4.4) again we obtain

$$
\begin{gathered}
I_{3} \leq c n r \int_{|t| \geq 1+\varepsilon^{2}} \frac{\sqrt{|t|-1}}{(|t|-|x|)^{2}} d t \leq c n r \int_{|t| \geq 1+\varepsilon^{2}} \frac{d t}{(|t|-|x|)^{3 / 2} \leq} \\
\leq \frac{c n r}{\left(1-|x|+\varepsilon^{2}\right)^{1 / 2}} \leq \frac{c n r}{\sqrt{1-x^{2}}+\varepsilon} \quad\left(x \in I, 0<r \leq \frac{1-|x|+\varepsilon / n}{2}\right) .
\end{gathered}
$$

Since

$$
\max \left(\frac{\varepsilon}{1-x^{2}}, \frac{1}{\sqrt{1-x^{2}}+\varepsilon}\right) \leq \frac{1}{\sqrt{1-x^{2}}} \quad\left(x^{2} \leq 1-\varepsilon^{2}\right)
$$

and

$$
\frac{\varepsilon}{\sqrt{1-x^{2}}+\varepsilon} \leq c \log \frac{2 \sqrt{2} \varepsilon}{\sqrt{1-x^{2}}+1 / n} \quad\left(1-\varepsilon^{2} \leq x^{2} \leq 1,0<r \leq \frac{1-|x|+\varepsilon / n}{2}\right)
$$

collecting the above estimates we obtain

$$
\begin{gathered}
\log |p(x+r \cos \varphi+i r \sin \varphi)| \leq \begin{cases}\frac{c n r}{\sqrt{1-x^{2}}} & \text { if } x^{2} \leq 1-\varepsilon^{2} \\
\frac{c n r}{\varepsilon} \log \frac{2 \sqrt{2} \varepsilon}{\sqrt{1-x^{2}+\frac{1}{n}}} & \text { if } 1-\varepsilon^{2} \leq x^{2} \leq 1\end{cases} \\
\left(0<r \leq \frac{1-|x|+\varepsilon / n}{2}\right) .
\end{gathered}
$$

Hence choosing

$$
r= \begin{cases}\frac{\sqrt{1-x^{2}}}{4 n} \varepsilon \log 2 & \text { if } x^{2} \leq 1-\varepsilon^{2} \\ \frac{\text { if }}{4 n \log \frac{2 \sqrt{2} \varepsilon}{\sqrt{1-x^{2}}+1 / n}} & \text { i- } \varepsilon^{2} \leq x^{2} \leq 1\end{cases}
$$

by Cauchy's integral formula we get

$$
\left|p^{\prime}(x)\right| \leq \frac{1}{2 \pi} \oint_{|z-x|=r} \frac{|p(z)|}{|z-x|^{2}}|d z| \leq \frac{c r}{r^{2}}=\frac{c}{r} \quad(x \in I)
$$

which proves the upper estimate in (4.1).
As for the lower estimates in Theorem 4 in case $1 / n \leq \varepsilon \leq \delta \leq \frac{1}{4 \sqrt{2}} 2$, consider the polynomial

$$
q_{n}(x)=T_{2 n}\left(\frac{x}{\sqrt{1-\varepsilon^{2}}}\right)+T_{2 n}\left(\frac{1}{\sqrt{1-\varepsilon^{2}}}\right) \in \mathcal{P}_{2 n} .
$$

Using the formula

$$
T_{n}\left(\frac{z+z^{-1}}{2}\right)=\frac{z^{n}+z^{-n}}{2}
$$

an easy calculation shows that the roots of this polynomial are

$$
z_{k}=\cos t_{k}+i \varepsilon \sin t_{k} \quad\left(t_{k}=\frac{(2 k-1) \pi}{2 n}, k=1, \ldots, 2 n\right),
$$

and so $q_{n} \in \mathcal{P}_{2 n}(\varepsilon)$.
Now let $p_{n} \in \mathcal{P}_{n}^{c}(\varepsilon)$ be that polynomial which is obtained from q_{n} by omitting the roots with negative imaginary parts and normalized such that $\left|p_{n}(x)\right|^{2}=\left|q_{n}(x)\right| \quad(x \in I)$. Since

