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Abstract. A function Q is called absolutely monotone of order k on an interval I if Q(x) ≥ 0,

Q′(x) ≥ 0, . . . , Q(k)(x) ≥ 0, for all x ∈ I. An essentially sharp (up to a multiplicative absolute
constant) Markov inequality for absolutely monotone polynomials of order k in Lp[−1, 1],

p > 0, is established. One may guess that the right Markov factor is cn2/k and, indeed,

this turns out to be the case. Moreover, similarly sharp results hold in the case of higher
derivatives and Markov-Nikolskii type inequalities. There is a remarkable connection between

the right Markov inequality for absolutely monotone polynomials of order k in the supremum
norm, and essentially sharp bounds for the largest and smallest zeros of Jacobi polynomials.

This is discussed in the last section of this paper.

1. Introduction

Let Pn denote the collection of all real algebraic polynomials of degree at most n. If f
is a function defined on a measurable set A, then let

‖f‖A := ‖f‖L∞A := ‖f‖L∞(A) := sup
x∈A

{|f(x)|} .

Let

‖f‖LpA := ‖f‖Lp(A) :=

(
∫

A

|f(x)|p dx

)1/p

, p > 0 ,

whenever the Lebesgue integral exists. A function Q is called absolutely monotone of order
k on an interval I if Q(x) ≥ 0, Q′(x) ≥ 0, . . . , Q(k)(x) ≥ 0, for all x ∈ I. Let 0 ≤ k ≤ n.
Observe that Q ∈ Pn is absolutely monotone of order k on [−1, 1] if and only if it is of the
form

Q(x) := R(x) +

∫ x

−1

∫ xk

−1

· · ·

∫ x3

−1

∫ x2

−1

S(x1) dx1 dx2 dx3 · · · dxk
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with an S ∈ Pn−k nonnegative on [−1, 1] and a polynomial R ∈ Pk−1 of the form

(1.1) R(x) =
k−1
∑

j=0

aj(x + 1)j , aj ≥ 0 , j = 0, 1, . . . , k − 1 .

Also, if 0 ≤ m ≤ k − 1, then

Q(m)(x) = R(m)(x) +

∫ x

−1

∫ xk−m

−1

· · ·

∫ x3

−1

∫ x2

−1

S(x1) dx1 dx2 dx3 · · · dxk−m .

A straightforward application of Fubini’s Theorem gives that if y ∈ [−1, 1], then

(1.2) Q(y) = R(y) +
1

(k − 1)!

∫ y

−1

S(x)(y − x)k−1 dx .

Similarly, if 0 ≤ m ≤ k − 1, and y ∈ [−1, 1], then

(1.3) Q(m)(y) = R(m)(y) +
1

(k − 1 − m)!

∫ y

−1

S(x)(y − x)k−1−m dx .

Markov’s inequality [1, p. 233] asserts that

(1.4) ‖Q′‖[−1,1] ≤ n2‖Q‖[−1,1]

for every Q ∈ Pn. The Markov inequality in Lp[−1, 1] states that

(1.5) ‖Q′‖Lp[−1,1] ≤ c1+1/pn2‖Q‖Lp[−1,1]

holds for every Q ∈ Pn and p > 0. See [1, p. 402], for example. The essentially sharp
Nikolskii-type inequality

(1.6) ‖Q‖Lp[−1,1] ≤ (c(2 + qn))2/q−2/p ‖Q‖Lq[−1,1]

for every Q ∈ Pn and 0 < q < p ≤ ∞ is proved in [1, p. 395] with c := e2(2π)−1.
It has been observed by Bernstein that Markov’s inequality for monotone polynomials

is not essentially better than that for all polynomials. He proved that

sup
Q

‖Q′‖[−1,1]

‖Q‖[−1,1]
=

{

1
4 (n + 1)2 , if n is odd

1
4n(n + 2) , if n is even ,

where the supremum is taken for all polynomials 0 6= Q ∈ Pn of degree at most n that are
monotone on [−1, 1]. See [5, p. 607], for instance.

