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Abstract. Sharp extensions of some classical polynomial inequalities of Bernstein
are established for rational function spaces on the unit circle, on K := R (mod 2π),
on [−1, 1] and on R. The key result is the establishment of the inequality

|f ′(z0)| ≤ max



















∑

j=1

|aj |>1

|aj |2 − 1

|aj − z0|2
,

∑

j=1

|aj |<1

1− |aj |2

|aj − z0|2



















‖f‖∂D

for every rational function f = pn/qn, where pn is a polynomial of degree at most n
with complex coefficients and

qn(z) =
n
∏

j=1

(z − aj)

with |aj | 6= 1 for each j, and for every z0 ∈ ∂D, where ∂D := {z ∈ C : |z| = 1}. The
above inequality is sharp at every z0 ∈ ∂D.

1. Introduction, Notation.

We denote by Pr
n and Pc

n the sets of all algebraic polynomials of degree at
most n with real or complex coefficients, respectively. The sets of all trigonometric
polynomials of degree at most n with real or complex coefficients, respectively, are
denoted by T r

n and T c
n . We will use the notation

‖f‖A = sup
z∈A

|f(z)|

for continuous functions f defined on A. Let

D : = {z ∈ C : |z| ≤ 1},

∂D : = {z ∈ C : |z| = 1}
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and
K := R (mod2π).

The classical inequalities of Bernstein [1] state that

|p′(z0)| ≤ n‖p‖∂D, p ∈ Pc
n, z0 ∈ ∂D,

|t′(θ0)| ≤ n‖t‖K , t ∈ T c
n , θ0 ∈ K,

|p′(x0)| ≤
n√

1− x2
0

‖p‖[−1,1], p ∈ Pc
n, x0 ∈ (−1, 1).

Proofs of the above inequalities may be found in almost every book on approx-
imation theory, see [4], [5], [6] or [8] for instance. An extensive study of Markov-
and Bernstein-type inequalities is presented in [7].

In this paper we study the rational function spaces:

Pc
n(a1, a2, · · · , an; ∂D) :=





pn(z)
n∏

j=1

(z − aj)
: pn ∈ Pc

n





on ∂D with {a1, a2, · · · , an} ⊂ C \ ∂D;

T c
n (a1, a2, · · · , a2n;K) :=





tn(θ)
2n∏
j=1

sin((θ − aj)/2)

: tn ∈ T c
n





on K with {a1, a2, · · · , a2n} ⊂ C \ R;

Pc
n(a1, a2, · · · , an; [−1, 1]) :=





pn(x)
n∏

j=1

(x− aj)
: pn ∈ Pc

n





on [−1, 1] with {a1, a2, · · · , an} ⊂ C \ [−1, 1];

Pc
n(a1, a2, · · · , an;R) :=





pn(x)
n∏

j=1

(x− aj)

: pn ∈ Pc
n





on R with {a1, a2, · · · , an} ⊂ C \ R, and

Pr
n(a1, a2, · · · , an;R) :=





pn(x)
n∏

j=1

|x− aj |
: pn ∈ Pr

n







SHARP EXTENSIONS OF BERNSTEIN’S INEQUALITY TO RATIONAL SPACES 3

on R with {a1, a2, · · · , an} ⊂ C \ R.

The spaces

T r
n (a1, a2, · · · , a2n;K) :=





tn(θ)
2n∏
j=1

| sin((θ − aj)/2)|

: tn ∈ T r
n





on K with {a1, a2, · · · , an} ⊂ C \ R and

Pr
n(a1, a2, · · · , an; [−1, 1]) :=





pn(x)
n∏

j=1

|x− aj |
: pn ∈ Pr

n





on [−1, 1] with {a1, a2, · · · , an} ⊂ C \ [−1, 1] have been studied in [2] and [3], and
the sharp Bernstein-Szegő type inequalities

f ′(θ0)
2 + B̃n(θ0)

