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Abstract. We show that there is an absolute constant c > 1/2 such that the Mahler measure

of the Fekete polynomials fp of the form

fp(z) :=

p−1
∑

k=1

(

k

p

)

zk ,

(where the coefficients are the usual Legendre symbols) is at least c
√
p for all sufficiently large

primes p. This improves the lower bound
(

1

2
− ε

)√
p known before for the Mahler measure

of the Fekete polynomials fp for all sufficiently large primes p ≥ cε. Our approach is based

on the study of the zeros of the Fekete polynomials on the unit circle.

1. Introduction and Notation

Let D be the open unit disk of the complex plane. Its boundary, the unit circle of the
complex plane, is denoted by ∂D. Let

Kn :=

{
Pn : Pn(z) =

n∑

k=0

akz
k, ak ∈ C , |ak| = 1

}
.

The class Kn is often called the collection of all (complex) unimodular polynomials of
degree n. Let

Ln :=

{
Pn : Pn(z) =

n∑

k=0

akz
k, ak ∈ {−1, 1}

}
.

The class Ln is often called the collection of all Littlewood polynomials of degree n. By
Parseval’s formula, ∫ 2π

0

|Pn(e
it)|2 dt = 2π(n+ 1)
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for all Pn ∈ Kn. Therefore

min
z∈∂D

|Pn(z)| <
√
n+ 1 < max

z∈∂D
|Pn(z)|

for all Pn ∈ Kn and n ≥ 1. An old problem (or rather an old theme) is the following.
Let α < β be real numbers. The Mahler measure M0(P, [α, β]) is defined for bounded

measurable functions P (eit) defined on [α, β] as

M0(P, [α, β]) := exp

(
1

β − α

∫ β

α

log |P (eit)| dt
)

.

It is well known that
M0(P, [α, β]) = lim

q→0+
Mq(P, [α, β]) ,

where, for q > 0,

Mq(P, [α, β]) :=

(
1

β − α

∫ β

α

∣∣P (eit)
∣∣q dt

)1/q

.

It is a simple consequence of the Jensen formula that

M0(P ) := M0(P, [0, 2π]) = |c|
n∏

k=1

max{1, |zk|}

for every polynomial of the form

P (z) = c

n∏

k=1

(z − zk) , c, zk ∈ C .

P. Borwein and Lockhart [B-01] investigated the asymptotic behavior of the mean value of
normalized Lq norms of Littlewood polynomials for arbitrary q > 0. Using the Lindeberg
Central Limit Theorem and dominated convergence, they proved that

lim
n→∞

1

2n+1

∑

f∈Ln

(Mq(f, [0, 2π]))
q

nq/2
= Γ

(
1 +

q

2

)

for every q > 0. In [C-15] we proved that

lim
n→∞

1

2n+1

∑

f∈Ln

Mq(f, [0, 2π])

n1/2
=
(
Γ
(
1 +

q

2

))1/q

for every q > 0. We also proved analogous results for the Mahler measure. Namely, using

the notation f̂(z) := max{|f(z)|, n−1}, we have

lim
n→∞

1

2n+1

∑

f∈Ln

log

(
M0(f̂ , [0, 2π])

n1/2

)
= −γ/2
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and

lim
n→∞

1

2n+1

∑

f∈Ln

M0(f, [0, 2π])

n1/2
= e−γ/2 ,

where

γ := lim
n→∞

(
n∑

k=1

1

k
− log n

)
= 0.577215 . . .

is the Euler constant and e−γ/2 = 0.749306 . . . . These are analogues of the results proved
earlier by Choi and Mossinghoff [C-11] for polynomials in Kn.

Finding polynomials with suitably restricted coefficients and maximal Mahler measure
has interested many authors. Beller and Newman [B-73] constructed unimodular polyno-
mials of degree n whose Mahler measure is at least

√
n − c/ logn. For a prime p the p-th

Fekete polynomial is defined as

fp(z) :=

p−1∑

k=1

(
k

p

)
zk ,

where
(
k

p

)
=





1, if x2 ≡ k (mod p) for an x 6≡ 0 (mod p) ,

0, if p divides k ,

−1, otherwise

is the usual Legendre symbol. Note that gp(z) := fp(z)/z is a Littlewood polynomial of
degree p− 2, and has the same Mahler measure as fp.