In August, 2008, András Kroó asked me in an e-mail if I knew an analog of the above
result of Bernstein for convex polynomials on [−1, 1]. In a few days, with different methods,
we both discovered independently that Markov’s inequality for convex polynomials is not
essentially better than that for all polynomials. A few weeks later Kroó informed me
in an e-mail that with József Szabados he proved the essentially sharp cn2/k Markov
factor for absolutely monotone polynomials Q ∈ Pn of order k on [−1, 1] in the uniform
norm. Meanwhile I had some work in progress about Markov inequality for absolutely
monotone polynomials of order k on [−1, 1] in Lp[−1, 1] norm for p > 0. Kroó, Szabados,
and I agreed that they would publish their results about Markov inequality for absolutely
monotone polynomials of order k on [−1, 1] in C norm, while I would try to work out the
right result in Lp[−1, 1] for p > 0. The results of Kroó and Szabados appeared in [3]. In
this paper we prove the “right” Markov-Nikolskii type inequality for absolutely monotone
polynomials of order k on [−1, 1].
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2. New Result

Our main result in this paper is the following.

Theorem 2.1. Let k, m, n ∈ N, 1 ≤ k ≤ n, 0 ≤ m ≤ k/2. Let 0 < q ≤ p ≤ ∞. There are

absolute constants c1 > 0 and c2 > 0 and constants cp,q > 0 and c′p,q > 0 depending only

on p and q such that

cp,q

(

(

q

q + 1

)2
c1n

2

k

)m+1/q−1/p

≤ sup
Q

‖Q(m)‖Lp[−1,1]

‖Q‖Lq[−1,1]
≤ c′p,q

(

c2n
2

k

)m+1/q−1/p

,

where the supremum is taken for all not identically zero absolutely monotone polynomials

Q ∈ Pn of order k on [−1, 1].

We prove the above theorem in Section 4. There is an interesting relationship between
the above result and essentially sharp lower and upper bounds for the smallest and largest

zeros of Jacobi polynomials P
(α,β)
n . This will be explored in Section 5.

3. Lemmas

Lemma 3.1. Let k, m, n ∈ N, 1 ≤ k ≤ n, 0 ≤ m ≤ k/2. There is an absolute constant

c3 ≥ 1 such that

∫ 1

−1

S(x)(1 − x)k−1−m dx ≤

(

c3n
2

k2

)m ∫ 1

−1

S(x)(1 − x)k−1 dx

holds for every polynomial S ∈ Pn−k nonnegative on [−1, 1].

Proof. When m = 0 the lemma is obvious, so we may assume that m ≥ 1. We base the
proof on Bernstein’s inequality [1, p. 232] stating that

‖T ′‖[−π,π] ≤ n‖T‖[−π,π]

for all real trigonometric polynomials of degree at most n. Let S ∈ Pn−k be nonnegative
on [−1, 1]. Observe that for a ∈ (−1, 1) we have the obvious inequality

(3.1)

∫ a

−1

S(x)(1 − x)k−1−m dx ≤

(

1

1 − a

)m ∫ a

−1

S(x)(1 − x)k−1 dx .

Let

P (x) :=

∫ x

−1

S(y)(1 − y)k−1−m dy .

Then P ∈ Pn−m ⊂ Pn,

P (1) =

∫ 1

−1

S(y)(1− y)k−1−m dy ,
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and P (j)(1) = 0 for each j = 1, 2, . . . , k − 1−m. We set T (t) := P (1)− P (cos t). Observe
that T is a trigonometric polynomial of degree at most n

T (j)(0) = 0, j = 0, 1, . . . , 2(k − m) − 1 .

The Taylor expansion of T centered at 0,

T (y) =
∞
∑

j=0

T (j)(0)

j!
yj =

∞
∑

j=2(k−m)

T (j)(0)

j!
yj ,

converges for every y ∈ R by the Root Test, since the Bernstein inequality

|T (j)(0)| ≤ nj‖T‖[−π,π]

holds. Hence, using also j! ≥ (j/e)j , k − m ≥ k/2, and the fact that 0 ≤ T (t) ≤ P (1) for
every t ∈ [−π, π], we obtain

|P (1) − P (cos y)| = T (y) ≤
∞
∑

j=2(k−m)

(

njP (1)

j!