2 f(θ0)
2 ≤ B̃(θ0)

2‖f‖2K , θ0 ∈ K

for every f ∈ T r
n (a1, a2, · · · , a2n;K) with

(a1, a2, · · · , a2n) ⊂ C \ R, Im(aj) > 0, j = 1, 2, · · · , 2n

and

(1− x2
0)f

′(x0)
2 +Bn(x0)

2f(x0)
2 ≤ Bn(x0)

2‖f‖2[−1,1], x0 ∈ (−1, 1)

for every f ∈ Pr
n(a1, a2, · · · , an; [−1, 1])) with

{a1, a2, · · · , an} ⊂ C \ [−1, 1]

have been proved, where

B̃n(θ) :=
1

2

2n∑

j=1

1− |eiaj |2

|eiaj − eiθ|2
, θ ∈ K

and

Bn(x) := Re




n∑

j=1

√
a2j − 1

aj − x


 , x ∈ [−1, 1]

with the choice of
√
a2j − 1 is determined by

∣∣∣aj −
√
a2j − 1

∣∣∣ < 1.

These inequalities give sharp upper bound for |f ′(θ)| and |f ′(x0)| only at n points
in K and [−1, 1], respectively. In this paper we establish Bernstein-type inequalities
for the spaces

Pc
n(a1, a2, · · · , an, ∂D) and T c

n (a1, a2, · · · , a2n;K)
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which are sharp at every z ∈ ∂D and θ ∈ K, respectively. An essentially sharp
Bernstein-type inequality is also established for the space

Pc
n(a1, a2, · · · , an; [−1, 1]).

A Bernstein-type inequality of Russak [7] is extended to the spaces

Pc
n(a1, a2, · · · , an;R),

and a Bernstein-Szegő type inequality is established for the spaces

Pr
n(a1, a2, · · · , an;R).

For a polynomial

qn(z) = c
n∏

j=1

(z − aj), 0 6= c ∈ C, aj ∈ C

we define

q∗n(z) = c

n∏

j=1

(1− ajz) = znqn(z
−1).

It is well-known, and simple to check, that

|qn(z)| = |q∗n(z)|, z ∈ ∂D.

We also define the Blaschke products

Sn(z) :=

n∏

j=1

1− ajz

z − aj

associated with {a1, a2, · · · , an} ⊂ C \ ∂D, and

S̃n(z) :=

n∏

j=1

z − aj
z − aj

associated with {a1, a2, · · · , an} ⊂ C \ R.

2. New Results.

Theorem 1. Let {a1, a2, · · · , an} ⊂ C \ ∂D. Then

|f ′(z0)| ≤ max





∑

j=1
|aj|>1

|aj |
2 − 1

|aj − z0|2
,

∑

j=1
|aj |<1

1− |aj |
2

|aj − z0|2





‖f‖∂D

for every f ∈ Pc
n(a1, a2, · · · , an; ∂D) and z0 ∈ ∂D. If the first sum is not less than

the second sum for a fixed z0 ∈ ∂D, then equality holds for f = c S+
n , c ∈ C, where

S+
n is the Blaschke product associated with those aj for which |aj | > 1. If the first

sum is not greater than the second sum for a fixed z0 ∈ ∂D, then equality holds for

f = c S−
n , c ∈ C, where S−

n is the Blaschke product associated with those aj for

which |aj | < 1.
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Theorem 2. Let {a1, a2, · · · , a2n} ⊂ C \R. Then

|f ′(θ0)| ≤ max





2n∑

j=1
Im(aj)<0

|eiaj |2 − 1

|eiaj − eiθ0 |2
,

2n∑

j=1
Im(aj)>0

1− |eiaj |2

|eiaj − eiθ0 |2





‖f‖K

for every f ∈ T c
n (a1, a2, · · · , a2n;K) and θ0 ∈ K. If the first sum is not less than the

second sum for a fixed θ0 ∈ K, then equality holds for f(θ) = cS+
2n(e

iθ), c ∈ C. If the

first sum is not greater than the second sum for a fixed θ0 ∈ K, then equality holds

for f(θ) = cS−
2n(e

iθ), c ∈ C. S+
2n and S−

2n associated with {eia1 , eia2 , · · · , eia2n} are

defined as in Theorem 1.

