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Abstract. A very short constructive proof is given for the unit circle analogue of the “Favard

Theorem” on the orthogonality of a system of polynomials satisfying a Szegő type recurrence
relation.

In what follows we will adopt the following notation. D is the open unit disk, that is
D = {z ∈ CCC : |z| < 1}, T = ∂D is the unit circle. For a given polynomial Πk of degree

k its reverse Π∗
k is defined by Π∗

k(z) = zkΠk(1/z). Let {ϕn(dµ)
∞
n=0} be the orthonormal

polynomials corresponding to a given finite positive Borel measure µ on T with infinite
support, that is

ϕn(dµ, z) = κn(dµ)z
n + · · ·+ ϕn(dµ, 0), κn > 0, (1)

and
1

2π

∫

T

ϕn(dµ, e
iθ)ϕm(dµ, eiθ)dµ(θ) = δnm, n,m ≥ 0. (2)

Let Φn(dµ) = ϕn(dµ)/κn(dµ) denote the monic orthogonal polynomials. Then they satisfy
the the Szegő recursion

Φn(dµ, z) = zΦn−1(dµ, z) + Φn(dµ, 0)Φ
∗
n−1(dµ, z), n = 1, 2, . . . , (3)
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where Φ0(dµ, z) = 1. It is well known that

|Φn(dµ, 0)| < 1, n = 1, 2, . . . , (4)

and

κ2
n(dµ) =

n
∑

0

|ϕk(dµ, 0)|
2 =

n
∏

1

1

1− |Φk(dµ, 0)|2
. (5)

The so called “Favard Theorem” on the real line is about the orthogonality of a system
of polynomials which satisfies a three-term recurrence with appropriate coefficients, and
its following cousin on the unit circle is also well known (cf. [3, Theorem 8.1, p. 156] and
[4, Theorem 8.3, p. 140]).

Theorem. Assume {ǫn}
∞
n=1 is a sequence of complex numbers such that |ǫn| < 1 for

n = 1, 2, . . . . Let {Φn}
∞
n=0 satisfy the Szegő recursion

Φn(z) = zΦn−1(z) + ǫnΦ
∗
n−1(z), Φ0(z) = 1, (6)

and let ϕn be defined by

ϕn(z) = κnΦn(z) where κ0 = 1 and κn = 1/

n
∏

1

√

1− |ǫk|2, n = 1, 2, . . . . (7)

Then there exists a unique finite positive Borel measure µ on T with infinite support such
that we have ϕn = ϕn(dµ), that is {ϕn}

∞
n=0 is orthonormal with respect to µ.

The purpose of this paper is to give a very short constructive proof of the above “Favard
Theorem”. The basic idea of our proof can be traced back to a series of papers by A. Máté,
P. Nevai and V. Totik where weak and strong convergence properties of 1

|ϕn|2
have been

shown to play a crucial role in a variety of problems related to the extension of Szegő’s
theory of orthogonal polynomials on the unit circle (cf. [5] and the references therein).

After the completion of the manuscript we realized that our method had been used
earlier by P. Delsarte, Y. V. Genin and Y. G. Kamp in [1, Theorem 1.5, p. 155] who consider
the matrix-valued case. Their beautiful IEEE paper must have avoided the attention
of many mathematicians, and none of the people we contacted have been aware of the
extensive use of weak convergence properties of (matrix-valued) orthogonal polynomials in
[1].

Lemma 1. Suppose {ǫn}
∞
n=1 is a sequence of complex numbers such that |ǫn| < 1 for

n = 1, 2, . . . . Let ϕn and Φn be constructed by formulas (6) and (7). Then (i) all the zeros
of ϕn are in the unit disk D, (ii) κ2

n = κ2
n−1/(1 − |Φn(0)|

2) = κ2
n−1 + |ϕn(0)|

2, and (iii)
κnϕn(z) = κn−1zϕn−1(z) + ϕn(0)ϕ

∗
n(z).

Lemma 2. Let {ϕn}
∞
n=0 be constructed by (6) and (7) with |ǫn| < 1. Then

1

2π

∫

T

ϕk(e
iθ)ϕj(eiθ)

dθ

|ϕn(eiθ)|2
= δjk, 0 ≤ j ≤ k ≤ n < ∞.
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After these two lemmas, we are ready for the

Proof of the Theorem. First we prove the existence of the measure µ. Since the functions

µn(τ) :=

∫ τ

0

dµn(θ) :=

∫ τ

0

dθ

|ϕn(eiθ)|2

are all increasing and uniformly bounded (cf. Lemma 2 applied with j = k = 0), by Helly’s
selection and convergence theorems there exist a subsequence {nk} and an increasing
function µ on [0, 2π), such that

lim
k→∞

µnk
(θ) = µ(θ)

and

lim
k→∞

1

2π

∫

T

f(eiθ)dµnk
(θ) =

∫ 2π

0

f(eiθ)dµ(θ)

for every f ∈ C(T ). Hence,

1

2π

∫

T

ϕk(e
iθ)ϕj(eiθ)dµ(θ) = lim

n→∞

1

2π

∫

T

ϕk(e
iθ)ϕj(eiθ)

dθ

|ϕn(eiθ)|2
= δkj .

The uniqueness directly follows from the unique representation of bounded linear function-
als on C(T ) (F. Riesz). �

For the sake of completeness we also include the proof of the two lemmas.

Proof of Lemma 1. (i) We will use induction to prove that all zeros of Φ∗
n(z) are in {z :

|z| > 1}. If n = 1 then Φ1(z) = z+ ǫ1 so Φ∗
1(z) = ǫ1z+1 and |−1/ǫ1| > 1 because |ǫ1| < 1.