Montgomery [M-80] proved the following fundamental result.

Theorem 1.1. There are absolute constants c1 > 0 and c2 > 0 such that

c1
√
p log log p ≤ max

z∈∂D
|fp(z)| ≤ c2

√
p log p .

In [E-07] we proved the following result.

Theorem 1.2. For every ε > 0 there is a constant cε such that

M0(fp, [0, 2π]) ≥
(
1

2
− ε

)√
p

for all primes p ≥ cε.

From Jensen’s inequality,

M0(fp, [0, 2π]) ≤ M2(fp, [0, 2π]) =
√
p− 1 .
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However, as it was observed in [E-07], 1
2 − ε in Theorem 1.2 cannot be replaced by 1− ε.

Indeed, if p ≥ 3 is a prime and p = 4m+ 1, then fp is self-reciprocal, that is, zpfp(1/z) =
fp(z), and hence

fp(e
2it) = eipt

(p−3)/2∑

k=0

ak cos((2k + 1)t), ak ∈ {−2, 2} .

Therefore a result of Littlewood [L-66] implies that

M0(fp) ≤
1

2π

∫ 2π

0

|fp(eiu)| du =
1

2π

∫ π

0

|fp(e2it)| 2dt =
1

2π

∫ 2π

0

|fp(e2it)| dt

≤ (1− ε0)
√
p− 1

with some absolute constant ε0 > 0. If p ≥ 3 is a prime and p = 4m + 3, then fp is
anti-self-reciprocal, that is, zpfp(1/z) = −fp(z), and hence

ifp(e
2it) = eipt

(p−3)/2∑

k=0

ak sin((2k + 1)t), ak ∈ {−2, 2} .

Therefore a result of Littlewood [L-66] implies that

M0(fp, [0, 2π]) ≤ 1

2π

∫ 2π

0

|ifp(eiu)| du =
1

2π

∫ π

0

|ifp(e2it)| 2dt =
1

2π

∫ 2π

0

|ifp(e2it)| dt

≤ (1− ε0)
√

p− 1

with some absolute constant ε0 > 0.

It is an interesting open question whether there is a sequence of Littlewood polynomials
(fn) such that for an arbitrary ε > 0, and n large enough,

M0(fn, [0, 2π]) ≥ (1− ε)
√
n .

In [E-11] Theorem 1.2 was extended to subarcs of the unit circle.

Theorem 1.3. There exists an absolute constant c1 > 0 such that

M0(fp, [α, β]) ≥ c1p
1/2

for all primes p and for all α, β ∈ R such that (log p)3/2p−1/2 ≤ β − α ≤ 2π.

In [E-12] we gave an upper bound for the average value of |fp(z)|q over any subarc I of
the unit circle, valid for all sufficiently large primes p and all exponents q > 0.
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Theorem 1.4. There exists a constant c2(q, ε) depending only on q > 0 and ε > 0 such

that

Mq(fp, [α, β]) ≤ c2(q, ε)p
1/2 ,

for all primes p and for all α, β ∈ R such that 2p−1/2+ε ≤ β − α ≤ 2π.

We remark that a combination of Theorems 1.3 and 1.4 shows that there is an absolute
constant c1 > 0 and a constant c2(q, ε) > 0 depending only on q > 0 and ε > 0 such that

c1p
1/2 ≤ Mq(fp, [α, β]) ≤ c2(q, ε)p

1/2

for all primes p and for all α, β ∈ R such that (log p)3/2p−1/2 ≤ 2p−1/2+ε ≤ β − α ≤ 2π.
The Lq norm of polynomials related to Fekete polynomials were studied in several recent

papers. See [B-01b], [B-02], [B-04], [G-16], [J-13a], and [J-13b], for example. An interesting
extremal property of the Fekete polynomials is proved in [B-01c].

