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Abstract. It is shown that

c1nmax{k + 1, logn} ≤ sup
06=p∈Pc

n,k

‖p′‖[−1,1]

‖p‖[−1,1]

≤ c2nmax{k + 1, logn}

with absolute constants c1 > 0 and c2 > 0, where Pc
n,k

denotes the set of all polyno-

mials of degree at most n with complex coefficients and with at most k (0 ≤ k ≤ n)
zeros in the open unit disk. Here ‖ · ‖[−1,1] denotes the supremum norm on [−1, 1].
This result should be compared with the inequalities

c3n(k + 1) ≤ sup
06=p∈Pn,k

‖p′‖[−1,1]

‖p‖[−1,1]

≤ c4n(k + 1) ,

where c3 > 0 and c4 > 0 are absolute constants and Pn,k denotes the set of all
polynomials of degree at most n with real coefficients and with at most k (0 ≤ k ≤ n)
zeros in the open unit disk. This second result has been known for a few years, and it
may be surprising that there is a significant difference between the real and complex
cases as far as Markov-type inequalities are concerned.

Let Pn(r) denote the set of all polynomials of degree at most n with real coeffi-
cients and with no zeros in the union of open disks with diameters [−1,−1+2r] and
[1− 2r, 1], respectively (0 < r ≤ 1).

Let Pc
n(r) denote the set of all polynomials of degree at most n with complex

coefficients and with no zeros in the union of open disks with diameters [−1,−1+2r]
and [1− 2r, 1], respectively (0 < r ≤ 1).

An essentially sharp Markov-type inequality for Pc
n(r) on [−1, 1] is also established

that should be compared with the analogous result for Pn(r) proved in an earlier
paper.
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1. Introduction, Notation

We introduce the following classes of polynomials. Let

Pn :=

{
f : f(x) =

n∑

i=0

aix
i , ai ∈ R

}

denote the set of all algebraic polynomials of degree at most n with real coefficients.

Let

Pc
n :=

{
f : f(x) =

n∑

i=0

aix
i , ai ∈ C

}

denote the set of all algebraic polynomials of degree at most n with complex coef-
ficients.

Let Pn,k denote the set of all polynomials of degree at most n with real coefficients
and with at most k (0 ≤ k ≤ n) zeros in the open unit disk.

Let Pc
n,k denote the set of all polynomials of degree at most n with complex

coefficients and with at most k (0 ≤ k ≤ n) zeros in the open unit disk.

Let Pn(r) denote the set of all polynomials of degree at most n with real coef-
ficients and with no zeros in the union of open disks with diameters [−1,−1 + 2r]
and [1− 2r, 1], respectively (0 < r ≤ 1).

Let Pc
n(r) denote the set of all polynomials of degree at most n with complex

coefficients and with no zeros in the union of open disks with diameters [−1,−1+2r]
and [1− 2r, 1], respectively (0 < r ≤ 1).

The following two inequalities are well known in approximation theory. See, for
example, A.A. Markov [89], V.A. Markov [16], Duffin and Schaeffer [41], Bernstein
[58], Cheney [66], Lorentz [86], DeVore and Lorentz [93], Natanson [64] (some of
these references discuss only the case when the polynomial has real coefficients).

Markov Inequality. The inequality

‖p′‖[−1,1] ≤ n2‖p‖[−1,1]

holds for every p ∈ Pc
n.

Bernstein Inequality. The inequality

|p′(y)| ≤ n√
1− y2

‖p‖[−1,1]

holds for every p ∈ Pc
n and y ∈ (−1, 1).

In the above two theorems and throughout the paper ‖·‖A denotes the supremum
norm on A ⊂ R.

Markov- and Bernstein-type inequalities in Lp norms are discussed, for example,
in DeVore and Lorentz [93], Lorentz, Golitschek, and Makovoz [96], Golitschek
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and Lorentz [89], Nevai [79], Máté and Nevai [80], Rahman and Schmeisser [83],
Milovanović, Mitrinović, and Rassias [94].

Throughout his life Erdős showed a particular fascination with inequalities for
constrained polynomials. One of his favorite type of polynomial inequalities was
Markov- and Bernstein-type inequalities. For Erdős, Markov- and Bernstein-type
inequalities had their own intrinsic interest. He liked to see what happened when the
polynomials are restricted in certain ways. Markov- and Bernstein-type inequalities
for classes of polynomials under various constraints have attracted a number of
authors. For example, it has been observed by Bernstein that Markov’s inequality
for monotone polynomials is not essentially better than for arbitrary polynomials.
He proved that if n is odd, then

sup
p

‖p′‖[−1,1]

‖p‖[−1,1]
=

(
n+ 1

2

)2

,

where the supremum is taken for all 0 6= p ∈ Pn that are monotone on [−1, 1]. This
may look quite surprising, since one would expect that if a polynomial is this far
away from the “equioscillating” property of the Chebyshev polynomial, then there
should be a more significant improvement in the Markov inequality. In a short
paper in 1940 Erdős [40] has found a class of restricted polynomials for which the
Markov factor n2 improves to cn. He proved that there is an absolute constant c
such that

|p′(y)| ≤ min

{
c
√
n

(1− y2)
2 ,

en

2

}
‖p‖[−1,1] , y ∈ [−1, 1] ,

for every polynomial p of degree at most n that has all its zeros in R \ (−1, 1).
This result motivated a number of people to study Markov- and Bernstein-type
inequalities for polynomials with restricted zeros and under some other constraints.
Generalizations of the above Markov- and Bernstein-type inequalities of Erdős have
been extended later in many directions.

