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Abstract. For a function f defined on an interval [a, b] let

‖f‖[a,b] := sup{|f(x)| : x ∈ [a, b]} .

The principal result of this paper is the following Markov-type inequality for Müntz polyno-

mials.

Theorem. Let n ≥ 1 be an integer. Let λ0, λ1, . . . , λn be n + 1 distinct real numbers. Let

0 < a < b. Then

1

3

nX

j=0

|λj |+ 1

4 log(b/a)
(n− 1)2 ≤ sup

0 6=Q

‖xQ′(x)‖[a,b]

‖Q‖[a,b]

≤ 11
nX

j=0

|λj |+ 128

log(b/a)
(n + 1)2 ,

where the supremum is taken for all Q ∈ span{xλ0 , xλ1 , . . . , xλn} (the span is the linear

span over R).

1. Introduction and Notation

Let Λn := {λ0, λ1, . . . , λn} be a set of n + 1 distinct real numbers. The span of

{xλ0 , xλ1 , . . . , xλn}

over R will be denoted by

M(Λn) := span{xλ0 , xλ1 , . . . , xλn}.

Elements of M(Λn) are called Müntz polynomials of n+1 terms. For a function f defined
on an interval [a, b] let

‖f‖[a,b] := sup{|f(x)| : x ∈ [a, b]}
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Key words and phrases. Müntz polynomials, exponential sums, Markov-type inequality, Newman’s
inequality.
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and let

‖f‖Lp[a,b] :=

(∫ b

a

|f(x)|p dx

)1/p

, p > 0 ,

whenever the Lebesgue integral exists. Newman’s beautiful inequality [4] is an essentially
sharp Markov-type inequality for M(Λn) on [0, 1] in the case when each λj is nonnegative.

Theorem 1.1 (Newman’s Inequality). Let Λn := {λ0, λ1, . . . , λn} be a set of n + 1
distinct nonnegative numbers. Then

2
3

n∑
j=0

λj ≤ sup
0 6=Q∈M(Λn)

‖xQ′(x)‖[0,1]

‖Q‖[0,1]
≤ 11

n∑
j=0

λj .

Note that the interval [0, 1] plays a special role in the study of Müntz polynomials. A
linear transformation y = αx+β does not preserve membership in M(Λn) in general (unless
β = 0), that is Q ∈ M(Λn) does not necessarily imply that R(x) := Q(αx + β) ∈ M(Λn).
An analogue of Newman’s inequality on [a, b], a > 0, cannot be obtained by a simple
transformation. We can, however, prove the following result.

2. New Results

Theorem 2.1. Let n ≥ 1 be an integer. Let Λn := {λ0, λ1, . . . , λn} be a set of n + 1
distinct real numbers. Let 0 < a < b. Then

1
3

n∑
j=0

|λj |+ 1
4 log(b/a)

(n−1)2 ≤ sup
0 6=Q∈M(Λn)

‖xQ′(x)‖[a,b]

‖Q‖[a,b]
≤ 11

n∑
j=0

|λj |+ 128
log(b/a)

(n+1)2 .

Remarks 2.2. Of course, we can have Q′(x) instead of xQ′(x) in the above estimate;
since an obvious corollary of the above theorem is

1
3b

n∑
j=0

|λj|+ 1
4b log(b/a)

(n−1)2 ≤ sup
0 6=Q∈M(Λn)

‖Q′‖[a,b]

‖Q‖[a,b]
≤ 11

a

n∑
j=0

|λj |+ 128
a log(b/a)

(n+1)2 .

The reason we formulated Theorem 2.1 in the given form is that when a → 0 then we
obtain Theorem 1.1 (with worse absolute constants).

Theorem 2.1 was proved by P. Borwein and T. Erdélyi under the additonal assumptions
that λj ≥ δj for each j with a constant δ > 0 and with constants depending on a, b and δ
instead of the absolute constants (see [1] or [2], for instance).