Fekete might have been the first one to study analytic properties of the Fekete polynomi-
als. He had an idea of proving non-existence of Siegel zeros (that is, real zeros “especially
close to 1”) of Dirichlet L-functions from the positivity of Fekete polynomials on the in-
terval (0, 1), where the positivity of Fekete polynomials is often referred to as the Fekete
Hypothesis. There were many mathematicians trying to understand the zeros of Fekete
polynomials including Fekete and Pólya [F-12], Pólya [P-19], Chowla [C-35], Heilbronn
[H-37], Montgomery [M-80], Baker and Montgomery [B-90], and Jung and Shen [J-16].

Baker and Montgomery [B-90] proved that fp has a large number of zeros in (0, 1) for
almost all primes p, that is, the number of zeros of fp in (0, 1) tends to ∞ as p tends to
∞, and it seems likely that there are, in fact, about log log p such zeros.

Conrey, Granville, Poonen, and Soundararajan [C-00] showed that fp has asymptotically
κp zeros on the unit circle, where 0.500668 < κ < 0.500813.

An interesting recent paper [B-17] studies power series approximations to Fekete poly-
nomials.

It is conjectured, see [B-02] for instance, that there are sequences of flat Littlewood
polynomials Pn ∈ Ln satisfying

c1
√
n+ 1 ≤ |Pn(z)| ≤ c2

√
n+ 1 , z ∈ ∂D ,

with absolute constants c1 > 0 and c2 > 0. However, the lower bound part of this
conjecture, by itself, seems hard, and no sequence is known that satisfies just the lower
bound. A sequence of Littlewood polynomials satisfying just the upper bound is given
by the Rudin-Shapiro polynomials. They appear in Harold Shapiro’s 1951 thesis [S-51] at
MIT and are sometimes called just Shapiro polynomials. They also arise independently in
a paper by Golay (1951). They are remarkably simple to construct and are a rich source
of counterexamples to possible conjectures. The Rudin-Shapiro polynomials are defined
recursively as follows:

P0(z) := 1 , Q0(z) := 1 ,

Pn+1(z) := Pn(z) + z2
n

Qn(z) ,

Qn+1(z) := Pn(z)− z2
n

Qn(z) , n = 0, 1, 2, . . . .
5



Note that both Pn and Qn are polynomials of degree N − 1 with N := 2n having each
of their coefficients in {−1, 1}. In [E-16] we showed that the Mahler measure and the
maximum norm of the Rudin-Shapiro polynomials on the unit circle of the complex plane
have the same size.

Theorem 1.5. Let Pn and Qn be the n-th Rudin-Shapiro polynomials defined in Section

1. There is an absolute constant c1 > 0 such that

M0(Pn, [0, 2π]) = M0(Qn, [0, 2π]) ≥ c1
√
N ,

where

N := 2n = deg(Pn) + 1 = deg(Qn) + 1 .

2. New Result

In this paper we improve the factor
(
1
2 − ε

)
in Theorem 1.2 to an absolute constant

c > 1/2. Namely we prove the following.

Theorem 2.1. There is an absolute constant c > 1/2 such that

M0(fp) ≥ c
√
p

for all sufficiently large primes.

3. Lemmas

To prove the theorem we need a few lemmas. In this section first we state all the
lemmas we need. Lemmas 3.1, 3.4, 3.5, 3.6, and 3.8 are known results, and we give give
the references to them before stating these lemmas in this section. The remaining lemmas
are proved in Section 4. For a natural number p let

ζp := exp

(
2πi

p

)

be the first p-th root of unity. Our first lemma formulates a characteristic property of the
Fekete polynomials. A simple proof is given in [B-02, pp. 37-38].

Lemma 3.1 (Gauss). We have

fp(ζ
j
p) =

√(−1

p

)
p , j = 1, 2, . . . , p− 1 ,

and fp(1) = 0.

Our starting idea is the following observation.
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Lemma 3.2. We have 


p−1∏

j=0

|Q(ζjp)|




1/p

≤ 2M0(Q)

for all polynomials Q of degree at most p with complex coefficients.