Hence (i) is true for n = 1. Suppose (i) holds for n = k then |Φk(z)/Φ
∗
k(z)| ≤ 1 because

Φ∗
k(z) 6= 0 on the closed unit disk D∪T and |Φk(z)/Φ

∗
k(z)| = 1 on T. Hence, using |ǫk| < 1

and the reverse of (6) we obtain

Φ∗
k+1(z) = Φ∗

k(z)(1 + ǫkzΦk(z)/Φ
∗
k(z)) 6= 0, |z| ≤ 1.

(ii) By definition, κ2
n = κ2

n−1/(1− |ǫn|
2). In view of (6) Φn(0) = ǫn so that

κ2
n = κ2

n−1 + κ2
n|Φn(0)|

2 = κ2
n−1 + |ϕn(0)|

2.

(iii) By (6) we have Φn(0) = ǫn and

Φn(z) = zΦn−1(z) + Φn(0)Φ
∗
n−1(z).

Taking the reverse of Φn in the above formula we obtain

Φ∗
n(z) = Φ∗

n−1(z) + Φn(0)zΦn−1(z).
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Eliminating Φ∗
n−1 from above two formulas we get

Φn(z) = zΦn−1(z)[1− |Φn(0)|
2] + Φn(0)Φ

∗
n(z).

Noting that 1 − |Φn(0)|
2 = κ2

n−1/κ
2
n and κnΦn = ϕn, we finally obtain κnϕn(z) =

κn−1zϕn−1(z) +ϕn(0)ϕ
∗
n(z). �

Proof of Lemma 2. This is based on the proof of [1, Theorem 5.2.1, p. 198-199], and it
uses backward induction for k = n, n− 1, . . . ,1,0. For k = n we have

1

2π

∫

T

|ϕn(e
iθ)|2

dθ

|ϕn(eiθ)|2
= 1.

For 0 ≤ j ≤ n− 1 we obtain

1

2π

∫

T

ϕn(e
iθ)ϕj(eiθ)

dθ

|ϕn(eiθ)|2
=

1

2π

∫

T

ϕj(eiθ)

ϕn(eiθ)
dθ

=
1

2π

∫

T

e(n−j)iθϕ∗
j (e

iθ)

ϕ∗
n(e

iθ)
dθ =

e(n−j)iθϕ∗
j (e

iθ)

ϕ∗
n(e

iθ)

∣

∣

∣

∣

z=0

= 0,

since by (i) in Lemma 1 ϕ∗
n(z) 6= 0 (|z| ≤ 1) and so zn−jϕ∗

j (z)/ϕ
∗
n(z) is analytic in |z| ≤ 1

and it vanishes at 0. Now assuming that the lemma holds for some k ≤ n, that is

1

2π

∫

T

ϕk(e
iθ)ϕj(eiθ)

dθ

|ϕn(eiθ)|2
= δjk, 0 ≤ j ≤ k,

we will to prove the lemma for k−1. From (iii) of Lemma 1 and from the above orthogonality
we obtain

κ2
k

2π

∫

T

|ϕk(e
iθ)|2

dθ

|ϕn(eiθ)|2

=
κ2
k−1

2π

∫

T

|ϕk−1(e
iθ)|2

dθ

|ϕn(eiθ)|2
+

|ϕk(0)|
2

2π

∫

T

|ϕ∗
k(e

iθ)|2
dθ

|ϕn(eiθ)|2
.

Noting that |ϕ∗
k(z)| = |ϕk(z)| on T and applying (ii) of Lemma 1, we get

1

2π

∫

T

|ϕk−1(e
iθ)|2

dθ

|ϕn(eiθ)|2
=

κ2
k − |ϕk(0)|

2

κ2
k−1

= 1.

On the other hand, for 0 ≤ j ≤ k − 2 we have

κk−1

2π

∫

T

ϕk−1(e
iθ)ϕj(eiθ)

dθ

|ϕn(eiθ)|2

=
κk

2π

∫

T

ϕk(e
iθ)eiθϕj(eiθ)

dθ

|ϕn(eiθ)|2
−

ϕk(0)

2π

∫

T

ϕ∗
k(e

iθ)eiθϕj(eiθ)
dθ

|ϕn(eiθ)|2

= −
ϕk(0)

2π

∫

T

ϕk(eiθ)ϕ
∗
j (e

iθ)e(k−j−1)iθ dθ

|ϕn(eiθ)|2
= 0.
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This completes this proof. �

It is possible to prove Lemma 2 without induction as well. Such a proof, however,
requires the intruduction of other solutions of the matrix version of the recurrence equation
(3), and, consequently, the proof becomes somewhat longer.

It is our pleasure to express our appreciation to Yves Genin, William B. Jones, Alphonse
Magnus, Francisco Marcellán, and Vilmos Totik for their comments on the above approach
to the proof of the “Favard Theorem” on the unit cirle.

Finally, we hope that the readers of this paper will move on to study [1] by P. Delsarte,
Y. V. Genin and Y. G. Kamp which is a rich source of ideas that have not fully been
exploited yet by the community of experts on orthogonal polynomials.
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5. P. Nevai, Géza Freud, orthogonal polynomials and Christoffel functions. A case study, J. Approxima-
tion Th. 48 (1986), 3–167.

Department of Mathematics, The Ohio State University, Columbus, Ohio 43210, U. S. A.

School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332, U.

S. A.

5