The novelty of Theorem 2.1 is the fact that Λn := {λ0, λ1, . . . , λn} is an arbitrary set
of n + 1 distinct real numbers, not even the nonnegativity of the exponents λj is needed.

In the Lp[a, b] norm (p ≥ 1) we can establish the following.
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Theorem 2.3. Let n ≥ 1 be an integer. Let Λn := {λ0, λ1, . . . , λn} be a set of n + 1
distinct real numbers. Let 0 < a < b and 1 ≤ p < ∞. Then there is a positive constant
c1(a, b) depending only on a and b such that

sup
0 6=P∈M(Λn)

‖P ′‖Lp[a,b]

‖P‖Lp[a,b]
≤ c1(a, b)

(
n2 +

n∑
j=0

|λj |
)

.

Theorem 2.3 was proved by T. Erdélyi under the additonal assumptions that λj ≥ δj
for each j with a constant δ > 0 and with c1(a, b) replaced by c1(a, b, δ), see [3]. The
novelty of Theorem 2.3 is the fact again that Λn := {λ0, λ1, . . . , λn} is an arbitrary set of
n + 1 distinct real numbers, not even the nonnegativity of the exponents λj is needed.

3. Lemmas

The following comparison theorem for Müntz polynomials is proved in [1, E.4 f] of
Section 3.3].

Lemma 3.1 (A Comparison Theorem). Suppose

Λn := {λ0 < λ1 < · · · < λn} and Γn := {γ0 < γ1 < · · · < γn} ,

λn ≥ 0, and λj ≤ γj for each j = 0, 1, . . . , n. Let 0 < a < b. Then

max
0 6=Q∈M(Λn)

|Q′(b)|
‖Q‖[a,b]

≤ max
0 6=Q∈M(Γn)

|Q′(b)|
‖Q‖[a,b]

.

The following result is essentially proved by Saff and Varga [5]. They assume that
Λ := (λj)∞j=0 is an increasing sequence of nonnegative integers and δ = 1 in the next
lemma, however, this assumption can be easily dropped from their theorem, see [1, E.9 of
Section 6.1]. In fact, their proof remains valid almost word for word, the modifications are
straightforward.

Lemma 3.2 (The Interval Where the Norm of a Müntz Polynomial Lives). Let

Λn := {λ0 < λ1 < · · · < λn} and λ0 ≥ 0 .

Let 0 6= P ∈ M(Λn) and Q(x) := xkδP (x), where k is a nonnegative integer and δ is a
positive real number. Let ξ ∈ [0, 1] be a point so that |Q(ξ)| = ‖Q‖[0,1]. Suppose λj ≥ δj
for each j. Then (

k

k + n

)2/δ

≤ ξ.
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4. Proofs

Proof of Theorem 2.1. First we prove the upper bound. Let P ∈ M(Λn). We want to
show that

y|P ′(y)| ≤
11

n∑
j=0

|λj |+ 128(n + 1)2

log(b/a)

 ‖P‖[a,b]

for every y ∈ [a, b]. To this end we distinguish two cases. Without loss of generality we
may assume that λk = 0 for some k, otherwise we add the 0 exponent by changing n for
(n + 1).

Case 1. Let y ∈ [(ab)1/2, b
]
. First we examine the subcase when λ0 := 0. That is, we

have 0 = λ0 < λ1 < · · · < λn. Let

0 < δ := min
{

1 , min
1≤j≤n

λj

j

}
≤ 1 ,

Observe that the inequalities

λj ≥ δj , j = 1, 2, . . . , n ,

are satisfied. We define Q(x) := xmnδP (x), where with the choice m := b 8 log 2
δ log(b/a)

c, using
the inequality 2−2u ≤ 1− u (0 ≤ u ≤ 1/2) we have

a =
√

ab

√
a

b
≤
√

ab2−
4

δ(m+1) ≤
√

ab

(
1− 1

m + 1

)2/δ

=
√

ab

(
m

m + 1

)2/δ

.