)

yj =
∞
∑

j=k

(

njP (1)

(j/e)j

)

yj

≤
∞
∑

j=k

(

eny

j

)j

P (1) ≤
∞
∑

j=k

(eny

k

)j

P (1)

≤
1

2
P (1) , 0 ≤ y ≤

k

4en
.

Thus

P (1) ≤ 2P (cos y) with y :=
k

4en
.

Combining this with (3.1) and the inequality cos y ≤ 1 − y2/4 we obtain

∫ 1

−1

S(x)(1 − x)k−1−m dx = P (1) ≤ 2P (cos y)

= 2

∫ cos y

−1

S(x)(1 − x)k−1−m dx ≤ 2

(

1

1 − cos y

)m ∫ cos y

−1

S(x)(1 − x)k−1 dx

≤ 2

(

cn2

k2

)m ∫ 1

−1

S(x)(1 − x)k−1 dx

with c = 64e2, and the lemma is proved. �

Lemma 3.2. Let k, m, N ∈ N, k ≥ 2, 5k ≤ N , q > 0. There are an absolute constant

c4 > 0 and not identically zero polynomials S ∈ PN−k that are nonnegative on [−1, 1] such

that
∫ 1

−1

S(x)(1 − x)k−m dx

∫ 1

−1

S(x)(1 − x)k dx

≥

(

c4N
2

k2

)m
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for every 0 ≤ m ≤ k.

Proof. The lemma is obvious when m = 0, so we may assume that m ≥ 1. Let k ≥ 2,
5k ≤ N ,

µ :=

⌊

N − k

4k

⌋

≥ 1 .

We define U ∈ Pµ by U(cos t) = Dµ(t), where

Dµ(t) =
1

2
+

µ
∑

j=1

cos(jt) =
sin((2µ + 1)t/2)

2 sin(t/2)
,

and let S := U4k ∈ PN−k . Clearly

S(1) = (µ + 1
2
)4k ≥ µ4k ,

and

(3.2) S(x) ≤
ck
5

(1 − x)2k
, x ∈ [−1, 1] ,

with an absolute constant c5 > 0. Let

(3.3) B :=

[

1 −
1

2µ2
, 1 −

1

4µ2

]

.

Using the Mean Value Theorem and Markov’s inequality we obtain that there is a ξ ∈ (x, 1)
such that

|µ + 1
2 − U(x)| = |U(1) − U(x)| = |U ′(ξ)|(1− x) ≤ µ2|U(1)|(1− x)

≤µ2(µ + 1
2
)(1 − x) ≤ 1

2
(µ + 1

2
) , x ∈

[

1 −
1

2µ2
, 1

]

,

hence

U(x) ≥ 1
2 (µ + 1

2 ) ≥ µ/2 , x ∈ B ⊂
[

1 − 1
2µ2 , 1

]

.

Therefore, recalling (3.3), we have

(3.4)

∫

B

S(x)(1 − x)k dx ≥
1

4µ2

(µ

2

)4k
(

1

4µ2

)k

≥
1

4
64−kµ2k−2 .

Also, it follows from (3.2) that

∫ 1−c/µ2

−1

S(x)(1 − x)k dx ≤

∫ 1−c/µ2

−1

ck
5(1 − x)−k dx

≤c5

(

c5µ
2

c

)k−1

≤ 256c5
1

4
64−kµ2k−2

(3.5)
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if c := 64c5 and 1 − c/µ2 ≥ −1. When 1 − c/µ2 ≥ −1, from (3.4) and (3.5) we obtain

∫ 1

−1

S(x)(1 − x)k dx ≤ (256c5 + 1)

∫ 1

1−c/µ2

S(x)(1− x)k dx ,

hence

∫ 1

−1

S(x)(1 − x)k−m dx ≥

∫ 1

1−c/µ2

S(x)(1 − x)k−m dx

≥

(

µ2

c

)m ∫ 1

1−c/µ2

S(x)(1 − x)k dx

≥

(

µ2

c

)m
1

256c5 + 1

∫ 1

−1

S(x)(1 − x)k dx .