After a number of less general results of Erdős [40], Lorentz [63], Scheick [72],
Szabados and Varma [80], Szabados [81], Máté [81], the essentially sharp Markov-
type estimate

(1.1) c3n(k + 1) ≤ sup
06=p∈Pn,k

‖p′‖[−1,1]

‖p‖[−1,1]
≤ c4n(k + 1)

with absolute constants c3 > 0 and c4 > 0 was proved by Borwein [85] (in a slightly
less general formulation) and by Erdélyi [87a] (in the above form). A simpler
proof is given by Erdélyi [91] that relates the upper bound in (1.1) to a beautiful
Markov-type inequality of Newman [76] for Müntz polynomials. See also Borwein
and Erdélyi [95a] and Lorentz, Golitschek, and Makovoz [96]. A sharp extension of
(1.1) to Lp norms is also proved by Borwein and Erdélyi [95b]. The lower bound
in (1.1) was proved and the upper bound was conjectured by Szabados [81] earlier.
Another example that shows the lower bound in (1.1) is given by Erdélyi [87b].

The following essentially sharp Markov-type inequality of Erdélyi [89] for the
class Pn(r), that was anticipated by Erdős, is discussed in the recent book of
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Lorentz, Golitschek, and Makovoz [96] in a more general setting. Namely there are
absolute constants c3 > 0 and c4 > 0 such that

(1.2) c3 min

{
n√
r
, n2

}
≤ sup

06=p∈Pn(r)

‖p′‖[−1,1]

‖p‖[−1,1]
≤ c4 min

{
n√
r
, n2

}
.

In this paper we examine what happens if in (1.1) and (1.2) we allow polynomials
with complex rather than real coefficients. The “right” analogous results of (1.1)
and (1.2) for the complex classes Pc

n,k and Pc
n(r) are established.

2. New Results

Our first theorem is the “right” analogue of (1.1) for polynomials with complex
coefficients.

Theorem 2.1. There are absolute constants c1 > 0 and c2 > 0 such that

c1nmax{k + 1, logn} ≤ sup
06=p∈Pc

n,k

‖p′‖[−1,1]

‖p‖[−1,1]
≤ c2nmax{k + 1, logn} .

Our second result is the “right” analogue of (1.2) for polynomials with complex
coefficients.

Theorem 2.2. There are absolute constants c1 > 0 and c2 > 0 such that

c1n log
(
n
√
r
)

√
r

≤ sup
06=p∈Pc

n(r)

‖p′‖[−1,1]

‖p‖[−1,1]
≤ c2n log

(
n
√
r
)

√
r

for every (e/n)2 ≤ r ≤ 1, and

c1n
2 ≤ sup

06=p∈Pc
n(r)

‖p′‖[−1,1]

‖p‖[−1,1]
≤ c2n

2

for every 0 < r < (e/n)2.
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Remark 2.3. Theorems 2.1 and 2.2 should be compared with their cousins (1.1)
and (1.2) in the real case. It may be surprising that if k = o(log n), we have an es-
sentially different Markov-type inequality for Pc

n,k than for Pn,k (a similar comment

can be made on comparing Theorem 2.2 and (1.2)). However, a closer look at the
problem suggests that the real surprise should be the fact that if logn ≤ k ≤ n, we
have essentially the same Markov-type inequalities for Pn,k and Pc

n,k. Indeed, the
“standard” argument to derive Markov’s inequality for Pc

n from Markov’s inequality
for Pn goes as follows. Suppose

‖q′‖[−1,1] ≤ n2‖q‖[−1,1]

for every q ∈ Pn. Now let p ∈ Pc
n be arbitrary. Fix an arbitrary point a ∈ [−1, 1],

and choose a constant c ∈ C with |c| = 1 so that cp′(a) is real. We introduce q ∈ Pn

defined by

q(x) := Re(cp(x)) , x ∈ R .

Then

|p′(a)| = |cp′(a)| = |q′(a)| ≤ n2‖q‖[−1,1] ≤ n2‖p‖[−1,1] .

Since this holds for every p ∈ Pc
n and a ∈ [−1, 1], we have

‖p′‖[−1,1] ≤ n2‖p‖[−1,1]

for every p ∈ Pc
n.

Observe that, while p ∈ Pc
n implies q := Re(cp) ∈ Pn, p ∈ Pc

n,k does not imply

that q := Re(cp) ∈ Pn,k. This suggests that in order to establish the “right”
Markov-type inequalities for Pc

n,k, the arguments need to be more clever than the
above standard extension.

Remark 2.4. The case k = 0 of Theorem 2.1 was first observed by Halász,
who mentioned this to me in a private letter. See also Borwein and Erdélyi [95a],
where a modified version of Halász’ argument is presented. Halász also claims
an independent proof of Theorem 2.1 using potential theoretic methods. After a
personal discussion about the possibility of extending the case k = 0 to the general
case 0 ≤ k ≤ n, we worked on the problem simultaneously and we obtained our
result at about the same time. Halász’ approach may be presented in one of his
later publications. Moreover, his methods give the k = 0 case of the conjectured
Markov-type inequality

‖p′‖[−1,1] ≤ Ckn
2−α‖p‖[−1,1]

for every p ∈ Pc
n that has at most k zeros in the diamond of the complex plane with

diagonal [−1, 1] and with angle απ ∈ [0, π] at −1 and 1 (Ck is a constant depending
only on k).