$$
T_{2 n}\left(\frac{1}{\sqrt{1-\varepsilon^{2}}}\right)-1 \leq q_{n}(x) \leq 2 T_{2 n}\left(\frac{1}{\sqrt{1-\varepsilon^{2}}}\right) \quad(x \in I)
$$

we have

$$
\left|p_{n}(x)\right| \sim T_{2 n}\left(\frac{1}{\sqrt{1-\varepsilon^{2}}}\right)^{1 / 2} \sim\left\|p_{n}\right\|_{I} \quad(x \in I)
$$

Now

$$
\begin{gather*}
\left|p_{n}^{\prime}(x)\right| \geq\left|p_{n}(x)\right| \cdot \operatorname{Im} \sum_{k=1}^{n} \frac{1}{x-z_{k}} \geq \tag{4.5}\\
\geq c\left\|p_{n}\right\|_{I} \sum_{k=1}^{n} \frac{\varepsilon \sin t_{k}}{\left(x-\cos t_{k}\right)^{2}+\varepsilon^{2} \sin ^{2} t_{k}} \quad(x \in I),
\end{gather*}
$$

and since

$$
\begin{gathered}
\left(x-\cos t_{k}\right)^{2}+\varepsilon^{2} \sin ^{2} t_{k} \leq c\left\{\left(1-x^{2}\right)^{2}+\sin ^{4} t_{k}+\varepsilon^{2} \sin ^{2} t_{k}\right\} \leq c \varepsilon^{2} \sin ^{2} t_{k} \\
\left(1+\frac{n}{3} \sqrt{1-x^{2}} \leq k \leq 2 \sqrt{2} n \varepsilon, 1-\varepsilon^{2} \leq x^{2} \leq 1\right)
\end{gathered}
$$

we obtain

$$
\begin{gathered}
\left|p_{n}^{\prime}(x)\right| \geq c\left\|p_{n}\right\|_{I} \sum_{1+\frac{n}{3} \sqrt{1-x^{2}} \leq k \leq 2 \sqrt{2} n \varepsilon} \frac{1}{\varepsilon \sin t_{k}} \geq \frac{c n}{\varepsilon}\left\|p_{n}\right\|_{I} \log \frac{2 \sqrt{2} n \varepsilon}{\frac{n}{3}\left(1-x^{2}\right)+1} \\
\left(1-\varepsilon^{2} \leq x^{2} \leq 1\right) .
\end{gathered}
$$

This yields the second lower estimate in (4.1).
Next, we prove the first lower estimate in (4.1) (when $\delta=\varepsilon \leq \frac{1}{4 \sqrt{2}}$). Let $x^{2} \leq 1-\varepsilon^{2}$, and apply the just proved lower estimate with $\varepsilon_{0}=\sqrt{1-x^{2}} \geq \varepsilon$. We obtain a polynomial $p_{n} \in \mathcal{P}_{2 n}\left(\varepsilon_{0}\right) \subset \mathcal{P}_{2 n}(\varepsilon)$ such that

$$
\left|p_{n}^{\prime}(y)\right| \geq \frac{2 \sqrt{2} n}{\varepsilon_{0}} \log \frac{c n \varepsilon_{0}}{n \sqrt{1-y^{2}}+1} \quad\left(x^{2}=1-\varepsilon_{0}^{2} \leq y^{2} \leq 1\right)
$$

In particular,

$$
\left|p_{n}^{\prime}(x)\right| \geq \frac{c n}{\sqrt{1-x^{2}}} \log \frac{c n \sqrt{1-x^{2}}}{n \sqrt{1-x^{2}}+1} \geq \frac{c n}{\sqrt{1-x^{2}}} \quad\left(x^{2} \leq 1-\varepsilon^{2}\right)
$$

Finally, if $\frac{1}{4 \sqrt{2}} \leq \varepsilon=\delta \leq 1$, then the lower estimates in (4.1) follow from the sharpness of (1.2).

