ON THE UNIQUENESS OF THE SOLUTION TO SOME POLYNOMIAL EQUATIONS

Franck Beaucoup and Tamás Erdélyi

Problem. Let $n>1$ be an integer. Let $k_{j}>1$ for each $j=1,2, \ldots, n$. Show that the equation

$$
\prod_{j=1}^{n}\left(1-x^{k_{j}}\right)=1-x
$$

has exactly one solution in the interval $(0,1)$.
Proposed solution. Since $n>1$, the derivative of the right hand side of the equation vanishes at 0 and 1 , so the existence of at least one solution in $(0,1)$ is a consequence of the Intermediate Value Theorem. We have the equation A simple Application of the Intermediate Value Theorem gives that the equation always has at least one zero in the interval $(0,1)$. The non-trivial part of the solution is to show that the equation does not have more than one solution. After a substitution

$$
u=-\log (1-x), \quad e^{-u}=1-x, \quad x=1-e^{-u}
$$

we are lead to the equation

$$
\begin{aligned}
-u & =\log \prod_{j=1}^{n}\left(1-\left(1-e^{-u}\right)^{k_{j}}\right) \\
& =\sum_{j=0}^{n} \log \left(1-\left(1-e^{-u}\right)^{k_{j}}\right) \\
& =\sum_{j=0}^{n} g_{j}(u)
\end{aligned}
$$

where

$$
g_{j}(u):=\log \left(1-\left(1-e^{-u}\right)^{k_{j}}\right)
$$

Here

$$
g_{j}^{\prime}(u)=\frac{-k_{j}\left(1-e^{-u}\right)^{k_{j}-1} e^{-u}}{1-\left(1-e^{-u}\right)^{k_{j}}}
$$

We show that each g_{j}^{\prime} is decreasing on $(0, \infty)$. Indeed, using the substitution $y=1-e^{-u}$, we have

$$
g_{j}^{\prime}(u)=\frac{-k_{j} y^{k_{j}-1}(1-y)}{1-y^{k_{j}}}
$$

Hence an elementary calculus shows that $g_{j}^{\prime}(y)$ is a decreasing function of y on $(0,1]$, hence of u on $(0, \infty)$. Thus the right hand side of the equation $-u=\sum_{j=1}^{n} g_{j}(u)$ is concave down. Since $g_{j}(0)=0$, the right hand side of the equation $-u=\sum_{j=1}^{n} g_{j}(u)$ also vanishes at 0 , and the result follows.

Mitel, 350 Legget Drive Ottawa, Ontario K2K 2W7, Canada (Franck Beaucoup)
E-mail address: franck_beaucoup@mitel.com (F. Beaucoup)

Department of Mathematics, Texas A\&M University, College Station, Texas 77843, USA (Tamás Erdélyi)

E-mail address: terdelyi@math.tamu.edu (T. Erdélyi)