Remark 2.5. How do the extremal polynomials p∗ ∈ Pc
n look like, say in Theorem

2.1? We cannot say much about the characterization of the extremal polynomials.
Some properties may be suspected from those of the quasi-extremal polynomials
p ∈ Pc

n showing the lower bound in Theorem 1.2. These polynomials are given
5



explicitly in the proof. This phenomenon is in contrast to the real case where we
can characterize the polynomials p∗ ∈ Pn for which

|p∗′(1)|
‖p∗‖[−1,1]

= sup
p∈Pn

|p′(1)|
‖p‖[−1,1]

.

It can be shown easily that such a p∗ ∈ Pn must have only real zeros and at
least n − k − 1 of these zeros must be at −1. In addition, roughly speaking, the
extremal polynomial p∗ ∈ Pn is “very close” to being an incomplete Chebyshev
polynomial, that is to a polynomial that has n− k zeros at −1 and “equioscillates”
the maximal number of times (that is k+1 times) on the interval [−1, 1]. See more
about incomplete Chebyshev polynomials in Chapter 3 of Lorentz, Golitschek, and
Makovoz [96].

Remark 2.6. The crucial idea to prove both Theorem 2.1 and 2.2 is a combination
of a Chebyshev-type inequality and Nevanlinna’s inequality. The Chebyshev-type
inequality gives an upper bound for the modulus of a polynomial p ∈ Pc

n on the
real line assuming that ‖p‖[−1,1] ≤ M . Combining this with Nevanlinna’s inequality
offers an upper bound for |p| in complex neighborhoods of 1 and −1, assuming that
the |p| is bounded by M on the interval [−1, 1]. Finding the “right” neighborhoods
of 1 and −1 where |p(z)| is bounded by cM allows us to give an upper bound for
|p′(1)| and |p′(−1)| by the Cauchy Integral Formula. The desired upper bound for
|p′(z)|, z ∈ [−1, 1] , can now be obtained by a linear transformation.

Remark 2.7. The inequality

‖p(m)‖[−1,1] ≤ T (m)
n (1) · ‖p‖[−1,1]

for every polynomial p of degree at most n with complex coefficients was first proved
by V.A. Markov [92] in 1892 (here Tn denotes the Chebyshev polynomial of degree
n). He was the brother of the more famous A.A. Markov who proved the above
inequality for m = 1 in 1889 by answering a question raised by the prominent
Russian chemist, D. Mendeleev. S.N. Bernstein presented a shorter variational
proof of V.A. Markov’s inequality in 1938 (see the collected works of Bernstein
[58]). The simplest known proof of Markov’s inequality for higher derivatives are
due to Duffin and Shaeffer [41], who gave various extensions as well.

Various analogues of the Markov and Bernstein inequalities are known in which
the underlying intervals, the maximum norms, and the family of functions are re-
placed by more general sets, norms, and families of functions, respectively. These
inequalities are called Markov- and Bernstein-type inequalities. If the norms are
the same in both sides, the inequality is called Markov-type, otherwise it is called
Bernstein-type (this distinction is not completely standard). Markov- and Bernstein-
type inequalities are known on various regions of the complex plane and the n-
dimensional Euclidean space, for various norms such as weighted Lp norms, and for
many classes of functions such as polynomials with various constraints, exponential
sums of n terms, just to mention a few. Markov- and Bernstein-type inequali-
ties have their own intrinsic interest. In addition, they play a fundamental role in
proving so-called inverse theorems of approximation.

There are many books discussing Markov- and Bernstein-type inequalities in
detail. See for example Cheney [66], Lorentz [86], DeVore and Lorentz [93], and
Lorentz, Golitschek, and Makovoz [96].
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Remark 2.8. It is not that hard to see that our proof of Theorem 2.1 can be
extended to higher derivatives. That is, there are constants Cm > 0 and C′

m > 0
such that for every integer 0 ≤ m ≤ n, we have

Cm (max{k + 1, logn})m ≤ sup
06=p∈Pc

n,k

‖p(m)‖[−1,1]

‖p‖[−1,1]
≤ C′

m (nmax{k + 1, logn})m .

This extension, that cannot be done by a simple induction, is left to the reader.

Remark 2.9. Note that the case k = n in Theorem 2.1 is the case when there are
no restrictions on the zeros. Hence, up to the best possible constant, our Theorem
2.1 contains the inequality of the Markov brothers.

3. Lemmas for Theorem 2.1

We need a few lemmas.

Lemma 3.1. Let 0 ≤ k ≤ n be integers and let s ∈ [0, 1]. We have

‖p‖[−1−s,1+s] ≤ exp
(
18
(√

nks+ ns
))

‖p‖[−1,1]

for every p ∈ Pc
n,k.

Observe that the above lemma follows immediately from its “real case” when Pc
n,k

is replaced by Pn,k. To see this apply Lemma 3.2 below with p ∈ Pc
n,k replaced by

pp ∈ P2n,2k and obtain the conclusion of Lemma 3.1.