Theorem 3. Let {a1, a2, · · · , an} ⊂ C/[−1, 1] and

cj := aj −
√
a2j − 1, |cj | < 1

with the choice of root in
√
a2j − 1 determined by |cj | < 1. Then

|f ′(x0)| ≤
1√

1− x2
0

max





n∑

j=1

|cj |
−2 − 1

|c−1
j − z0|2

,
n∑

j=1

1− |cj |
2

|cj − z0|2



 ‖f‖[−1,1]

for every f ∈ Pc
n(a1, a2, · · · , an; [−1, 1]) and x0 ∈ (−1, 1), where z0 is defined by

z0 := x0 + i
√
1− x2

0, x0 ∈ (−1, 1).

Note that

Bn(x0) = Re




n∑

j=1

√
a2j − 1

aj − x0


 =

n∑

j=1

1− |cj |
2

|cj − z0|2
, x0 ∈ (−1, 1).

Our next result extends an inequality established by Russak [7] to wider families
of rational functions.

Theorem 4. Let {a1, a2, · · · , an} ⊂ C \ R. Then

|f ′(x0)| ≤ max





n∑

j=1

Im(aj)>0

2|Im(aj)|

|x0 − aj |2
,

n∑

j=1

Im(aj)<0

2|Im(aj)|

|x0 − aj |2





‖f‖R

for every f ∈ Pc
n(a1, a2, · · · , an;R) and x0 ∈ R. If the first sum is not less than the

second sum for a fixed x0 ∈ R, then equality holds for f = cS̃+
n , c ∈ C, where S̃+

n

is the Blaschke product associated with the poles aj lying in the upper half-plane

H+ := {z ∈ C : Im(z) > 0}.
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If the first sum is not greater than the second sum for a fixed x0 ∈ R, then equality

holds for f = cS̃−
n , c ∈ C, where S̃−

n is the Blaschke product associated with the

poles aj lying in the lower half-plane

H− := {z ∈ C : Im(z) < 0}.

Our last result is a Bernstein-Szegő type inequality for

Pr
n(a1, a2, · · · , a2n;R)

which follows from the Bernstein-Szegő type inequality for

Pr
n(a1, a2, · · · , an; [−1, 1])

mentioned in the introduction.

Theorem 5. Let

{a1, a2, · · · , an} ⊂ C \ R, Im(aj) > 0, j = 1, 2, · · · , n.

Then

f ′(x0)
2 + B̂n(x0)

2f(x0)
2 ≤ B̂n(x0)

2‖f‖2
R
, x0 ∈ R,

for every f ∈ Pr
n(a1, a2, · · · , an;R), where

B̂n(x) :=

n∑

j=1

Im(aj)

|x− aj |2
, x ∈ R.

We remark that equality holds in Theorem 5 if and only if x0 is a maximum
point of f (i.e. f(x0) = ±‖f‖R) or f is a “Chebyshev polynomial” for the space
Pr
n(a1, a2, · · · , an;R) which can be explicitly expressed by using the results of [2]

and [3].

Note that Bernstein’s classical inequalities are contained in Theorem 1, 2, and 3
as limiting cases, by taking

{a
(k)
1 , a

(k)
2 , · · · , a(k)n } ⊂ C \D

in Theorems 1 and 3 so that lim
k→∞

|a
(k)
j | = ∞ for each j = 1, 2, · · · , n, and by taking

{a
(k)
1 , a

(k)
2 , · · · , a

(k)
2n } ⊂ C \ R

in Theorem 2 so that a
(k)
n+j = a

(k)
j and lim

k→∞
|Im(a

(k)
j )| = ∞ for each j = 1, 2, · · · , n.