If 1 − c/µ2 < −1, that is µ2 < c/2, then

∫ 1

−1

S(x)(1 − x)k−m dx ≥ 2−m

∫ 1

−1

S(x)(1 − x)k dx ≥

(

µ2

c

)m ∫ 1

−1

S(x)(1 − x)k dx ,

which finishes the proof. �

Our next lemma follows from (1.2), (1.3), Lemma 3.2, and the inequalities

(

k

e

)m

≤
k!

(k − m)!
≤ km .

Lemma 3.3. Let k, m, N ∈ N, k ≥ 2, 5k ≤ N . There are an absolute constant c4 > 0
and not identically zero absolutely monotone polynomials Q ∈ PN of order k +1 on [−1, 1]
with a zero at −1 with multiplicity at least k + 1, such that

Q(m+1)(1)

Q(1)
=

Q(m+1)(1)

‖Q′‖L1[−1,1]
≥

(

c4N
2

ek

)m+1

for every 0 ≤ m + 1 ≤ k.

Observe that if Q ∈ PN is an absolutely monotone polynomial of order k +1 on [−1, 1],
then P := Q′ is an absolutely monotone polynomial of order k on [−1, 1]. Hence Lemma
3.3 implies the following lemma.

Lemma 3.4. Let k, m, N ∈ N, k ≥ 1, 5k ≤ N . There are an absolute constant c4 > 0
and not identically zero absolutely monotone polynomials P ∈ PN of order k +1 on [−1, 1]
with a zero at −1 with multiplicity at least k such that

P (m)(1)

‖P‖L1[−1,1]
≥

(

c4N
2

ek

)m+1

for every 0 ≤ m + 1 ≤ k.

6



4. Proof of Theorem 2.1

Proof of Theorem 1.1. First we prove the upper bound of the theorem. Let 0 ≤ m ≤ k/2,
1 ≤ k ≤ n. We may assume that k ≥ 2; the case k = 1, m = 0 follows from (1.6). Suppose
Q ∈ Pn is an absolutely monotone polynomial of order k on [−1, 1]. If Q(x) = 0 for an
x ∈ [0, 1], then Q ≡ 0 and Q(m) ≡ 0, hence

(4.1) |Q(m)(x)| ≤

(

4c3n
2

k

)m

Q(x)

trivially holds. If Q is not identically zero then scaling Lemma 3.1 linearly from the interval
[−1, 1] to [−1, x] (note that 1

2
(x + 1) ≥ 1

2
for x ∈ [0, 1]) and using (1.2), (1.3), and (1.1),

we obtain

|Q(m)(x)|

|Q(x)|
=

Q(m)(x)

Q(x)
≤

R(m)(x)

R(x)
+

1

(k − 1 − m)!

∫ x

−1

S(t)(x − t)k−1−m dt

1

(k − 1)!

∫ x

−1

S(t)(x − t)k−1 dt

≤km + km

(

2c3n
2

k2

)m

≤ km +

(

2c3n
2

k

)m

≤

(

4c3n
2

k

)m

, x ∈ [0, 1] .

(4.2)

(Observe that if R(x) = 0 for an x ∈ [0, 1], then R ≡ 0 and R(m) ≡ 0, and R(m)(x)/R(x)
in (4.2) can be interpreted as 0.) Hence (4.1) and (4.2) give

(4.3)

∫ 1

0

|Q(m)(x)|p dx ≤

(

4c3n
2

k

)mp ∫ 1

0

|Q(x)|p dx .

Since m ≤ k − 1, Q(m)(x) ≥ 0 is increasing on [−1, 1], hence we also have

(4.4)

∫ 0

−1

|Q(m)(x)|p dx ≤

∫ 1

0

|Q(m)(x)|p dx ≤

(

4c3n
2

k

)mp ∫ 1

0

|Q(x)|p dx .

Combining (4.3) and (4.4), we obtain

∫ 1

−1

|Q(m)(x)|p dx ≤ 2

(

4c3n
2

k

)mp ∫ 1

0

|Q(x)|p dx ,

that is,

(4.5) ‖Q(m)‖Lp[−1,1] ≤ 21/p

(

4c3n
2

k

)m

‖Q‖Lp[−1,1] .

