ON THE DENSENESS OF $\operatorname{span}\left\{x^{\lambda_{j}}(1-x)^{1-\lambda_{j}}\right\}$ IN $C_{0}([0,1])$

Tamás Erdélyi

Abstract. Associated with a sequence $\Lambda=\left(\lambda_{j}\right)_{j=0}^{\infty}$ of distinct exponents $\lambda_{j} \in[0,1]$, we define

$$
H(\Lambda):=\operatorname{span}\left\{x^{\lambda_{0}}(1-x)^{1-\lambda_{0}}, x^{\lambda_{1}}(1-x)^{1-\lambda_{1}}, \ldots\right\} \subset C([0,1])
$$

Answering a question of Giuseppe Mastroianni, we show that $H(\Lambda)$ is dense in $C_{0}[0,1]:=\{f \in C[0,1]: f(0)=f(1)=0\}$ in the uniform norm on $[0,1]$ if and only if

$$
\sum_{j=0}^{\infty}\left(1 / 2-\left|1 / 2-\lambda_{j}\right|\right)=\infty
$$

Associated with a sequence $\Lambda=\left(\lambda_{j}\right)_{j=0}^{\infty}$ of distinct exponents $\lambda_{j} \in[0,1]$, we define

$$
H_{n}(\Lambda):=\operatorname{span}\left\{x^{\lambda_{0}}(1-x)^{1-\lambda_{0}}, x^{\lambda_{1}}(1-x)^{1-\lambda_{1}}, \ldots, x^{\lambda_{n}}(1-x)^{1-\lambda_{n}}\right\} \subset C([0,1])
$$

and

$$
H(\Lambda):=\bigcup_{n=0}^{\infty} H_{n}(\Lambda)=\operatorname{span}\left\{x^{\lambda_{0}}(1-x)^{1-\lambda_{0}}, x^{\lambda_{1}}(1-x)^{1-\lambda_{1}}, \ldots\right\} \subset C([0,1])
$$

In June, 2005, G. Mastroianni approached me with the following question. Let $\Lambda=\left(\lambda_{j}\right)_{j=0}^{\infty}$ be an enumeration of the rational numbers in $(0,1)$. Is it true that $H(\Lambda)$ is dense in $C_{0}([0,1]):=\{f \in C([0,1]): f(0)=f(1)=0\}$ in the uniform norm on $[0,1]$? In this note we answer his question by proving the following result.

Theorem. Let $\Lambda=\left(\lambda_{j}\right)_{j=0}^{\infty}$ be a sequence of exponents $\lambda_{j} \in(0,1) . H(\Lambda)$ is dense in $C_{0}([0,1])$ in the uniform norm on $[0,1]$ if and only if

$$
\begin{equation*}
\sum_{j=0}^{\infty}\left(1 / 2-\left|1 / 2-\lambda_{j}\right|\right)=\infty \tag{1}
\end{equation*}
$$

Throughout the paper we adopt the notation

$$
\|f\|_{A}:=\sup _{x \in A}|f(x)|
$$

[^0]for complex-valued functions f defined on a set A.
To prove the "if part" of the theorem, we need the lemma below. It is a well known consequence of Jensen's formula.

Lemma 1. Suppose f is a bounded analytic function on the open disk $D(a, r)$ centered at a with radius r. If $\left(z_{j}\right)_{j=0}^{\infty}$ is a sequence of distinct complex numbers such that $z_{j} \in D(a, r)$ and $f\left(z_{j}\right)=0$ for each $j=0,1, \ldots$, and

$$
\sum_{j=0}^{\infty}\left(r-\left|z_{j}-a\right|\right)=\infty
$$

then $f \equiv 0$ on $D(a, r)$.
Proof of the "if part" of the theorem. Suppose $H(\Lambda)$ is not dense in $C_{0}([0,1])$ in the uniform norm on $[0,1]$. Combining the Hahn-Banach Theorem and the Riesz Representation Theorem, we have a Borel measure with finite total variation on $[0,1]$ such that

$$
\operatorname{supp}(\mu) \cap(0,1) \neq \emptyset,
$$

and

$$
\int_{0}^{1} x^{\lambda_{j}}(1-x)^{1-\lambda_{j}} d \mu(x)=0, \quad j=0,1, \ldots
$$