Scaling Newman’s Inequality from [0, 1] to [0, y], then using Lemma 3.2, we obtain

y|Q′(y)| ≤ 11
n∑

j=0

(λj + mnδ)‖Q‖[0,y]

= 11

 n∑
j=0

λj + mn(n + 1)δ

 ‖Q‖h
y( m

m+1 )
2/δ

,y
i

≤ 11

 n∑
j=0

λj + mn(n + 1)δ

 ‖Q‖[a,y].
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Hence

y |P ′(y)| ≤ |Q′(y)|y1−mnδ + mnδ|P (y)|

≤ y−mnδ11

 n∑
j=0

λj + mn(n + 1)δ

 ‖Q‖[a,y] + mnδ‖P‖[a,y]

≤
11

n∑
j=0

λj + mn(11n + 12)δ

 ‖P‖[a,y]

≤
11

n∑
j=0

λj +
128n2

log(b/a)

 ‖P‖[a,b].

This finishes the proof in Case 1 under the additional assumption λ0 := 0. Now we drop
this additional assumption. Suppose

Λn := {λ0 < λ1 < · · · < λn}

and λk = 0 for some 0 ≤ k ≤ n. For a fixed ε > 0 let

Γn,ε := {γ0,ε < γ1,ε < · · · < γn,ε}

with
γj,ε := (j − k)ε , j = 0, 1, 2, . . . k ,

and
γj,ε := λj , j = k + 1, k + 2, . . . , n .

If ε > 0 is sufficiently small, then by Lemma 3.1 we have

(4.1) max
0 6=Q∈M(Λn)

y|Q′(y)|
‖Q‖[a,y]

≤ max
0 6=Qε∈M(Γn,ε)

y|Q′ε(y)|
‖Qε‖[a,y]

.

Let Qε ∈ M(Γn,ε). Then Qε is of the form

Qε(x) = x−kεRε(x) , Rε ∈ span{xγ0+kε, xγ1+kε, . . . , xγn+kε},
where each γj + kε is nonnegative. Hence, using the upper bound of the theorem in the
already proved case

λ0 := 0 , y ∈
[
(ab)1/2, b

]
we obtain

y |R′ε(y)| ≤
11

n∑
j=0

(γj,ε + kε) +
128n2

log(b/a)

 ‖Rε‖[a,y] .
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Recalling (4.1), and taking the limit when ε > 0 tends to 0, we obtain

max
0 6=Q∈M(Λn)

y|Q′(y)|
‖Q‖[a,y]

≤ lim
ε→0+

max
0 6=Qε∈M(Γn,ε)

y|Q′ε(y)|
‖Qε‖[a,y]

≤ lim
ε→0+

11
n∑

j=0

(γj,ε + kε) +
128n2

log(b/a)

= 11
n∑

j=k+1

λj +
128n2

log(b/a)

≤ 11
n∑

j=0

|λj |+ 128n2

log(b/a)

The proof of the upper bound of the theorem is now finished in Case 1.

Case 2. Let y ∈ [a, (ab)1/2
]
. Suppose again that

Λn := {λ0 < λ1 < · · · < λn}

and λk = 0 for some 0 ≤ k ≤ n. Associated with P ∈ M(Λn) let P̃ ∈ M(Λ̃n) be defined
by

P̃ (x) := P (ab/x) ,

Λ̃n := {λ̃0 < λ̃1 < · · · < λ̃n} := {−λn < −λn−1 < · · · < −λ0} .

Using the upper bound of the theorem in the already proved Case 1 with P̃ ∈ M(Λ̃n) and
ỹ = ab/y ∈ [(ab)1/2, b

]
, we obtain

y|P ′(y)| = |P̃ ′(ỹ)|(ab/y) ≤
11

n∑
j=0

|λ̃j |+ 128(n + 1)2

log(b/a)

 ‖P̃‖[a,b]

=

11
n∑

j=0

|λj |+ 128(n + 1)2

log(b/a)

 ‖P‖[a,b] ,

and the proof is finished in Case 2 as well.
Now we show the lower bound of the theorem. Suppose