5. Constrained trigonometric polynomials in L_{p}

Our main goal is to prove the following Bernstein-type inequality in $L_{p}:=L_{p}(K)$ for all $f \in \mathcal{T}_{n}(r)$ and $p \in[1, \infty)$.

Theorem 5. Let χ be a nonnegative, nondecreasing, convex function defined on $[0, \infty)$. Then, with the notation (2.1),

$$
\sup _{0 \neq t \in \mathcal{T}_{n}(r)} \frac{\left\|\chi\left(\sqrt{\frac{\Delta}{n}} t^{\prime}\right)\right\|_{L_{1}}}{\|\chi(c t)\|_{L_{1}}}<\infty
$$

In particular, with $\chi(x)=x^{p}$,

$$
\sup _{0 \neq t \in \mathcal{T}_{n}(r)} \frac{\left\|t^{\prime}\right\|_{L_{p}}}{\|t\|_{L_{p}}} \leq c \sqrt{\frac{n}{\Delta}}
$$

for every $p \in[1, \infty)$.
In the proof of Theorem 5 we need the following essentially sharp Nikolskii-type inequality for every $t \in \mathcal{T}_{n}(r)$. Both the upper and lower bounds of Lemma 2 will be needed.

Lemma 2. Let $n \in \mathbf{N}, r \in(0,1]$, and $p \in(0, \infty)$. Then

$$
\sup _{0 \neq t \in \mathcal{T}_{n}(r)} \frac{\|t\|_{L_{\infty}}}{\|t\|_{L_{p}}} \sim \sqrt{\frac{n}{\Delta}},
$$

where the constants involved depend only on p.
Proof. First we prove the upper bound. Let $t \in \mathcal{T}_{n}(r)$. Let $\tau \in \mathbf{R}$ be a number where $t(\tau)=\|t\|_{L_{\infty}}$. Let $I_{\tau}:=\left[\tau-\frac{1}{2 \lambda p} \sqrt{\frac{n}{\Delta}}, \tau+\frac{1}{2 \lambda p} \sqrt{\frac{n}{\Delta}}\right]$, where $\lambda>0$ is the constant corresponding to the upper estimate in Theorem 1. Combining the Mean Value Theorem and our Bernstein-type inequality in L_{∞} for $t \in \mathcal{T}_{n}(r)$, we obtain that

$$
\|t\|_{L_{\infty}}-t(\theta)=t(\tau)-t(\theta)=\left|(\theta-\tau) t^{\prime}(\xi)\right| \leq \lambda \sqrt{\frac{n}{\Delta}} \frac{1}{2 \lambda p} \sqrt{\frac{\Delta}{n}}\|t\|_{L_{\infty}}=\frac{1}{2 p}\|t\|_{L_{\infty}}
$$

for every $x \in I_{\tau}\left(\xi \in I_{\tau}\right.$ is a suitable number guaranteed by the Mean Value Theorem). Therefore

$$
t(\theta)^{p} \geq\left(1-\frac{1}{2 p}\right)^{p}\|t\|_{L_{\infty}}^{p} \geq c\|t\| \|_{L_{\infty}}^{p}
$$

for every $x \in I_{\tau}$. Hence, noting that $\lambda \geq 1$, we get

$$
\|t\|_{L_{p}}^{p} \geq \int_{I_{\tau}} t(\theta)^{p} d \theta \geq \frac{2}{2 p \lambda} \sqrt{\frac{n}{\Delta}} c\|t\|_{L_{\infty}}^{p} \geq \frac{c}{p \lambda} \sqrt{\frac{\Delta}{n}}\|t\|_{L_{\infty}}^{p}
$$

and the upper bound of the lemma is proved.
Now we prove the lower bound. Let $\nu:=1 / k$, where $k=2 m-1 \leq n / 2$ with a nonnegative integer m. We define

$$
Q_{k}(z):=\left(\sum_{j=0}^{k}(1+\nu)^{j} z^{j}\right)\left(\sum_{j=0}^{k}(1+\nu)^{j} z^{-j}\right)
$$