Now observe that (4.1) and (4.2) with m = 1 gives

0 ≤ Q′(x) ≤
4c3n

2

k
Q(x) ≤

4c3n
2

k
Q(1) , x ∈ [0, 1] .
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Combining this with the Mean Value Theorem gives that there is a ξ ∈ (y, 1) such that

|Q(1) − Q(x)| = (1 − x)|Q′(ξ)| ≤ (1 − x)
4c3n

2

k
Q(1) ≤

1

2
Q(1)

for every

x ∈ I :=

[

1 −
k

8c3n2
, 1

]

,

that is,
1

2
Q(1) ≤ Q(x) , x ∈ I .

Therefore, if 0 < q, then

‖Q‖q
[−1,1] ≤

8c3n
2

k
2q

∫

I

(

1

2
‖Q‖[−1,1]

)q

dx ≤
8c3n

2

k
2q

∫

I

|Q(x)|q dx

≤
8c3n

2

k
2q

∫ 1

−1

|Q(x)|q dx ,

and hence, if 0 < q ≤ p < ∞, then

‖Q‖p
Lp[−1,1] =

∫ 1

−1

|Q(x)|p dx ≤

∫ 1

−1

‖Q‖p−q
[−1,1]|Q(x)|q dx

≤ 2p−q

(

8c3n
2

k

)(p−q)/q

‖Q‖p−q
Lq[−1,1]‖Q‖q

Lq[−1,1]

≤ 2p−q

(

8c3n
2

k

)(p−q)/q

‖Q‖p
Lq[−1,1] .

Therefore

‖Q‖Lp[−1,1] ≤ 21−q/p

(

8c3n
2

k

)1/q−1/p

‖Q‖Lq[−1,1] ,

which, together with (4.5), finishes the proof of the upper bound of the theorem.
Now we prove the lower bound of the theorem. Since the case k = 1 follows from the

case k = 2 we may assume that k ≥ 2. First let n ∈ N, ν := ⌊1/q⌋+ 1, N := ⌊n/ν⌋, k ≥ 2,
5k ≤ N , and 0 ≤ m + 1 ≤ k/2. By Lemma 3.4 there is a not identically 0 absolutely
monotone polynomial P ∈ PN of order k on [−1, 1] for which

(4.6)
P (m)(1)

‖P‖L1[−1,1]
≥

(

c4N
2

ek

)m+1

whenever 0 ≤ m + 1 ≤ 1
2
(k + 1). Using (4.6) and the already proved upper bound of the

theorem with m = 0, q = 1, p = ∞, and c′ = c′
∞,1, we obtain

(4.7) P (1) ≤ c′
c2N

2

k
‖P‖L1[−1,1] .
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and

P (m)(1)

P (1)
=

P (m)(1)

‖P‖L1[−1,1]

‖P‖L1[−1,1]

P (1)
≥

(

c4N
2

ek

)m+1(

c′
c2N

2

k

)−1

≥
c4

ec2c′

(

c4N
2

ek

)m

.

(4.8)

Let R := P ν . Then R ∈ Pn is an absolutely monotone polynomial of order k on [−1, 1],
hence using (4.6), (4.7), and (4.8), we obtain that

R(m)(1)

‖R‖Lq[−1,1]
≥

(P (1))
ν−1

P (m)(1)
(
∫ 1

−1

(P (x))νq dx

)1/q
≥

(P (1))
ν−1

P (m)(1)
(

‖P‖L1[−1,1] (P (1))
νq−1

)1/q

≥
(P (1))

ν−1
P (m)(1)

(

‖P‖L1[−1,1]

(

c′
c2N

2

k

)νq−1
(

‖P‖L1[−1,1]

)νq−1

)1/q

≥

(

c′
c2N

2

k

)1/q−ν (
P (1)

‖P‖L1[−1,1]

)ν (
P (m)(1)

P (1)

)

≥

(

c′
c2N

2

k

)1/q−ν (
c4N

2

ek

)ν
c4

ec2c′

(

c4N
2

ek

)m

≥ cp,q

(

c6N
2

k

)m+1/q

(4.9)

with an absolute constant c6 > 0 and a constant cp,q > 0 depending only on p and q. Since

R(m) ∈ Pn−m is an absolutely monotone polynomial of order k − m ≥ k/2, the already
proved upper bound of the theorem with proper substitutions imply

(4.10)
‖R(m)‖Lp[−1,1]

‖R(m)‖L∞[−1,1]

≥ (c′p,q)
−1

(

2c2n
2

k

)−1/p

.