Then the function

$$
f(z):=\int_{0}^{1} t^{z}(1-t)^{1-z} d \mu(t)
$$

is a bounded analytic function on the strip

$$
S:=\{z \in \mathbb{C}: 0<\operatorname{Re}(z)<1\}
$$

hence it is a bounded analytic function on the open disk $D(1 / 2,1 / 2)$ centered at $1 / 2$ with radius $1 / 2$. Since $f\left(\lambda_{j}\right)=0$ for each $j=0,1, \ldots$, and

$$
\sum_{j=0}^{\infty}\left(1 / 2-\left|1 / 2-\lambda_{j}\right|\right)=\infty
$$

Lemma 1 implies that $f \equiv 0$ on $D(1 / 2,1 / 2)$, hence by the Unicity Theorem $f \equiv 0$ on the strip S as well. Hence

$$
f(1 / 2+i y)=\int_{0}^{1} t^{1 / 2+i y}(1-t)^{1 / 2-i y} d \mu(t)=0
$$

for every $y \in \mathbb{R}$. Therefore, for every $y \in \mathbb{R}$,

$$
\begin{aligned}
0=f(1 / 2+i y) & =\int_{0}^{1} \sqrt{t(1-t)}\left(\frac{t}{1-t}\right)^{i y} d \mu(t) \\
& =\int_{-\infty}^{\infty} e^{i x y} d \nu(x)
\end{aligned}
$$

with a non-zero Borel measure ν with finite total variation on \mathbb{R}. However, this is a contradiction, see the exercise at the end of Section 2.1 of Chapter VII in [7], for instance.

Lemma 2. We have

$$
\left|y(1-y) Q^{\prime}(y)\right| \leq\left(1+9 \sum_{j=0}^{n} \lambda_{j}\right)\|Q\|_{[0,1]}
$$

for every $Q \in H_{n}(\Lambda)$ and $y \in(0,1)$.
Associated with a sequence $\Lambda=\left(\lambda_{j}\right)_{j=0}^{\infty}$ of distinct nonnegative exponents λ_{j}, we define

$$
M_{n}(\Lambda):=\operatorname{span}\left\{x^{\lambda_{0}}, x^{\lambda_{1}}, \ldots x^{\lambda_{n}}\right\}
$$

To prove Lemma 2, we need D.J. Newman's inequality [2, Theorem 6.1.1 on page 276].

Lemma 3. Let $b>0$. The inequality

$$
\left|y P^{\prime}(y)\right| \leq 9\left(\sum_{j=0}^{n} \lambda_{j}\right)\|P\|_{[0, b]}
$$

holds for every $P \in M_{n}(\Lambda)$ and $y \in(0, b]$.
Note that D.J. Newman [5] proves the above inequality with the constant 11 rather than 9.

Proof of Lemma 2. Note that every $Q \in H_{n}(\Lambda)$ is of the form

$$
\begin{equation*}
Q(x)=(1-x) P\left(\frac{x}{1-x}\right) \tag{2}
\end{equation*}
$$