Further results can be obtained as limiting cases by fixing a1, a2, · · · , am, 1 ≤ m ≤
n, in Theorems 1 and 3, and by taking

{a1, a2, · · · , am, a
(k)
m+1, a

(k)
m+2, · · · , a

(k)
n } ⊂ C \D

so that lim
k→∞

|a
(k)
j | = ∞ for each j = m+1,m+2, · · · , n. One may also fix the poles

a1, a2, · · · , am, an+1, an+2, · · · , an+m, 1 ≤ m ≤ n, in Theorem 2 and take

{a1, · · · , am, a
(k)
m+1, · · · , a

(k)
n , an+1, · · · , an+m, a

(k)
n+m+1, · · · , a

(k)
2n } ⊂ C \ R

so that a
(k)
n+j = a

(k)
j and lim

k→∞
|Im(a

(k)
j )| = ∞ for each j = m + 1,m + 2, · · · , n.

Several interesting corollaries of the above three theorems can be obtained. We
formulate only one of these.
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Corollary 6. Suppose {a1, a2, · · · , an} ⊂ C and

1 < R ≤ |aj |, j = 1, 2, · · · , n.

Then

|f ′(z0)| ≤
R+ 1

R− 1
n‖f‖∂D, z ∈ ∂D,

for every f ∈ Pc
n(a1, a2, · · · , an; ∂D). For a fixed z0 ∈ ∂D equality holds if and only

if

a1 = a2 = · · · = an = Rz0

and f = c Sn, c ∈ C, where Sn is the Blaschke product associated with the poles

aj , j = 1, 2, · · · , n.

3. Proofs.

To prove Theorem 1 we need the following result (see [9, p. 38] for instance).

Interpolation Theorem. Let V be an n + 1 dimensional subspace over C of
C(Q), the linear space of complex-valued continuous functions defined on a compact
Hausdorff space Q, and let L 6≡ 0 be a linear functional on V . Then there exists
distinct points x1, x2, · · · , xr in Q, where 1 ≤ r ≤ 2n+1, and nonzero real numbers
c1, c2, · · · , cr so that

L(f) =

r∑

j=1

cjf(xj), f ∈ V

and

‖L‖ := max
06=f∈V

|L(f)|

‖f‖Q
=

r∑

j=1

|cj |.

Proof of Theorem 1. For the reason of symmetry it is sufficient to prove the theorem
when z = 1. Without loss of generality we may assume that

(1) Re




n∑

j=1

1

1− aj


 6=

n

2

the other cases follow from this by a limiting argument. Let Q := ∂D (with the
usual metric topology),

V := Pc
n(a1, a2, · · · , an; ∂D)

and
L(f) := f ′(1), f ∈ V.

We show in this situation that n+1 ≤ r in the Interpolation Theorem. Suppose to
the contrary that r ≤ n. By the Interpolation Theorem there are r distinct points
x1, x2, · · · , xr on ∂D so that

(2)
p′n(1)qn(1)− q′n(1)pn(1)

qn(1)2
=

r∑

j=1

cj
pn(xj)

qn(xj)
, pn ∈ Pc

n,
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where

(3) qn(z) :=

n∏

j=1

(z − aj).

We claim that xj 6= 1 for each j = 1, 2, · · · , r. Indeed, if there is an index j so that
xj = 1, then the Interpolation Theorem implies that

pn(z) := (z + 1)n−r

r∏

j=1

(z − xj) ∈ Pc
n

has a zero at 1 with multiplicity at least 2, a contradiction. Applying (2) to the
above pn, we obtain

p′n(1)qn(1)− q′n(1)pn(1) = 0,

and since pn(1) 6= 0 and qn(1) 6= 0, this is equivalent to

q′n(1)

qn(1)
=

p′n(1)

pn(1)

or in terms of the zeros of pn and qn

(4)

n∑

j=1

1

1− aj
=

n− r

2
+

r∑

j=1

1

1− xj

.