Now (4.9) and (4.10) give the lower bound of the theorem.
In the remaining cases, when n ∈ N, ν := ⌊1/q⌋ + 1, N := ⌊n/ν⌋, k ≥ 2, N ≤ 5k ≤ 5n,

and 0 ≤ m + 1 ≤ k/2, the polynomials Q(x) = (1 − x)n yield the lower bound of the
theorem. �

5. Bounds for the Smallest and Largest zeros of Jacobi polynomials

In this section we point out a remarkable connection between the right Markov inequality
for absolutely monotone polynomials of order k in the supremum norm, and essentially
sharp bounds for the largest and smallest zeros of Jacobi polynomials. We hope that even
the close experts of orthogonal polynomials would find some novelty in the discussion here.

A version of the following result is due to Chebyshev, see Theorem 7.72.1 on p. 188
in [6], who handled the slightly more technical case when 2n − 2 in the lemma below is
replaced by 2n − 1 as well.
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Lemma 5.1. Associated with a weight function w on [−1, 1] let (Pn) be the sequence of

orthonormal polynomials Pn ∈ Pn on [−1, 1] with respect to w. Denote the zeros of Pn by

(−1 <)xnn < x(n−1)n < · · · < x2n < x1n(< 1) .

Then

inf
S

∫ 1

−1

S(x)(1 − x)w(x) dx

∫ 1

−1

S(x)w(x) dx

= 1 − x1n .

Equivalently,

sup
S

∫ 1

−1

S(x)w(x) dx

∫ 1

−1

S(x)(1 − x)w(x) dx

=
1

1 − x1n
,

where the infimum and supremum are taken for all 0 6= S ∈ P2n−2 nonnegative on [−1, 1].

Although Lemma 5.1 must be a well-known result for a reader familiar with the basics
about orthogonal polynomials, we present a short proof of it here, which is different from
that in [6, pp. 186–189]. We base the proof on the Gauss-Jacobi quadrature formula [6,
pp. 47–48] and hope it would help the reader to see it reasonably clearly what is behind
this good-looking result.

Proof. We prove the first statement of the lemma only, the second one is obviously equiva-
lent to it. Let 0 6= S ∈ P2n−2 and Q(x) := S(x)(x1n−x). Since Q ∈ P2n−1, the well-known
Gauss-Jacobi quadrature formula gives that

∫ 1

−1

S(x)(1 − x)w(x) dx =

∫ 1

−1

S(x)((1 − x1n) + (x1n − x))w(x) dx

=(1 − x1n)

∫ 1

−1

S(x)w(x) dx +

∫ 1

−1

S(x)(x1n − x)w(x) dx

=(1 − x1n)

∫ 1

−1

S(x)w(x) dx +

n
∑

j=1

λjS(xjn)(x1n − xjn)

≥ (1 − x1n)

∫ 1

−1

S(x)w(x) dx .

Here each λj ≥ 0, hence each term λjS(xjn)(x1n − xjn) is non-negative. Hence the first
statement of the lemma is already proved with the ≥ sign.

To prove the first statement of the lemma with the ≤ sign let

S(x) :=
Pn(x)2

(x − x1n)2
.
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Clearly S ∈ P2n−2 is non-negative on the real number line and

∫ 1

−1

S(x)(1 − x)w(x) dx

=

∫ 1

−1

Pn(x)2

(x − x1n)2
(1 − x)w(x) dx =

∫ 1

−1

Pn(x)2

(x − x1n)2
((1 − x1n) + (x1n − x))w(x) dx

=(1 − x1n)

∫ 1

−1

Pn(x)2

(x − x1n)2
w(x) dx −

∫ 1

−1

Pn(x)2

x − x1n
w(x) dx

=(1 − x1n)

∫ 1

−1

Pn(x)2

(x − x1n)2
w(x) dx = (1 − x1n)

∫ 1

−1

S(x) w(x) dx .