Λn := {λ0 < λ1 < · · · < λn} ,

and 0 ≤ k ≤ n is chosen so that λj < 0 for all j = 1, 2, . . . , k and λj ≥ 0 for all
j = k + 1, k + 2, . . . , n. Let

Λ−n := {−λk < −λk−1 < · · · < −λ0}
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and
Λ+

n := {λk+1 < λk+2 < · · · < λn}
The lower bound of Theorem 1.1 (combined with a linear scaling, if necessary) shows the
existence of a Q ∈ M(Λ+

n ) for which

|Q′(1)| ≥ 2
3

 n∑
j=k+1

λj

 ‖Q‖[0,1] .

Then R(x) := Q(x/b) ∈ M(Λn) satisfies

‖xR′(x)‖[a,b] ≥ b|R′(b)| = |Q′(1)| ≥ 2
3

 n∑
j=k+1

|λj |
 ‖Q‖[0,1]

≥ 2
3

 n∑
j=k+1

|λj |
 ‖R‖[a,b].

Similarly, the lower bound of Theorem 1.1 (combined with a linear scaling if necessary)
shows the existence of a Q ∈ M(Λ−n ) for which

|Q′(1)| ≥ 2
3

 k∑
j=0

(−λj)

 ‖Q‖[0,1] .

Then R(x) := Q(a/x) ∈ M(Λn) satisfies

‖xR′(x)‖[a,b] ≥ a|R′(a)| = |Q′(1)| ≥ 2
3

 k∑
j=0

|λj |
 ‖Q‖[0,1]

≥ 2
3

 k∑
j=0

|λj |
 ‖R‖[a,b].

The two observations above already give

1
3

n∑
j=0

|λj| ≤ sup
0 6=Q∈M(Λn)

‖xQ′(x)‖[a,b]

‖Q‖[a,b]
.

To prove that

(4.2)
(n− 1)2

4 log(b/a)
≤ sup

0 6=∈M(Λn)

‖xQ′(x)‖[a,b]

‖Q‖[a,b]
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we argue as follows. Let

Qm,ε(x) := Tm

(
2xε

bε − aε
− bε + aε

bε − aε

)
∈ span{1, xε, x2ε, . . . , xmε} ,

where Tm(x) = cos(m arccos x), x ∈ [−1, 1], is the Chebyshev polynomial of degree m.
Then

b|Q′m,ε(b)|
‖Qm,ε‖[a,b]

= |T ′m(1)| 2
bε − aε

εbε

=
2m2

ε−1(bε − 1)− ε−1(aε − 1)
bε −→

ε→0

2m2

log b− log a
.

(4.3)

Now suppose, as before,
Λn := {λ0 < λ1 < · · · < λn} ,

and 0 ≤ k ≤ n is chosen so that λj < 0 for all j = 1, 2, . . . , k and λj ≥ 0 for all
j = k +1, k +2, . . . , n. Using Lemma 3.1 and (4.3), we obtain that for k ≤ n−1 there is a

Q ∈ span{xλk+1 , xλk+2 , . . . , xλn}
such that

(4.4)
2(n− k − 1)2

log b− log a
≤ b|Q′(b)|
‖Q‖[a,b]

,

Similarly, using Lemma 3.1 and (4.4), we obtain for k ≥ 0 that there is an

R ∈ span{x−λ0 , x−λ1 , . . . , x−λk}

such that
2k2

log b− log a
≤ b|R′(b)|
‖R‖[a,b]

,

and hence for
Q ∈ span{xλ0 , xλ1 , . . . , xλk}

defined by Q(x) := R(ab/x) we have

(4.5)
2k2

log b− log a
=

2k2

log b− log a
≤ a|Q′(a)|
‖Q‖[a,b]

.

Now (4.2) follows from (4.4) and (4.5), and the proof of the lower bound of the theorem
is finished. �

Proof of Theorem 2.2. One can copy the proof in [3] by putting the upper bound of
Theorem 1.1 in the appropriate place in the arguments. We omit the details. �
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