with some $P \in M_{n}(\Lambda)$. Let $y \in(0,1)$. Using Lemma 3, we obtain

$$
\begin{aligned}
\left|y(1-y) Q^{\prime}(y)\right| & =\left|y(1-y)(1-y) P^{\prime}\left(\frac{y}{1-y}\right) \frac{1}{(1-y)^{2}}-y(1-y) P\left(\frac{y}{1-y}\right)\right| \\
& \leq\left|y P^{\prime}\left(\frac{y}{1-y}\right)\right|+\left|(1-y) P\left(\frac{y}{1-y}\right)\right| \\
& \leq y \frac{1-y}{y} 9\left(\sum_{j=0}^{n} \lambda_{j}\right)\|P\|_{\left[0, \frac{y}{1-y}\right]}+\left|(1-y) P\left(\frac{y}{1-y}\right)\right| \\
& \leq 9\left(\sum_{j=0}^{n} \lambda_{j}\right)(1-y)\left\|P\left(\frac{u}{1-u}\right)\right\|_{[0, y]}+|Q(y)| \\
& \leq 9\left(\sum_{j=0}^{n} \lambda_{j}\right)\left\|(1-u) P\left(\frac{u}{1-u}\right)\right\|_{[0, y]}+|Q(y)| \\
& \leq\left(1+9 \sum_{j=0}^{n} \lambda_{j}\right)\|Q\|_{[0, y]} \leq\left(1+9 \sum_{j=0}^{n} \lambda_{j}\right)\|Q\|_{[0,1]} .
\end{aligned}
$$

We need the following version of a simple lemma from [4], the short proof of which is presented in this note as well.

Lemma 4. Let $\Gamma:=\left(\gamma_{j}\right)_{j=0}^{\infty}$ be a sequence of distinct nonnegative real numbers with

$$
\eta:=\sum_{j=0}^{\infty} \gamma_{j}<\infty .
$$

Then

$$
|P(z)| \leq \exp \left(9 \eta\|\log z\|_{K}\right)\|P\|_{[0,1]}, \quad z \in K
$$

for every $P \in M(\Gamma):=\operatorname{span}\left\{x^{\gamma_{0}}, x^{\gamma_{1}}, \ldots\right\}$ and for every compact $K \subset \mathbb{C} \backslash\{0\}$.
In fact, in the "only if part" of the proof of the theorem, the following consequence of Lemma 4 is needed.

Lemma 5. Let $\Gamma:=\left(\gamma_{j}\right)_{j=0}^{\infty}$ be a sequence of distinct nonnegative real numbers with

$$
\eta:=\sum_{j=0}^{\infty} \gamma_{j} \leq \frac{1}{20}
$$

Then

$$
\|Q\|_{[3 / 4,1]}<\|Q\|_{[0,1 / 2]}
$$

for every $Q \in H(\Gamma)=\operatorname{span}\left\{x^{\gamma_{0}}(1-x)^{1-\gamma_{0}}, x^{\gamma_{1}}(1-x)^{1-\gamma_{1}}, \ldots\right\}$.
Proof of Lemma 4. The lemma is a consequence of D.J. Newman's Markov-type inequality. Repeated applications of Lemma 3 with $b:=1$ and the substitution $x=e^{-t}$ imply that

$$
\left\|\left(P\left(e^{-t}\right)\right)^{(m)}\right\|_{[0, \infty)} \leq(9 \eta)^{m}\left\|P\left(e^{-t}\right)\right\|_{[0, \infty)}, \quad m=1,2, \ldots,
$$

and, in particular

$$
\left|\left(P\left(e^{-t}\right)\right)^{(m)}(0)\right| \leq(9 \eta)^{m}\left\|P\left(e^{-t}\right)\right\|_{[0, \infty)}, \quad m=1,2, \ldots
$$

for every $P \in M(\Gamma)$. By using the Taylor series expansion of $P\left(e^{-t}\right)$ around 0 , we obtain that

$$
|P(z)| \leq c_{1}(K, \eta)\|P\|_{[0,1]}, \quad z \in K
$$

for every $P \in M(\Gamma)=\operatorname{span}\left\{x^{\gamma_{0}}, x^{\gamma_{1}}, \ldots\right\}$ and for every compact $K \subset \mathbb{C} \backslash\{0\}$, where

$$
c_{1}(K, \eta):=\sum_{m=0}^{\infty} \frac{(9 \eta)^{m}\|\log z\|_{K}^{m}}{m!}=\exp \left(9 \eta\|\log z\|_{K}\right)
$$

and the result of the lemma follows.