However, we cannot use this lemma to prove Theorem 2.1. What we will need is the
following extension of Lemma 3.2. It may look somewhat more technical than Lemma 3.2,
but it turns out to be a useful tool to prove our main result in this paper.

Lemma 3.3. Let 0 < η ≤ π/2 be fixed. Suppose a polynomial Q of degree at most p with

complex coefficients has at least k zeros

bj = eitj , j = 1, 2, . . . , k ,

such that

tj ∈ [0, 2π) \
p−1⋃

ν=0

(
(2ν + 1)π

p
− η

p
,

(2ν + 1)π

p
+

η

p

)
.

We have 


p−1∏

j=0

|Q(ζjp)|




1/p

≤ 2
(
cos

η

2

)k/p
M0(Q) .

In the proof of Theorem 2.1 we need one of the following two results. For proofs see
[B-97a] and [B97-b], respectively.

Lemma 3.4. There is an absolute constant c > 0 such that every Q ∈ Kn has at most

c
√
n real zeros.

Lemma 3.5. There is an absolute constant c > 0 such that every Q ∈ Ln has at most

c log2 n

log log n
zeros at 1.

The large sieve of number theory [M-78] asserts the following.

Lemma 3.6. If

P (z) =

n∑

k=−n

akz
k , ak ∈ C ,

is a trigonometric polynomial of degree at most n,

0 ≤ t1 < t2 < · · · < tm ≤ 2π ,

and

δ := min {t2 − t1, t3 − t2, . . . , tm − tm−1, 2π − (tm − t1)} ,
7



then
m∑

j=1

∣∣P
(
eitj
)∣∣2 ≤

(
2n+ 1

2π
+ δ−1

)∫ 2π

0

∣∣P
(
eit
)∣∣2 dt .

It turns out to be fairly easy to show that at least half of the zeros of fp are on the unit
circle ∂D. First note that

Fp(z) := z−p/2fp(z) =

(p−1)/2∑

a=1

(
a

p

)(
za−p/2 +

(−1

p

)
zp/2−a

)
.

Observe also that

(3.1) Fp(e
2iπt) :=





2

(p−1)/2∑

a=1

(
a

p

)
cos((2a− p)πt) if p ≡ 1 (mod 4)

2i

(p−1)/2∑

a=1

(
a

p

)
sin((2a− p)πt) if p ≡ 3 (mod4) .

Define Hp(t) := Fp(e
2iπt) if p ≡ 1 (mod 4), and Hp(t) := −iFp(e

2iπt) if p ≡ 3 (mod 4).
By (3.1) we see that Hp(t) is a periodic, continuous, real-valued function when t is real.

Lemma 3.7. Let p be a prime. There are at least (p−3)/2 values of k ∈ {0, 1, . . . , p−1}
for which Hp has a zero between k/p and (k + 1)/p.

Our next lemma is Theorem 4 in [C-00]. For a proof of Lemma 3.8 below see Section 6
in [C-00].

Lemma 3.8. Let p be a prime. For every fixed real number δ

∣∣∣∣
{
k ∈ {1, 2, . . . , p} : Hp

(
k + 1/2

p

)
< δ

√
p

}∣∣∣∣ ∼ cδp

as p → ∞, where

cδ =
1

2
+

1

π

∫ ∞

0

sin(δπx)C(x)
dx

x
, C(x) :=

∞∏

k=0

cos2
(

2x

2k + 1

)
.

Moreover c−δ = 1− cδ for all δ > 0.

Lemma 3.9. For every ε > 0 there is a δ > 0 such that

∣∣∣∣
{
k ∈ {1, 2, . . . , p} :

∣∣∣∣Hp

(
k + 1/2

p

)∣∣∣∣ ≥ δ
√
p

}∣∣∣∣ ≥ (1− ε)p

for all sufficiently large primes p ≥ Nε.
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Lemma 3.10. Let γ > 0 be a real number. Let the subarcs Ik of the unit circle ∂D be

defined by

Ik :=

{
eit :

∣∣∣∣t−
(2k + 1)π

p

∣∣∣∣ ≤
π

2p

}
, k = 0, 1, . . . , p− 1 .