Lemma 3.2. Let 0 ≤ k ≤ n be integers and let s ∈ [0, 1]. We have

‖p‖[−1−s,1+s] ≤ exp
(
18
(√

nks+ ns
))

‖p‖[−1,1]

for every p ∈ Pn,k.

Because of symmetry, Lemma 3.2 reduces to

Lemma 3.3. Let 0 ≤ k ≤ n be integers and let s ∈ [0, 1]. We have

‖p‖[−1,1+s] ≤ exp
(
18
(√

nks+ ns
))

‖p‖[−1,1]

for every p ∈ Pn,k.

The following lemma shows that it is sufficient to prove Lemma 3.3 only for some
special elements of Pn,k with some additional nice properties.

Lemma 3.4. Let 0 ≤ k ≤ n be fixed integers and let 0 < a < s < 2 be fixed real
numbers. There exists a p∗ ∈ Pn,k for which

sup
p∈Pn,k

|p(1 + a)|
‖p‖[−1,1−s]
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is attained. This p∗ is of the form

p∗(x) = (x + 1)n−kq∗(x) , q∗ ∈ Pk .

To finish the proof of Lemma 3.1, it is now sufficient to refer to the result below
proved by Borwein and Erdélyi [92]. More precisely the lemma below follows from
Theorem 2 of Borwein and Erdélyi [92]. Then Lemma 3.3 follows from Lemma 3.5
with the help of Lemma 3.4, and as we have already remarked Lemma 3.1 follows
from Lemma 3.3.

Lemma 3.5. Let 0 ≤ k ≤ n be integers and let s ∈ [0, 1]. We have

‖p‖[−1,1+s] ≤ exp
(
18
(√

nks+ ns
))

‖p‖[−1,1−s]

for every polynomial p of the form

p(x) = (x + 1)n−kq(x) , q ∈ Pk .

Now we examine the growth of a p ∈ Pc
n,k near to 1 subject to ‖p‖[−1,1] = 1.

Lemma 3.6. There is an absolute constant c5 such that

log |p(z)| ≤ c5

for every p ∈ Pc
n,k with ‖p‖[−1,1] ≤ 1, and for every z ∈ C satisfying

|z − 1| ≤ 1

nmax{k + 1, logn} .

This will follow by a combination of Lemma 3.1 and our next lemma. The proof
of Lemma 3.7 below (in fact a more general result) may be found in Boas [54] (pages
92 and 93).

Lemma 3.7 (Nevanlinna’s Inequality). Let x, y ∈ R. The inequality

log |p(x+ iy)| ≤ |y|
π

∫ ∞

−∞

log |p(t)|
(t− x)2 + y2

dt

holds for every polynomial p with complex coefficients.

The upper bound of Theorem 2.1 will be obtained by a combination of the
Cauchy integral formula, Lemma 3.6, and a linear transformation.
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4. Lemmas for Theorem 2.2

The line of proof is similar to that of Theorem 2.1. We need a few lemmas. For
technical reasons we need to introduce the following classes of polynomials. Let
Pn(r)

+ denote the set of all polynomials of degree at most n with real coefficients
and with no zeros in the open disk with diameter [1− 2r, 1] (0 < r ≤ 1).

Recall that the classes Pn(r) and Pc
n(r) are defined in the Introduction.

Lemma 4.1. Let 0 < s ≤ r ≤ 1. We have

‖p‖[−1−s,1+s] ≤ exp
(
8nr−1/2s

)
‖p‖[−1,1]

for every p ∈ Pc
n(r).

Observe that the above lemma follows immediately from its “real case” when
p ∈ Pc

n(r) is replaced by p ∈ Pn(r). To see this apply Lemma 4.2 below with
p ∈ Pc

n(r) replaced by pp ∈ P2n(r) and obtain the conclusion of Lemma 4.1.

Lemma 4.2. Let 0 < s ≤ r ≤ 1. We have

‖p‖[−1−s,1+s] ≤ exp
(
8nr−1/2s

)
‖p‖[−1,1]

for every p ∈ Pn(r).

Because of symmetry, Lemma 4.2 reduces to

Lemma 4.3. Let 0 < s ≤ r ≤ 1. We have

‖p‖[−1,1+s] ≤ exp
(
8nr−1/2s

)
‖p‖[−1,1]

for every p ∈ Pn(r)
+.

The following lemma shows that it is sufficient to prove Lemma 4.3 only for some
special elements of Pn(r)

+ with some additional nice properties.

Lemma 4.4. Let 0 < a < s ≤ r ≤ 1 be fixed. There exists a p∗ ∈ Pn(r)
+ for which

sup
p∈Pn(r)+

|p(1 + a)|
‖p‖[−1,1−s]

is attained. This p∗ has all its zeros in [−1, 1− 2r] and |p(1)| = ‖p‖[−1,1].

To finish the proof of Lemma 4.1, it is now sufficient to prove the lemma below.
More precisely Lemma 4.3 follows from Lemma 4.5 with the help of Lemma 4.4,
and as we have already remarked Lemma 4.1 follows from Lemma 4.3.
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Lemma 4.5. Let 0 < s ≤ r ≤ 1. We have

‖p‖[−1,1+s] ≤ exp
(
8nr−1/2s

)
‖p‖[−1,1]

for every polynomial p ∈ Pn having all its zeros in [−1, 1− 2r].