Proof of Lemma 5. This follows from Lemma 4 and the fact that every

$$
\begin{equation*}
Q \in H_{n}(\Gamma)=\operatorname{span}\left\{x^{\gamma_{0}}(1-x)^{1-\gamma_{0}}, x^{\gamma_{1}}(1-x)^{1-\gamma_{1}}, \ldots, x^{\gamma_{n}}(1-x)^{1-\gamma_{n}}\right\} \tag{3}
\end{equation*}
$$

is of the form (2) with a

$$
\begin{equation*}
P \in M_{n}(\Gamma)=\operatorname{span}\left\{x^{\gamma_{0}}, x^{\gamma_{1}}, \ldots, x^{\gamma_{n}}\right\} . \tag{4}
\end{equation*}
$$

Let $\Gamma:=\left(\gamma_{j}\right)_{j=0}^{\infty}$ be a sequence of distinct nonnegative real numbers with $\gamma_{0}:=0$. One of the most basic properties of a Müntz space $M_{n}(\Gamma)$ defined in (4) is the fact that it is a Chebyshev space of dimension $n+1$ on every $A \subset[0, \infty)$ containing at least $n+1$ points. That is, $M_{n}(\Gamma) \subset C(A)$ and every $P \in M_{n}(\Gamma)$ having at least $n+1$ (distinct) zeros in A is identically 0 . Since any $Q \in H_{n}(\Gamma)$ defined in (3) is of the form (2) with a $P \in M_{n}(\Gamma)$ defined in (4), the space $H_{n}(\Gamma)$ is also a Chebyshev space of dimension $n+1$ on every $A \subset[0,1)$ containing at least $n+1$ points. The following properties of the space $H_{n}(\Gamma)$, as a Chebyshev space of dimension $n+1$ on every $A \subset[0,1)$ containing at least $n+1$ points, are well known (see, for example, $[2,3,6])$.

Lemma 6 (Existence of Chebyshev Polynomials). Let A be a compact subset of $[0,1)$ containing at least $n+1$ points. Then there exists a unique (extended) Chebyshev polynomial

$$
T_{n}:=T_{n}\left\{\gamma_{0}, \gamma_{1}, \ldots, \gamma_{n} ; A\right\}
$$

for $H_{n}(\Gamma)$ on A defined by

$$
T_{n}(x)=c\left(x^{\gamma_{n}}(1-x)^{1-\gamma_{n}}-\sum_{j=0}^{n-1} a_{j} x^{\gamma_{j}}(1-x)^{1-\gamma_{j}}\right)
$$

where the numbers $a_{0}, a_{1}, \ldots, a_{n-1} \in \mathbb{R}$ are chosen to minimize

$$
\left\|x^{\gamma_{n}}(1-x)^{1-\gamma_{n}}-\sum_{j=0}^{n-1} a_{j} x^{\gamma_{j}}(1-x)^{1-\gamma_{j}}\right\|_{A}
$$

and where $c \in \mathbb{R}$ is a normalization constant chosen so that

$$
\left\|T_{n}\right\|_{A}=1
$$

and the sign of c is determined by

$$
T_{n}(\max A)>0
$$

Lemma 7 (Alternation Characterization). The Chebyshev polynomial

$$
T_{n}:=T_{n}\left\{\gamma_{0}, \gamma_{1}, \ldots, \gamma_{n} ; A\right\} \in H_{n}(\Gamma)
$$

is uniquely characterized by the existence of an alternation set

$$
\left\{x_{0}<x_{1}<\cdots<x_{n}\right\} \subset A
$$

for which

$$
T_{n}\left(x_{j}\right)=(-1)^{n-j}=(-1)^{n-j}\left\|T_{n}\right\|_{A}, \quad j=0,1, \ldots, n
$$

Note that the existence of a unique (extended) Chebyshev polynomial with the above alternation characterization can be guaranteed even if we allow that $A=[0,1]$ rather than $A \subset[0,1)$. This can be seen by a standard limiting argument. Namely we take the Chebyshev polynomials $T_{n, \delta}$ on the interval $[0,1-\delta]$ first and then we let $\delta>0$ tend to 0 .