Since xj ∈ ∂D and xj 6= 1, j = 1, 2, · · · , r, we have

(5) Re

(
1

1− xj

)
=

1

2
, j = 1, 2, · · · , r.

It follows from (4) and (5) that

Re




n∑

j=1

1

1− aj


 =

n

2

which contradicts assumption (1). So n+ 1 ≤ r, indeed.

A simple compactness argument shows that there is a function f̃ ∈ V so that
‖f̃‖∂D = 1 and |L(f̃)| = ‖L‖. The interpolation Theorem implies

|f̃(xj)| = 1, j = 1, 2, · · · , r.

Hence, if

f̃ =
p̃n
qn

, p̃n ∈ Pc
n, qn(z) =

n∏

j=1

(z − aj),

then

(6) h(z) = |p̃n(z)|
2 − |qn(z)|

2 ≤ 0, z ∈ ∂D



SHARP EXTENSIONS OF BERNSTEIN’S INEQUALITY TO RATIONAL SPACES 9

and

(7) h(xj) = 0, j = 1, 2, · · · , r.

Note that t(θ) := h(eiθ) ∈ T r
n vanishes at each θj , where θj ∈ [0, 2π) is defined by

xj = eiθj , j = 1, 2, · · · , r. Because of (6), each of these zeros is of even multiplicity.
Hence, n + 1 ≤ r implies that t ∈ Tn has at least 2n+ 2 zeros with multiplicities,
therefore t(θ) ≡ 0. From this we can deduce that h(z) = 0 for every z ∈ ∂D, so

(8) |p̃n(z)| = |qn(z)|, z ∈ ∂D.

We have

z−np̃n(z)p̃
∗
n(z) = |p̃n(z)|

2 = |qn(z)|
2 = z−nqn(z)q

∗
n(z), z ∈ ∂D,

so by the Unicity Theorem of analytic functions

p̃np̃
∗
n = qnq

∗
n.

¿From this it follows that there is a constant 0 6= c ∈ C so that

f̃(z) =
p̃n(z)

qn(z)
= c

m∏

j=1

z − 1/αj

z − αj

with some m ≤ n and

αj := akj
, j = 1, 2, · · · ,m, 1 ≤ k1 < k2 < · · · < km ≤ n.

A straightforward calculation gives

|f̃ ′(1)| =

∣∣∣∣∣
f̃ ′(1)

f̃(1)

∣∣∣∣∣ =

∣∣∣∣∣∣

m∑

j=1

(
1

1− 1/αj

−
1

1− αj

)∣∣∣∣∣∣

=

∣∣∣∣∣∣

m∑

j=1

|αj |
2 − 1

|αj − 1|2

∣∣∣∣∣∣
≤ max





∑

j=1
|aj |>1

|aj |
2 − 1

|aj − 1|2
,
∑

j=1
|aj |<1

1− |aj |
2

|aj − 1|2





which finishes the proof. �

Proof of Theorem 2. Observe that if

hn(θ) :=
2n∏

j=1

sin((θ − aj)/2) ∈ T c
n

and tn ∈ T c
n , then there are p2n ∈ Pc

2n and q2n ∈ Pc
2n so that

tn(θ)

hn(θ)
=

p2n(e
iθ)e−inθ

q2n(eiθ)e−inθ
=

p2n(e
iθ)

q2n(eiθ)
,
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where

q2n(z) = c

2n∏

j=1

(z − eiaj )

with some 0 6= c ∈ C. Therefore the theorem follows from Theorem 1. �

Proof of Theorem 3. The result follows from Theorem 1 by the substitution

x =
1

2
(z + z−1).