To prove Lemma 4.5 we need the following result from Erdélyi [89] (see also
Borwein and Erdélyi [95a, p. 237].

Lemma 4.6. Every polynomial p ∈ Pn has at most

2n
√
δ
‖p‖[−1,1]

|p(1)|

zeros (counting multiplicities) in [1− δ, 1], δ > 0 .

Now we examine the growth of a p ∈ Pc
n(r) near to 1 subject to ‖p‖[−1,1] = 1.

Lemma 4.7. Suppose (e/n)2 < r ≤ 1. There is an absolute constant c5 such that

log |p(z)| ≤ c5

for every p ∈ Pc
n(r) with ‖p‖[−1,1] ≤ 1, and for every z ∈ C satisfying

|z − 1| ≤
√
r

n log(n
√
r)

.

To prove Lemma 4.7 we also need the following Chebyshev-type inequality valid
for all p ∈ Pc. See, for example, Borwein and Erdélyi [95a]. The lemma below can
also be viewed as the case k = n of Lemma 3.1 with a better constant.

Lemma 4.8. Let s ∈ [0, 1]. We have

‖p‖[−1−s,1+s] ≤ exp
(
5ns1/2

)
‖p‖[−1,1]

for every p ∈ Pc
n.

5. Proof of Theorem 2.1

As it is discussed in Section 3, the proof of Lemma 3.1 is reduced to that of
Lemma 3.4. So we start this section with the proof of Lemma 3.4.

Proof of Lemma 3.4. The existence of p∗ ∈ Pn,k is a standard compactness argu-
ment combined with Rouche’s theorem. We omit the details of this part.

Now we show that p∗ has only real zeros. Suppose that p∗ has a non-real zero
z0. Consider the polynomial

p∗ε(z) := p∗(z)

(
1− ε

(z − (1 + a))(z − (1 − a))

(z − z0)(z − z0)

)
.
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It is easy to check that for a sufficiently small ǫ > 0, p∗ε ∈ Pn,k. To this end one
needs to verify only that if z0 is non-real and |z0| ≥ 1, then for sufficiently small
ε > 0, the two zeros of the quadratic polynomial

(z − z0)(z − z0)− ε(z − (1 + a))(z − (1 − a))

are outside the open unit disk. This follows from the fact that for sufficiently small
ǫ > 0, the above quadratic polynomial has two non-real zeros with modulus r,
where

r2 =
|z0|2 − ε(1− a2)

1− ǫ
≥ 1, |z0| ≥ 1, a ∈ (0, 1) .

Observe now that for sufficiently small ε > 0, p∗ε ∈ Pn,k contradicts the extremality
of p∗. This contradiction shows that p∗ has only real zeros, indeed.

What remains to prove is that if z0 ∈ R \ (−1, 1) is a zero of p∗, then z0 = −1.
Indeed, if z0 ∈ [1,∞) is a zero of p∗, then

q∗(z) :=
p∗(z)

z − z0

contradicts the extremality of p∗. If z0 ∈ (−∞,−1) is a zero of p∗, then for suffi-
ciently small ε > 0,

p∗ε(z) := p∗(z)

(
1− ε

(1 + a)− z

z − z0

)

contradicts the extremality of p∗. �

Proof of Lemma 3.6. Let p ∈ Pc
n,k. We normalize so that

(5.1) max
−1≤t≤1+ 2

n(k+1)

|p(t)| = 1 ,

that is,

(5.2) log |p(t)| ≤ 0 , −1 ≤ t ≤ 1 +
2

n(k + 1)
.

In the rest of the proof let

(5.3) z = x+ iy , x, y ∈ R , |x− 1|, |y| ≤ 1

nmax{k + 1, logn} .

We have

|y|
π

∫ −1

−∞

log |p(t)|
(t− x)2 + y2

dt ≤ |y|
π

∫ −1

−∞

n log(2|t|)
(t− x)2 + y2

dt

≤ n

πnmax{k + 1, logn}

∫ −1

−∞

log(2|t|)
t2

dt

≤ c

max{k + 1, logn} ≤ c

(5.4)
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with an absolute constant c. Here we used the well-known inequality |p(t)| ≤ |2t|n
valid for all p ∈ Pc

n with ‖p‖[−1,1] ≤ 1 and for all t ∈ R \ (−1, 1). Obviously

(5.5)
|y|
π

∫ 1+ 2
n(k+1)

−1

log |p(t)|
(t− x)2 + y2

dt ≤ 0 .