and

$$
R_{n, \nu}(x):=\mu\left(Q_{k}\left(e^{i x}\right)\right)^{\lfloor n / k\rfloor}
$$

where $\mu>0$ is chosen so that

$$
\begin{equation*}
\left|R_{n, \nu}(0)\right|=1 \tag{5.1}
\end{equation*}
$$

Obviously $R_{n, \nu} \in \mathcal{T}_{n}(\nu / 2)$. We have

$$
\begin{align*}
& \text { 5.2) } \quad\left|R_{n, \nu}(x)\right|=\frac{\left|R_{n, \nu}(x)\right|}{\left|R_{n, \nu}(0)\right|} \leq\left(\frac{\left|\sum_{j=0}^{m-1}(1+\nu)^{j} e^{i j x}+\sum_{j=m}^{2 m-1}(1+\nu)^{j} e^{i j x}\right|}{\sum_{j=0}^{k}(1+\nu)^{j}}\right)^{\lfloor n / k\rfloor}= \tag{5.2}\\
& =\left(\frac{\mid\left(1+(1+\nu)^{m} e^{i m x}| | \sum_{j=0}^{m-1}(1+\nu)^{j} e^{i j x} \mid\right.}{\left(1+(1+\nu)^{m}\right)\left(\sum_{j=0}^{m-1}(1+\nu)^{j}\right)}\right)^{\lfloor n / k\rfloor} \leq\left|\frac{\left(1+(1+\nu)^{m} e^{i m x}\right.}{1+(1+\nu)^{m}}\right|^{2\lfloor n /(2 k)\rfloor}= \\
& =\left|\frac{\left(1^{2}+(1+\nu)^{2 m}+2(1+\nu)^{m} \cos m x\right.}{1+(1+\nu)^{2 m}+2(1+\nu)^{m}}\right|^{\lfloor n /(2 k)\rfloor} \leq(1-c(1-\cos m x))^{\lfloor n /(2 k)\rfloor} \leq \\
& \leq\left(1-c m^{2} x^{2}\right)^{\lfloor n /(2 k)\rfloor} \leq \exp \left(-c m^{2} x^{2}\lfloor n /(2 k)\rfloor\right) \leq \exp \left(-c n(k+1) x^{2}\right)
\end{align*}
$$

for every $x \in \mathbf{R}$ with $|x| \leq \frac{6}{m}=\frac{12}{k+1}$. Also

$$
\begin{align*}
& \left|R_{n, \nu}(x)\right|=\frac{\left|R_{n, \nu}(x)\right|}{\left|R_{n, \nu}(0)\right|} \leq\left(\frac{\left|\sum_{j=0}^{k}(1+\nu)^{j} e^{i j x}\right|}{\sum_{j=0}^{k}(1+\nu)^{j}}\right)^{\lfloor n / k\rfloor}= \tag{5.3}\\
& \quad=\left(\frac{\left|(1+\nu)^{k+1} e^{i(k+1) x}-1\right|}{\left|(1+\nu) e^{i x}-1\right|} \frac{\nu}{(1+\nu)^{k+1}-1}\right)^{\lfloor n / k\rfloor} \leq
\end{align*}
$$

$$
\leq\left(\frac{4+1}{e-1} \cdot \frac{\nu}{\frac{2}{\pi} x}\right)^{\lfloor n / k\rfloor} \leq\left(\frac{5 \nu}{x}\right)^{\lfloor n / k\rfloor}
$$