We have

m :=

∣∣∣∣
{
k ∈ {0, 1, . . . , p− 1} : max

z∈Ik
|f ′

p(z)| ≥ γp3/2
}∣∣∣∣ ≤ γ−2p

for all primes p ≥ 3.

Lemma 3.11. Given η > 0 let the subarcs Ik,η of the unit circle ∂D be defined by

Ik,η :=

{
eit :

∣∣∣∣t−
(2k + 1)π

p

∣∣∣∣ <
η

p

}
, k = 0, 1, . . . , p− 1 .

For every ε > 0 there is an η > 0 such that

|{k ∈ {0, 1, . . . , p− 1} : fp(z) 6= 0 for all z ∈ Ik,η}| ≥ (1− ε)p

for all sufficiently large primes p ≥ Nε.

4. Proofs of the Lemmas

Proof of Lemma 3.2. Let

Q(z) = c
m∏

j=1

(z − aj) , c, aj ∈ C ,

with some m ≤ p. Without loss of generality we may assume that c = 1. Note that

|apj − 1|1/p ≤ (2|aj|p)1/p = 21/p|aj| , |aj| ≥ 1 ,

while
|apj − 1|1/p ≤ 21/p , |aj | < 1 .

Multiplying these inequalities for j = 1, 2, . . . , m, we obtain




p−1∏

j=0

|Q(ζjp)|




1/p

=




m∏

j=0

|apj − 1|




1/p

≤ 2m/p
m∏

j=0

max{|aj|, 1} ≤ 2M0(Q) .

�

Proof of Lemma 3.3. Let

Q(z) = c

m∏

j=1

(z − aj) , c, aj ∈ C ,
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with some m ≤ p, where aj = bj , j = 1, 2, . . . , k. Without loss of generality we may
assume that c = 1. Note that

|apj − 1|1/p ≤ 21/pmax{|aj |, 1} , j = k + 1, k + 2, . . . , m ,

and

|apj − 1|1/p ≤
(
2 cos

η

2

)1/p
=
(
2 cos

η

2

)1/p
|aj| , j = 1, 2, . . . , k ,

Multiplying these inequalities for j = 1, 2, . . . , m, we obtain




p−1∏

j=0

|Q(ζjp)|




1/p

=




m∏

j=0

|apj − 1|




1/p

≤ 2m/p
(
cos

η

2

)k/p m∏

j=0

max{|aj|, 1}

≤ 2
(
cos

η

2

)k/p
M0(Q) .

�

Proof of Lemma 3.7. By Lemma 3.1 If ζp = e2iπ/p then, for all k not divisible by p we
have |fp(ζkp )| =

√
p, and hence |Fp(ζ

k
p )| =

√
p. Moreover

Fp(ζ
k
p ) = (ζkp )

−p/2

p−1∑

a=1

(
a

p

)
ζakp = (−1)k

(
k

p

) p−1∑

a=1

(
ak

p

)
ζakp = (−1)k

(
k

p

)
Fp(ζp) .

Therefore if

(
k

p

)
=

(
k + 1

p

)
, then Hp

(
k

p

)
and Hp

(
k + 1

p

)
have different signs. Since

Hp(t) is real-valued and continuous on the real line, it must have a zero between k/p and
(k + 1)/p by the Intermediate Value Theorem. However, by Lemma 2 in [C-00] we have

∣∣∣∣
{
k ∈ {1, 2, . . . , p− 2} :

(
k

p

)
=

(
k + 1

p

)}∣∣∣∣ =
p− 3

2
,

and hence the values of k ∈ {0, 1, . . . , p − 1} for which Hp has a zero between k/p and
(k + 1)/p is at least (p− 3)/2. �

Proof of Lemma 3.9. Note that

Iδ :=

∫ ∞

0

sin(δπx)C(x)
dx

x

converges for every fixed δ > 0, and

lim
δ→0+

Iδ = 0 .