Now we use Lemma 3.1 and (5.3) to obtain

|y|
π

∫ 2

1+ 2
n(k+1)

log |p(t)|
(t− x)2 + y2

dt

≤ |y|
π

∫ 2

1+ 2
n(k+1)

18
(√

nk(t− 1) + n(t− 1)
)

(t− x)2 + y2
dt

≤ |y|
π

∫ 2

1+ 2
n(k+1)

72
(√

nk(t− 1) + n(t− 1)
)

(t− 1)2
dt

≤ 72
√
nk

πnmax{k + 1, logn}

∫ 2

1+ 2
n(k+1)

(t− 1)−3/2 dt

+
72n

πnmax{k + 1, logn}

∫ 2

1+ 2
n(k+1)

(t− 1)−1 dt

≤
144

√
nk
(

2
n(k+1)

)−1/2

πnmax{k + 1, logn} +
72n log(n(k + 1)/2)

πnmax{k + 1, logn}
≤ c

(5.6)

with an absolute constant c. Finally, similarly to (5.4), for n ≥ 2, we have

|y|
π

∫ ∞

2

log |p(t)|
(t− x)2 + y2

dt ≤ |y|
π

∫ ∞

2

n log(2|t|)
(t− x)2 + y2

dt

≤ n

πnmax{k + 1, logn}

∫ ∞

2

4 log(2|t|)
(t− 1)2

dt

≤ c

max{k + 1, logn}

(5.7)

with an absolute constant c. Now (5.1) – (5.7) and Lemma 3.7 (Nevanlinna’s
inequality) yield that if z ∈ C satisfies (5.3), then

(5.8) |p(z)| ≤ exp

( |y|
π

∫ ∞

−∞

log |p(t)|
(t− x)2 + y2

dt

)
≤ c max

−1≤t≤1+ 2
n(k+1)

|p(t)|

with an absolute constant c. Finally observe that Lemma 3.1 implies

(5.9) max
−1≤t≤1+ 2

n(k+1)

|p(t)| ≤ c6‖p‖[−1,1]

with an absolute constant c6. The lemma now follows from (5.8) and (5.9). �
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Proof of Theorem 2.1. It follows from Lemma 3.6 and Cauchy’s integral formula in
a standard fashion that

(5.10) |q′(1)| ≤ c7nmax{k + 1, logn}‖q‖[−1,1]

for every q ∈ Pc
n,k, where c7 > 0 is an absolute constant. Now let α be a linear

transformation that maps [−1, 1] onto [−1, y] so that 1 7→ y if y ∈ [0, 1], or onto
[y, 1] so that 1 7→ y if y ∈ [−1, 0]. Let p ∈ Pc

n,k. Then q := p ◦ α ∈ Pc
n,k. Applying

(5.10) to q ∈ Pc
n,k, we obtain

|p′(y)| = 2

1 + y
|q′(1)|

≤ 2

1 + y
c7nmax{k + 1, logn} ‖q‖[−1,1]

=
2

1 + y
c7nmax{k + 1, logn} ‖p‖[−1,y]

≤ 2c7nmax{k + 1, logn}‖p‖[−1,1]

if y ∈ [0, 1], and

|p′(y)| = 2

1− y
|q′(1)|

≤ 2

1− y
c7nmax{k + 1, logn} ‖q‖[−1,1]

=
2

1− y
c7nmax{k + 1, logn} ‖p‖[y,1]

≤ 2c7nmax{k + 1, logn} ‖p‖[−1,1]

if y ∈ [−1, 0]. This proves the upper bound of the theorem.

When logn ≤ k ≤ n the lower bound of the theorem follows from an example
given by Szabados [81, Example 1], see also Erdélyi [87b]. These examples are in
fact polynomials with real coefficients. Szabados’ example is given by defining

p(x) =

(
1− x

2

)n−k

P
(2n−2k−1/2,0)
k (x) ,

where P
(α,β)
k denotes the kth Jacobi polynomial with parameters α and β. Erdélyi

[87b] offers a more elementary but more technical example.

As the upper bound in (1.1) shows, when k = o(log n) the polynomials showing
the lower bound of the theorem cannot be real. For the case 0 ≤ k ≤ logn, we offer
the following example. Let

zm := exp

(
2mπi

2n+ 1

)
, m = 1, 2, . . . , n

be those (2n+ 1)th roots of unity that lie in the open upper half-plane. Let

p2n+1(z) := p2n+2(z) := (z − 1)
n∏

m=1

(z − zm)2 .

13



Then p2n+1 ∈ Pc
2n+1,0 and |p2n+1(x)| = |x2n+1 − 1| for every x ∈ R. Note that this

implies
|p2n+1(−1)| = ‖p2n+1‖[−1,1] = 2 .

Also

∣∣∣∣
p′2n+1(−1)

p2n+1(−1)

∣∣∣∣ =
∣∣∣∣∣−

1

2
+ 2

n∑

m=1

1

−1− zm

∣∣∣∣∣ ≥

∣∣∣∣∣∣
2 Im




n∑

m=⌊n/2⌋+1

1

−1− zm





∣∣∣∣∣∣

≥ 2
1√
2

n∑

m=⌊n/2⌋+1

1

| − 1− zm| ≥ 2
1√
2

2

π

⌊n/2⌋∑

k=0

(
(2k + 1)π

2n+ 1

)−1

≥ c8n logn

with an absolute constant c8 > 0. �

6. Proof of Theorem 2.2

As it is discussed in Section 4, with the help of Lemma 4.4, the proof of Lemma
4.1 is reduced to that of Lemma 4.5. The proof of Lemma 4.4 is very similar to
that of Lemma 3.4, and it is left to the reader. So we start this section with the
proof of Lemma 4.5.

Proof of Lemma 4.5. Let 0 < a < s ≤ r ≤ 1. Suppose

p(x) = c

n∏

j=1

(x − xj) , xj ∈ [−1, 1− 2r] ,

and assume that |p(1)| = ‖p‖[−1,1]. Let

Iν := (1− 2(ν + 1)4r, 1− 2ν4r] , ν = 1, 2, . . . .