Assume that $k+1 \geq \frac{12}{\pi}$; the case $1 \leq k \leq \frac{12}{\pi}$ is similar. Combining (5.2), (5.3), and $\nu:=1 / k$, we have

$$
\begin{gather*}
\int_{-\pi}^{\pi}\left|R_{n, \nu}(x)\right|^{p} d x=\int_{-12 /(k+1)}^{12 /(k+1)}\left|R_{n, \nu}(x)\right|^{p} d x+ \tag{5.4}\\
+\int_{-\pi}^{-12 /(k+1)}\left|R_{n, \nu}(x)\right|^{p} d x+\int_{12 /(k+1)}^{\pi}\left|R_{n, \nu}(x)\right|^{p} d x \leq \\
\leq 2 \int_{0}^{12 /(k+1)} \exp \left(-c n(k+1) p x^{2}\right) d x+2 \int_{12 /(k+1)}^{\pi}\left(\frac{5 \nu}{x}\right)^{p\lfloor n / k\rfloor} \leq \\
\leq \frac{2}{\sqrt{c n(k+1) p}} \int_{0}^{12 \sqrt{\frac{c n p}{k+1}}} e^{-u^{2}} d u+2(5 \nu)^{p\lfloor n / k\rfloor}\left[\frac{x^{-p\lfloor n / k\rfloor+1}}{-p\lfloor n / k\rfloor+1}\right]_{\frac{12}{k+1}}^{\pi} \leq \\
\leq \frac{2}{\sqrt{c n(k+1) p}}+2\left(\frac{5}{12} \cdot \frac{k+1}{k}\right)^{p\lfloor n / k\rfloor}(p\lfloor n / k\rfloor-1) \frac{12}{k+1} \leq \\
\leq \frac{2}{\sqrt{c n(k+1) p}}+2 \exp \left(-c^{\prime} p n / k\right)(p n / k) \frac{12}{k} \leq \frac{c^{\prime \prime}}{\sqrt{n k p}} \leq \frac{c^{\prime \prime}}{\sqrt{n k}} .
\end{gather*}
$$

Now (5.1) and (5.4) together with $R_{n, \nu} \in \mathcal{T}_{n}(\nu / 2)$ give the lower bound of the theorem. The elementary argument showing that the general case of $r \in(0,1]$ and $n \in \mathbf{N}$ can be reduced to the case of $r=\nu / 2=1 /(2 k)$ with $k=2 m-1 \leq n / 2, m, n \in \mathbf{N}$, is left to the reader.

Proof of Theorem 5. By Lemma 2 there is a trigonometric polynomial $t_{n, r} \in \mathcal{T}_{n}(r)$ such that

$$
\frac{\left\|t_{n, r}\right\|_{L_{\infty}}}{\left\|t_{n, r}\right\|_{L_{1}}} \sim \sqrt{\frac{n}{\Delta}}
$$

Let $g \in \mathcal{T}_{n}(r)$. On applying the upper bound of Lemma 2 to

$$
\begin{equation*}
G:=g t_{n, r} \in \mathcal{T}_{2 n}(r) \tag{5.5}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\left\|g t_{n, r}\right\|_{L_{\infty}} \leq c \sqrt{\frac{2 n}{\Delta}}\left\|g t_{n, r}\right\|_{L_{1}(K)} \tag{5.6}
\end{equation*}
$$

If we apply the Bernstein-type inequality of Theorem 1 to (5.5) and use the Nikolskii-type inequality of (5.6), we can deduce that

$$
\left|g^{\prime}(\theta) t_{n, r}(\theta)+t_{n, r}^{\prime}(\theta) g(\theta)\right| \leq c \sqrt{\frac{2 n}{\Delta}}\left\|g t_{n, r}\right\|_{L_{\infty}} \leq c \sqrt{\frac{2 n}{\Delta}} c \sqrt{\frac{2 n}{\Delta}}\left\|g t_{n, r}\right\|_{L_{1}}
$$

for every $\theta \in K$. By putting $\theta=0$, and noticing that

$$
t_{n, r}^{\prime}(0)=0 \quad \text { and } \quad c \sqrt{\frac{n}{\Delta}} \leq \frac{\left|t_{n, r}(0)\right|}{\left\|t_{n, r}\right\|_{L_{1}}}
$$

we get

$$
\begin{equation*}
\left|g^{\prime}(0)\right| \leq c \sqrt{\frac{2 n}{\Delta}} \int_{-\pi}^{\pi} g(\theta)\left\|t_{n, r}\right\|_{L_{1}}^{-1} t_{n, r}(\theta) d \theta \tag{5.7}
\end{equation*}
$$