Now we are ready to prove the "only if part" of the theorem. It turns out that the approach used in the corresponding part of the proof in [1] can be followed here, but, while the proof is still rather short, the details are slightly more subtle.

Proof of the "only if part" of the theorem. Suppose now that Λ is a sequence of distinct exponents $\lambda_{j} \in(0,1)$ such that (1) does not hold, that is,

$$
\sum_{j=0}^{\infty}\left(1 / 2-\left|1 / 2-\lambda_{j}\right|\right)<\infty
$$

Then there are sequences $\Gamma:=\left(\gamma_{j}\right)_{j=0}^{\infty}$ of distinct numbers $\gamma_{j} \in[0,1 / 4)$ and $\Delta:=$ $\left(\delta_{j}\right)_{j=0}^{\infty}$ of distinct numbers $\delta_{j} \in[0,1 / 4)$, and a finite set $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right\}$ of distinct numbers $\alpha_{j} \in[1 / 4,3 / 4]$ such that

$$
\sum_{j=0}^{\infty} \gamma_{j}<\frac{1}{20}, \quad \quad \sum_{j=0}^{\infty} \delta_{j}<\frac{1}{20}
$$

and

$$
\begin{gathered}
\left\{\lambda_{j}: j=0,1, \ldots\right\} \subset \\
\left\{\gamma_{j}: j=0,1, \ldots\right\} \cup\left\{1-\delta_{j}: j=0,1, \ldots\right\} \cup\left\{\alpha_{j}: j=1,2, \ldots m\right\}
\end{gathered}
$$

Without loss of generality we may assume that $\gamma_{0}:=0$ and $\delta_{0}:=0$. For notational convenience, let

$$
\begin{aligned}
T_{n, \gamma} & :=T_{n}\left\{\gamma_{0}, \gamma_{1}, \ldots, \gamma_{n} ;[0,1]\right\} \\
T_{n, \delta} & :=T_{n}\left\{1-\delta_{0}, 1-\delta_{1}, \ldots, 1-\delta_{n} ;[0,1]\right\} \\
T_{2 n+m+1, \gamma, \delta, \alpha} & :=T_{2 n+m+1}\left\{\gamma_{0}, \ldots, \gamma_{n}, 1-\delta_{0}, \ldots, 1-\delta_{n}, \alpha_{1}, \ldots, \alpha_{m} ;[0,1]\right\} .
\end{aligned}
$$

It follows from Lemmas 2,5 , and 7 , and the Mean Value Theorem that for every $\varepsilon>0$ there exists a $k_{1}(\varepsilon) \in \mathbb{N}$ depending only on $\left(\gamma_{j}\right)_{j=0}^{\infty}$ and ε (and not on n) so that $T_{n, \gamma}$ has at most $k_{1}(\varepsilon)$ zeros in $[\varepsilon, 1]$ and at least $n-k_{1}(\varepsilon)$ zeros in $(0, \varepsilon)$. Similarly, applying Lemmas 2,5 , and 7 , and the Mean Value Theorem to $S_{n, \delta}(x):=T_{n, \delta}(1-x)$ gives that for every $\varepsilon>0$ there exists a $k_{2}(\varepsilon) \in \mathbb{N}$ depending only on $\left(\delta_{j}\right)_{j=0}^{\infty}$ and ε (and not on n) so that $T_{n, \delta}$ has at most $k_{2}(\varepsilon)$ zeros in $[0,1-\varepsilon]$ and at least $n-k_{2}(\varepsilon)$ zeros $(1-\varepsilon, 1)$.