It follows from Lemma 4.6 that

|p(1 + a)|
|p(1)| =

n∏

j=1

1 + a− xj

1− xj
≤

n∏

j=1

(
1 +

a

1− xj

)
≤

n∏

j=1

exp

(
a

1− xj

)

≤ exp




n∑

j=1

a

1− xj


 ≤ exp


a

∞∑

ν=1

∑

xj∈Iν

1

1− xj




≤ exp

(
a

∞∑

ν=1

2n
√
2(ν + 1)4r

1

2ν4r

)

≤ exp

(
21/2a

∞∑

ν=1

(ν + 1)2

ν4
n√
r

)
≤ exp

(
16na√

r

)

≤ exp

(
16ns√

r

)
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and the lemma is proved. �

Proof of Lemma 4.7. Let p ∈ Pc
n. We normalize so that

(6.1) max
−1≤t≤1+ 2

√

r

n

|p(t)| = 1 ,

that is,

(6.2) log |p(t)| ≤ 0 , −1 ≤ t ≤ 1 +
2
√
r

n
.

In the rest of the proof let

(6.3) z = x+ iy , x, y ∈ R , |x− 1|, |y| ≤
√
r

n log(n
√
r)

.

Note that the assumption (e/n)2 < r ≤ 1 implies log(n
√
r) ≥ 1. We have

|y|
π

∫ −1

−∞

log |p(t)|
(t− x)2 + y2

dt ≤ |y|
π

∫ −1

−∞

n log(2|t|)
(t− x)2 + y2

dt

≤
√
r

πn

∫ −1

−∞

n log(2|t|)
t2

dt

≤ cn
√
r

n
≤ c

(6.4)

with an absolute constant c. Here we used the well-known inequality |p(t)| ≤ |2t|n
valid for all p ∈ Pc

n with ‖p‖[−1,1] ≤ 1 and for all t ∈ R \ (−1, 1). Obviously

(6.5)
|y|
π

∫ 1+ 2
√

r

n

−1

log |p(t)|
(t− x)2 + y2

dt ≤ 0 .

Observe that e/n)2 < r ≤ 1 implies 2
√
r

n < r. Now we use Lemma 4.1 and (6.1) to
obtain

|y|
π

∫ 1+r

1+ 2
√

r

n

log |p(t)|
(t− x)2 + y2

dt ≤ |y|
π

∫ 1+r

1+ 2
√

r

n

16nr−1/2(t− 1)

(t− x)2 + y2
dt

≤ |y|
π

∫ 1+r

1+ 2
√

r

n

64nr−1/2(t− 1)

(t− 1)2
dt

≤ |y|
π

64n√
r

∫ 1+r

1+ 2
√

r

n

(t− 1)−1 dt

≤ 64n√
r

√
r

πn log(n
√
r)

log

(
rn

2
√
r

)

≤ c

(6.6)
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with an absolute constant c. Also, Lemma 4.8 yields

|y|
π

∫ 2

1+r

log |p(t)|
(t− x)2 + y2

dt ≤ |y|
π

∫ 2

1+r

5n(t− 1)1/2

(t− x)2 + y2
dt

≤ |y|
π

∫ 2

1+r

20n(t− 1)1/2

(t− 1)2
dt

≤ |y|
π

∫ 2

1+r

20n(t− 1)−3/2 dt

≤
√
r

πn log(n
√
r)

20n√
r

≤ c

(6.7)

with an absolute constant c. Here we used that the assumption (e/n)2 < r ≤ 1
implies

2
√
r

n log(n
√
r)

≤ 2
√
r

n
≤ r .

Similarly to (6.4), we obtain

|y|
π

∫ ∞

2

log |p(t)|
(t− x)2 + y2

dt ≤
∫ ∞

2

n log(2|t|)
(t− x)2 + y2

dt

≤ n

√
r

πn log(n
√
r)

∫ ∞

2

4 log(2|t|)
(t− 1)2

dt

≤ c
√
r

log(n
√
r)

≤ c

(6.8)

with an absolute constant c. Here we used that the assumption (e/n)2 < r ≤ 1
implies

2
√
r

n log(n
√
r)

≤ 2
√
r

n
≤ r ≤ 1 .

Now (6.1) – (6.8) and Lemma 3.7 (Nevanlinna’s inequality) yield that if z ∈ C

satisfies (6.3), then

(6.9) |p(z)| ≤ exp

( |y|
π

∫ ∞

−∞

log |p(t)|
(t− x)2 + y2

dt

)
≤ c max

−1≤t≤1+ 2
√

r

n

|p(t)|

with an absolute constant c. Finally observe that Lemma 4.1 implies

(6.10) max
−1≤t≤1+ 2

√

r

n

|p(t)| ≤ c‖p‖[−1,1]

with an absolute constant c. The lemma now follows from (6.9) and (6.10). �

Proof of Theorem 2.2. First assume that (e/n)2 ≤ r ≤ 1. It follows from Lemma
4.7 and Cauchy’s integral formula in a standard fashion that

(6.11) |p′(1)| ≤ c7n log
(
n
√
r
)

√
r

‖p‖[−1,1]