Here we used the fact that the polynomial Pn(x)/(x − x1n) is of degree n − 1 and hence
it is orthogonal to Pn with respect to the weight w. This is just the first statement of the
lemma with the ≤ sign. �

Let (P
(α,β)
n ) be the sequence of orthonormal (Jacobi) polynomials of degree n associated

with the weight (1 − x)α(1 + x)β on [−1, 1].

Corollary 5.2. Let x1n be the largest zero of the Jacobi polynomial P
(k+1,0)
n , 2 ≤ k ≤ n−1.

Then there are absolute constants c7 > 0 and c8 > 0 such that

1 − c7

(

k

2n + k

)2

≤ x1n ≤ 1 − c8

(

k

2n + k

)2

.

Proof. First we prove the upper bound of the corollary. Combining Lemma 5.1 and Lemma
3.1 applied with m = 1, 2n + k − 1 in place of n, and k replaced by k + 1, we obtain that

1

1 − x1n
= sup

S

∫ 1

−1

S(x)(1 − x)k−1 dx

∫ 1

−1

S(x)(1 − x)k dx

≤
c3(2n + k − 1)2

(k + 1)2
,

where the supremum is taken for all not identically 0 polynomials S ∈ P2n−2 nonnegative
on [−1, 1]. This gives the upper bound of the corollary.

Now we prove the lower bound of the corollary. When k ≥ (n − 1)/2 the lower bound
of the corollary follows from the well-known fact that −1 < x1n < 1. So we may assume
that 2 ≤ k ≤ (n − 1)/2. Combining Lemma 5.1 and Lemma 3.2 applied with m = 1,
2 ≤ k ≤ (n− 1)/2, and N := 2n + k − 2 (observe that 5k ≤ N is satisfied), we obtain that

(5.1)
1

1 − x1n
= sup

S

∫ 1

−1

S(x)(1 − x)k−1 dx

∫ 1

−1

S(x)(1 − x)k dx

≥
c4(2n + k − 2)2

k2
,
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where the supremum is taken for all not identically zero polynomials S ∈ P2n−2 that are
nonnegative on [−1, 1]. This gives the lower bound of the corollary. �

There is much literature on bounds for the zeros of Jacobi polynomials, see e.g., Sections
6.2 and 6.21, pp. 116–123 in [6], but most are useful only when α and β are between −1/2
and 1/2. The reader may wish to check [4], for example, and some of the other references
in [2]. For large n, the extreme zeros behave like −1 + j2

β/(2n2) and 1 − j2
α/(2n2), where

jκ denotes the smallest positive zero of the Bessel function Jκ, see Section 8.1, p. 192 in
[6].

The next theorem [2, Theorem 13] gives reasonably satisfactory lower and upper esti-
mates for the zeros of the Jacobi polynomials.

Theorem 5.3. Given n = 1, 2, . . . , the zeros

(−1 <)xnn < x(n−1)n < · · · < x2n < x1n(< 1)

of the Jacobi polynomial of degree n with respect to a Jacobi weight w(x) = (1−x)α(1+x)β

with α ≥ −1/2 and β ≥ −1/2 satisfy

−1 +
2β2

N2
≤ xnn and x1n ≤ 1 −

2α2

N2
,

where N := 2n + α + β + 1.

In [2] we did not prove the sharpness of the above theorem (up to an absolute constant).
Combining Lemma 5.1 applied to the Jacobi weight w(x) = (1 − x)α(1 + x)β on [−1, 1]
and appropriate (quite straightforward) modifications of Lemmas 3.1 and 3.2, we obtain
the following result similarly to the proof of Corollary 5.2.

Theorem 5.4. Given n = 1, 2, . . . , the zeros

(−1 <)xnn < x(n−1)n < · · · < x2n < x1n(< 1)

of the Jacobi polynomial of degree n with respect to a Jacobi weight w(x) = (1−x)α(1+x)β

with α ≥ 1 and β ≥ 1 satisfy

−1 +
c9β

2

N2
≤ xnn ≤ −1 +

c10β
2

N2
and 1 −

c′10α
2

N2
≤ x1n ≤ 1 −

c′9α
2

N2
,

where N = 2n+α+β +1 and c9 > 0, c10 > 0, c′9 > 0 and c′10 > 0 are appropriate absolute

constants.

The details of the proof of the above theorem may be the subject matter of another
note in the not too distant future.
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