Now, counting the zeros of $T_{n, \gamma}-T_{2 n+m+1, \gamma, \delta, \alpha}$ and $T_{n, \delta}-T_{2 n+m+1, \gamma, \delta, \alpha}$, we can deduce that $T_{2 n+m+1, \gamma, \delta, \alpha}$ has at least $n-k_{1}(\varepsilon)-3$ zeros in $(0, \varepsilon)$ and it has at least $n-k_{2}(\varepsilon)-3$ zeros in $(1-\varepsilon, 1)$ (we count every zero without sign change twice). Hence, for every $\epsilon>0$ there exists a $k(\epsilon) \in \mathbb{N}$ depending only on $\left(\lambda_{j}\right)_{j=0}^{\infty}$ and ε (and not on n) so that $T_{2 n+m+1, \gamma, \delta, \alpha}$ has at most $k(\epsilon)$ zeros in $[\epsilon, 1-\epsilon]$.

Let $\varepsilon:=1 / 4$ and $k:=k(1 / 4)$. Pick $k+m+5$ points

$$
\frac{1}{4}<\eta_{0}<\eta_{1}<\cdots<\eta_{k+m+4}<\frac{3}{4}
$$

and a function $f \in C_{0}([0,1])$ so that $f(x)=0$ for all $x \in[0,1 / 4] \cup[3 / 4,1]$, while

$$
f\left(\eta_{j}\right):=2(-1)^{j}, \quad j=0,1, \ldots, k+m+4
$$

Assume that there exists a $Q \in H(\Lambda)$ so that

$$
\|f-Q\|_{[0,1]}<1
$$

Then $Q-T_{2 n+m+1, \gamma, \delta, \alpha}$ has at least $2 n+m+2$ zeros in $(0,1)$. However, for sufficiently large $n, Q-T_{2 n+m+1, \gamma, \delta, \alpha}$ is in the linear span of the $2 n+m+2$ functions

$$
\begin{array}{ll}
x^{\gamma_{j}}(1-x)^{1-\gamma_{j}}, & j=0,1, \ldots, n \\
x^{1-\delta_{j}}(1-x)^{\delta_{j}}, & j=0,1, \ldots, n
\end{array}
$$

and

$$
x^{\alpha_{j}}(1-x)^{1-\alpha_{j}}, \quad j=1,2 \ldots, m,
$$

so it can have at most $2 n+m+1$ zeros in $(0,1)$. This contradiction shows that $H(\Lambda)$ is not dense in $C_{0}([0,1])$.

References

1. P.B. Borwein and T. Erdélyi, The full Müntz theorem in $C[0,1]$ and $L_{1}[0,1]$, J. London Math. Soc. 54 (1996), 102-110.
2. P.B. Borwein and T. Erdélyi, Polynomials and Polynomials Inequalities, Springer-Verlag, New York, 1995.
3. E.W. Cheney, Introduction to Approximation Theory, McGraw-Hill, New York, 1966.
4. T. Erdélyi and W. Johnson, The "Full Müntz Theorem" in $L_{p}[0,1]$ for $0<p<\infty$, Journal d'Analyse Math. 84 (2001), 145-172.
5. D.J. Newman, Derivative bounds for Müntz polynomials, J. Approx. Theory 18 (1976), 360362.
6. T.J. Rivlin, Chebyshev Polynomials, 2nd ed., Wiley, New York, 1990.
7. B. Sz.-Nagy, Introduction to Real Functions and Orthogonal Expansions, Oxford University Press, New York, 1965.

Department of Mathematics, Texas A\&M University, College Station, Texas 77843

E-mail address: terdelyi@math.tamu.edu

[^0]: 1991 Mathematics Subject Classification. 41A17.
 Key words and phrases. density of function spaces, Müntz type theorems, inequalities for Müntz polynomials.