Indeed, there is an absolute constant c1 > 0 such that

C(x) ≤ c12
−3x/π , x ≥ 1 ,

10



as ∣∣∣∣cos
(

2x

2k + 1

)∣∣∣∣ <
1

2
,

3x

π
< 2k + 1 <

6x

π
.

Also, ∣∣∣∣
sin(δπx)

x

∣∣∣∣ ≤ δπ , x > 0 .

Therefore

Iδ ≤
∫ ∞

0

∣∣∣∣
sin(δπx)

x

∣∣∣∣ |C(x)| dx ≤ Aδ +Bδ ,

where

Aδ :=

∫ δ−1/2

0

∣∣∣∣
sin(δπx)

x

∣∣∣∣ |C(x)| dx ≤ δ−1/2δπ ≤ δ1/2π ,

and

Bδ :=

∫ ∞

δ−1/2

|C(x)|
x

dx ≤ δ1/2
∫ ∞

δ−1/2

c12
−3x/π dx ≤ δ1/2

c1π

3 log 2
.

So by choosing δ > 0 so that

Iδ ≤ Aδ +Bδ ≤ δ1/2π + δ1/2
c1π

3 log 2
≤ πε

2
,

the lemma follows from Lemma 3.8. �

Proof of Lemma 3.10. Suppose there are 0 ≤ k1 < k2 < · · · < km ≤ p− 1 such that

tj ∈ Ikj
, |f ′

p(tj)| ≥ γp3/2 , j = 1, 2, . . . , m .

Then
0 < t1 < t2 < · · · < tm < 2π ,

and
δ := min {t2 − t1, t3 − t2, . . . , tm − tm−1, 2π − (tm − t1)} ≥ π

p
.

Hence by the large sieve inequality formulated in Lemma 3.6 and the Parseval formula
applied to gp(z) := z(3−p)/2f ′

p(z) we get

mγ2p3 ≤
m∑

j=1

∣∣f ′
p

(
eitj
)∣∣2 =

m∑

j=1

∣∣gp
(
eitj
)∣∣2

≤
(
2(p− 1)/2 + 1

2π
+ δ−1

)∫ 2π

0

|gp(eit)|2 dt

=

(
2(p− 1)/2 + 1

2π
+ δ−1

)∫ 2π

0

|f ′
p(e

it)|2 dt

≤
( p

2π
+

p

π

)
2π

(p− 1)p(2p− 1)

6
= 3p

(p− 1)p(2p− 1)

6

≤ p4 .
11



�

Proof of Lemma 3.11. Let ε > 0. By Lemma 3.9 there is a δ > 0 depending only on ε > 0
such that

(4.1)
∣∣∣
{
k ∈ {1, 2, . . . , p} : |fp(ei(2k+1)π/p)| > δ

√
p
}∣∣∣ ≥ (1− ε/2)p

for all sufficiently large primes p ≥ Nε. Let γ := (ε/2)−1/2. By Lemma 3.10 we have

(4.2)

∣∣∣∣
{
k ∈ {0, 1, . . . , p− 1} : max

z∈Ik,π/2

|f ′
p(z)| ≤ γp3/2

}∣∣∣∣ ≥ p− γ−2p = (1− ε/2)p .

Now let

Ap,δ,γ :=

{
k ∈ {1, 2, . . . , p} : |fp(ei(2k+1)π/p)| > δ

√
p , max

z∈Ik,π/2

|f ′
p(z)| ≤ γp3/2

}
.

By (4.1) and (4.2) we obtain

(4.3) |Ap,δ,γ| ≥ (1− ε)p .