Now let $t \in \mathcal{T}_{n}(r)$ and $\tau \in K$ be fixed. On applying (5.7) to $g \in \mathcal{T}_{n}(r)$ defined by $g(\theta):=t(\theta+\tau)$, we conclude that

$$
\left|t^{\prime}(\tau)\right| \leq c \sqrt{\frac{2 n}{\Delta}} \int_{-\pi}^{\pi} g(\theta)\left\|t_{n, r}\right\|_{L_{1}}^{-1} t_{n, r}(\theta-\tau) d \theta
$$

Hence

$$
\begin{equation*}
\sqrt{\frac{\Delta}{n}}\left|t^{\prime}(\tau)\right| \leq c \int_{-\pi}^{\pi} g(\theta)\left\|t_{n, r}\right\|_{L_{1}}^{-1} t_{n, r}(\theta-\tau) d \theta \tag{5.8}
\end{equation*}
$$

Since

$$
\begin{equation*}
\int_{-\pi}^{\pi}\left\|t_{n, r}\right\|_{L_{1}}^{-1} t_{n, r}(\theta-\tau) d \theta=1 \tag{5.9}
\end{equation*}
$$

Jensen's inequality and (5.8) imply that

$$
\left.\chi\left(\sqrt{\frac{n}{\Delta}}\left|t^{\prime}(\tau)\right|\right) \leq \int_{-\pi}^{\pi} \chi(c g(\theta)) \right\rvert\,\left\|t_{n, r}\right\|_{L_{1}}^{-1} t_{n, r}(\theta-\tau) d \theta
$$

If we integrate both sides with respect to τ, Fubini's theorem and (5.9) (on interchanging the role of θ and τ) yield the inequality of the theorem. The following corollary is an obvious consequence of Theorem 5 applied with $p=2$.

Corollary. There is an absolute constant $c>0$ such that every real trigonometric polynomial of the form

$$
Q(t)=a_{0}+\sum_{k=1}^{n}\left(a_{k} \cos k t+b_{k} \sin k t\right)
$$

has at least one zero in the strip $\{z \in \mathbf{C} \mid \operatorname{Im} z<c r\}$ assuming

$$
r=r(Q):=n \frac{\sum_{k=1}^{n}\left(a_{k}^{2}+b_{k}^{2}\right)}{\sum_{k=1}^{n} k^{2}\left(a_{k}^{2}+b_{k}^{2}\right)} \leq 1 .
$$

References

[1] R. P. Boas, Entire Functions, Academic Press (New York, 1954).
[2] P. Borwein and T. Erdélyi, Sharp Markov-Bernstein type inequalities for classes of polynomials with restricted zeros, Constr. Approx., 10 (1994), 411-425.
[3] T. Erdélyi, Markov-type estimates for certain classes of constrained polynomials, Constr. Approx., 5 (1989), 347-356.
[4] T. Erdélyi, Markov-Bernstein type inequalities for constrained polynomials with real versus complex coefficients, Journal d'Analyse Math., 74 (1998), 165-181.
[5] T. Erdélyi, Markov-type inequalities for constrained polynomials with complex coefficients, Ill. J. Math., 42 (1998), 544-563.
[6] G. G. Lorentz, The degree of approximation by polynomials with positive coefficients, Math. Ann., 151 (1963), 239-251.

DEPARTMENT OF MATHEMATICS
TEXAS A\&M UNIVERSITY
COLLEGE STATION, TX 77843
U. S. A.

E-MAIL: TAMAS.ERDELYI@MATH.TAMU.EDU
MATHEMATICAL INSTITUTE
OF THE HUNGARIAN ACADEMY OF SCIENCES
H-1364 BUDAPEST, P. O. B. 127
E-MAIL: SZABADOS@MATH-INST.HU

[^0]: ${ }^{1}$ Research supported, in part, by NSF Grant No. DMS-9623156.
 ${ }^{2}$ Research supported by OTKA No. T022943 and T023441.