16



for every p ∈ Pc
n(r), where c7 > 0 is an absolute constant. Now by a linear

transformation, we obtain

(6.12) |p′(y)| ≤ 2c7n log
(
n
√
r
)

√
r

‖p‖[−1,1]

for every p ∈ Pc
n(r) and y ∈ [1− r, 1]. By symmetry, we have

(6.13) |p′(y)| ≤ 2c7n log
(
n
√
r
)

√
r

‖p‖[−1,1]

for every p ∈ Pc
n(r) and y ∈ [−1,−1+r]. It is an obvious consequence of Bernstein’s

inequality (see the Introduction) that

(6.14) |p′(y)| ≤ n√
r
‖p‖[−1,1]

for every p ∈ Pc
n (here we do not need to exploit the information about the ze-

ros). Inequalities (6.12) – (6.14) yield the upper bound of the theorem under the
assumption (e/n)2 ≤ r ≤ 1. When 0 < r < (e/n)2 the upper bound of the theorem
follows from Markov’s Inequality (here we do not need the information about the
zeros again). By this the upper bound of the theorem is completely proved.

When 1/8 ≤ r ≤ 1 the lower bound of the theorem follows from the case k = 0
of the lower bound in Theorem 2.1 When 0 < r ≤ n−2, the Chebyshev polynomial
Tn defined by

Tn(x) := cos(n arccosx) , x ∈ [−1, 1] ,

shows the lower bound of the theorem. For the case n−2 < r ≤ 1/8, we offer the
following example. We define

(6.15) k :=
⌊
r−1/2

⌋
≤ n , and m :=

⌊
n

k

⌋
≥ 1 .

Let

(6.16) zj := (1− 2r) + 2r exp

(
(2j − 1)πi

2m+ 1

)
, j = 1, 2, . . . ,m

be the zeros of (z − (1− 2r))2m+1 + (2r)2m+1 in the open upper half-plane. Let

(6.17) Pm(z) := (z − (1− 4r))
m∏

j=1

(z − zj)
2 .

Let

(6.18) z̃j := −zj, j = 1, 2, . . . ,m

be the zeros of (z − (−1 + 2r))2m+1 + (2r)2m+1 in the open upper half-plane. Let

(6.19) P̃m(z) := (z − (−1 + 4r))

m∏

j=1

(z − z̃j)
2 .
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We introduce

Qk(z) := Uk

(
z

1− 2r

)
,

where Uk is the kth Chebyshev polynomial of the second kind defined by

Uk(z) =
sin((k + 1)θ)

sin θ
, z = cos θ , θ ∈ (0, π) .

Let
pn,r := PmP̃mQ4m+2

k .

Obviously pn,r ∈ Pc
(4m+2)(k+1)(r) ⊂ Pc

10n+2(r). We show that

(6.20) max
−1≤z≤1

|pn,r(z)| = |pn,r(1)| .

Observe that

|(PmP̃m)(z)| ≤ 4((1− 2r)2 − z2)2m+1 , −1 + 4r ≤ z ≤ 1− 4r ,

and

|Q2
k(z)((1− 2r)2 − z2)|2m+1 ≤ (1− 2r)4m+2 ≤ 1 , −1 + 2r ≤ z ≤ 1− 2r ,

hence

(6.21) |pn,r(z)| =
∣∣(PmP̃mQ4m+2

k

)
(z)
∣∣ ≤ 4 , −1 + 4r ≤ z ≤ 1− 4r .

Also
|(PmP̃m)(1)| = max

z∈[−1,1]\[−1+4r,1−4r]
|(PmP̃m)(z)| ,

hence

(6.22) |pn,r(1)| = max
z∈[−1,1]\[−1+4r,1−4r]

|pn,r(z)| .

Using (6.21), (6.15), and

|Qk(z)| ≤ |Qk(1− 2r)| = |Uk(1)| = k + 1 , z ∈ [−1 + 2r, 1− 2r] ,

we obtain

max
z∈[−1+4r,1−4r]

|pn,r(z)| ≤ 4 ≤ 22m+1

= r−(2m+1)(2r)2m+1 ≤ (k + 1)4m+2(2r)2m+1

≤ |pn,r(1− 2r)| ≤ |pn,r(1)| .

(6.23)

Now (6.22) and (6.23) yield (6.20). Using (6.20) and (6.15), we obtain

|p′n,r(1)|
‖pn,r‖[−1,1]

=
|p′n,r(1)|
|pn,r(1)|

≥

∣∣∣∣∣∣
2 Im




m∑

j=1

1

1− zj




∣∣∣∣∣∣
≥

∣∣∣∣∣∣
2 Im




⌊m/2⌋∑

j=1

1

1− zj




∣∣∣∣∣∣

≥ 2
1√
2

⌊m/2⌋∑

j=1

1

|1− zj |
≥ 2

1√
2

2

π

⌊m/2⌋∑

j=1

(
r
(2j − 1)π

2m+ 1

)−1

≥ cm logm

r
≥ c′n

√
r log(n

√
r)

r

=
c′n log(n

√
r)√

r
,

where c > 0 and c′ > 0 are absolute constants. This finishes the proof. �
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Máté, A., & P. Nevai, Bernstein inequality in Lp for 0 < p < 1, and (C, 1) bounds of orthogonal
polynomials, Ann. of Math. 111 (1980), 145–154.
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