Let 0 < η < min{δ/γ, π/2}. Observe that k ∈ Ap,δ,γ implies that fp does not vanish in
Ik,η. Indeed, z := eit ∈ Ik,η implies

∣∣∣∣t−
(2k + 1)π

p

∣∣∣∣ <
η

p
,

and hence

|fp(z)| ≥ |fp(ei(2k+1)π/p)| − |fp(z)− fp(e
i(2k+1)π/p)|

>δ
√
p−

∣∣∣∣∣

∫ t

(2k+1)π/p

f ′
p(e

iτ )eiτ dτ

∣∣∣∣∣

≥ δ
√
p−

∫ t

(2k+1)π/p

|f ′
p(e

iτ )||eiτ | dτ ≥ δ
√
p− η

p
γp3/2

>δ
√
p− δ

√
p = 0

for all sufficiently large primes p ≥ Nε, and the lemma follows from (4.3). �

Proof of Theorem 2.1

Now we are ready to prove the theorem.

Proof of Theorem 2.1. As in Lemma 3.11 let the subarcs Ik,η of the unit circle ∂D be
defined by

Ik,η :=

{
eit :

∣∣∣∣t−
(2k + 1)π

p

∣∣∣∣ <
η

p

}
, k = 0, 1, . . . , p− 1 .
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It follows from Lemma 3.11 that for ε := 1/8 there is an η > 0 such that

|{k ∈ {0, 1, . . . , p− 1} : fp(z) 6= 0 for all z ∈ Ik,η}| ≥
7p

8

for all sufficiently large primes p. Combining this with Lemma 3.7 we have that

|{k ∈ {0, 1, . . . , p− 1} : fp has a zero on Ik,π and fp(z) 6= 0 for all z ∈ Ik,η}| ≥ p/4

for all sufficiently large primes p. Hence the assumptions of Lemma 3.3 are satisfied with
Q := fp and k ≥ p/4 for all sufficiently large primes. Suppose that 1 is a zero of fp with

multiplicity m = m(p). By either Lemma 3.4 or Lemma 3.5 we have m = O(p1/2). Let
gp(z) := fp(z)/hm(z) with hm(z) := (z−1)m. Note that |gp(1)| is a nonzero integer, hence
|gp(1)| ≥ 1. Also, hm is monic and has all its zeros on the unit circle, hence M0(hm) = 1.
Combining these with the multiplicative property of the Mahler measure and Lemma 3.3
applied to gp with k ≥ p/4, we obtain

M0(fp) = M0(gp)M0(hm) = M0(gp)

≥
(
2
(
cos

η

2

)k/p)−1
(
|gp(1)|

p−1∏

k=1

|gp(ζkp )|
)1/p

≥
(
2
(
cos

η

2

)1/4)−1
(
|gp(1)|

p−1∏

k=1

|gp(ζkp )|
)1/p

.

(4.4)

Now observe that Lemma 3.1 implies

(4.5) |gp(ζkp )| = |fp(ζkp )| = p1/2 , k = 1, 2, . . . , p− 1 ,

while

(4.6)

∣∣∣∣∣

p−1∏

k=1

(ζkp − 1)

∣∣∣∣∣ =
∣∣∣∣∣

p−1∑

k=0

1k

∣∣∣∣∣ = p .

Also, m = O(p1/2) implies that

(4.7) lim
p→∞

p−(1/2+m)/p = 1 .

Using (4.4)–(4.7) and the observation |gp(1)| ≥ 1, we conclude that there are absolute
constants

c1 :=

(
2
(
cos

η

2

)1/4)−1

> c2 >
1

2
13



such that

M0(fp) ≥
(
2
(
cos

η

2

)1/4)−1
(
|gp(1)|

p−1∏

k=1

|gp(ζkp )|
)1/p

≥ c1

(
|gp(1)|

p−1∏

k=1

∣∣∣∣∣
fp(ζ

k
p )

(ζkp − 1)m

∣∣∣∣∣

)1/p

≥ c1

(
p−1∏

k=1

∣∣∣∣∣
fp(ζ

k
p )

(ζkp − 1)m

∣∣∣∣∣

)1/p

= c1
(p1/2)(p−1)/p

pm/p
= c1p

(p−1)/(2p)−m/p = c1p
1/2p−(1/2+m)/p

≥ c2
√
p

for all sufficiently large primes p. �

5. Acknowledgment. The author thanks Stephen Choi for his careful reading of the
paper and for his comments.
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