�

Proof of Theorem 4. The function

x = i
z + 1

z − 1

maps ∂D \ {1} = {z ∈ C : |z| = 1, z 6= 1} onto the real line. A straightforward
calculation shows that the inequality of the theorem follows from Theorem 1 by the
above substitution. �

Proof of Theorem 5. By Corollary 3.3. of [2] we have

(9) (1− y20)g
′(y0)

2 +Bn(y0)
2g(y0)

2 ≤ Bn(y0)
2‖g‖2[−1,1]

for every g ∈ Pr
n(b1, b2, · · · , bn; [−1, 1]) and y0 ∈ [−1, 1], where

{b1, b2, · · · , bn} ⊂ C \ [−1, 1]

and

Bn(y0) := Re




n∑

j=1

√
b2j − 1

bj − y0


 , y0 ∈ [−1, 1],

with the choice of root in
√
b2j − 1 determined by

|bj −
√
b2j − 1| < 1.

Let {a1, a2, · · · , an} ⊂ C \ R, x0 ∈ R, and

f ∈ Pn(a1, a2, · · · , an;R)

be fixed. Let a ∈ R be chosen so that |x0| < a, let y0 := x0/a ∈ (−1, 1), bj :=

aj/a, j = 1, 2, · · · , n, and

g(x) := f(ax) ∈ Pr
n(b1, b2, · · · , bn; [−1, 1]).

Applying (9) with the above g and y0, we obtain

(1− y0)
2a2f ′(x0)

2 +Bn(y0)
2f(x0)

2 ≤ Bn(y0)
2‖f‖2[−a,a]
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so

(10)
a2 − x2

0

a2
f ′(x0)

2 + (a−1Bn(y0))
2f(x0)

2 ≤ (a−1Bn(y0))
2‖f‖2

R

where

lim
a→+∞

a−1Bn(y0) = lim
a→+∞

Re




n∑

j=1

√
b2j − 1

a(bj − y0)




= lim
a→+∞

Re




n∑

j=1

√
(aj/a)2 − 1

aj − x0




= lim
a→+∞

Re




n∑

j=1

√
(aj/a)2 − 1− aj/a

aj − x0




= Re




n∑

j=1

i sign
(
Im

(√
a2j − 1−aj

))
(aj − x0)

|aj − x0|2




=
n∑

j=1

Im(aj)

|aj − x0|2
= B̂n(x0)

(11)

(note that the map a →
√
(aj/a)2 − 1− aj/a is a continuous map on (0,∞) taking

only nonreal values, and

Im
(√

a2j − 1−aj

)
< 0

follows from
∣∣∣aj −

√
a2j − 1

∣∣∣ < 1 and Im(aj) > 0.) Therefore, taking the limit on

(10) when a → +∞, we obtain the theorem by (11).

Proof of Corollary 6. The inequality follows from Theorem 1 since R ≤ |aj | and
|z0| = 1 imply

|aj |
2 − 1

|aj − z0|2
≤

R+ 1

R− 1
, j = 1, 2, · · · , n.

Now assume that f̃ 6= 0 satisfies

|f̃ ′(z0)| =
R+ 1

R− 1
n, ‖f̃‖∂D = 1,

for some z0 ∈ ∂D. Then we obtain from Theorem 1 that

|aj |
2 − 1

|aj − z0|2
=

R+ 1

R− 1
, j = 1, 2, · · · , n,

therefore

aj = Rz0, j = 1, 2, · · · , n.
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Now observe that 1 < R ≤ |aj |, j = 1, 2, · · · , n, implies

Re




n∑

j=1

1

1− aj


 <

n∑

j=1

1

2
=

n

2
,

so the proof of Theorem 1 yields that f̃ = c Sn, |c| = 1, where Sn is the Blaschke
product associated with {a1, a2, · · · , an}.

On the other hand, if z0 ∈ ∂D, a1 = a2 = · · · = an = Rz0, Sn is the Blaschke
product associated with {a1, a2, · · · , an} and f = c Sn, c ∈ C, then

|f ′(z0)| =
R+ 1

R− 1
‖f‖∂D = c

R+ 1

R− 1

and the proof is finished. �
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