THE FULL MARKOV-NEWMAN INEQUALITY FOR
MUNTZ POLYNOMIALS ON POSITIVE INTERVALS
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ABSTRACT. For a function f defined on an interval [a, b] let

1f1l{a,p) := sup{|f(2)| : @ € [a,b]} .

The principal result of this paper is the following Markov-type inequality for Miintz polyno-
mials.

Theorem. Letn > 1 be an integer. Let Ao, A\1,...,An be n+ 1 distinct real numbers. Let
0<a<b. Then

1< 1 l2Q" () l[a,b] 2
= Ail+ ————(n—-1)%2< = Y <1 A + n+1)2,
3 2 M T Y S8 o, Z' 1+ gty Y
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where the supremum is taken for all Q € span{z?0, x xz '} (the span is the linear

span over R).

1. INTRODUCTION AND NOTATION

Let Ay, :={ o, A1,-..,A\n} be a set of n+ 1 distinct real numbers. The span of
{zro g . M)
over R will be denoted by
M(A,,) = span{z?o, ™ ... a?n}.

Elements of M (A,,) are called Miintz polynomials of n+ 1 terms. For a function f defined
on an interval [a, b] let

[f1ltap) == sup{|f(2)] : = € [a, b]}
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and let

b 1/p
1Nz (a,0) == (/ !f(fl?)\pdiv> ,  p>0,

whenever the Lebesgue integral exists. Newman’s beautiful inequality [4] is an essentially
sharp Markov-type inequality for M (A,,) on [0, 1] in the case when each )\; is nonnegative.

Theorem 1.1 (Newman’s Inequality). Let A, := {Xo, \1,...,\n} be a set of n+ 1
distinct nonnegative numbers. Then

2 (" @@l _ - &
— A < sup — 2 <11 A
P [Qloy =112

0#QeM(An)

Note that the interval [0, 1] plays a special role in the study of Miintz polynomials. A
linear transformation y = ax+ does not preserve membership in M (A,,) in general (unless
B =0), that is @ € M(A,,) does not necessarily imply that R(z) := Q(az + ) € M(A,).
An analogue of Newman’s inequality on [a,b], a > 0, cannot be obtained by a simple
transformation. We can, however, prove the following result.

2. NEw RESULTS

Theorem 2.1. Let n > 1 be an integer. Let A, = {Xo,A\1,..., \n} be a set of n+ 1
distinct real numbers. Let 0 < a < b. Then

5 2 gz "V L gl <”Z'“+ UL

0#QeM(An)

Remarks 2.2. Of course, we can have Q'(z) instead of x@Q’(z) in the above estimate;
since an obvious corollary of the above theorem is

1 1Q'lfa0) _ 11 128
— Ajl+ n—1)%< sup < — ANj|+—F7—
% 2 Tl " Y ) Tl = @ 21 T

(n+1)=%.
The reason we formulated Theorem 2.1 in the given form is that when a — 0 then we
obtain Theorem 1.1 (with worse absolute constants).

Theorem 2.1 was proved by P. Borwein and T. Erdélyi under the additonal assumptions
that A\; > ¢j for each j with a constant 6 > 0 and with constants depending on a,b and ¢
instead of the absolute constants (see [1] or [2], for instance).

The novelty of Theorem 2.1 is the fact that A,, := {Ao, A\1,..., A\n} is an arbitrary set
of n + 1 distinct real numbers, not even the nonnegativity of the exponents A; is needed.

In the Ly[a,b] norm (p > 1) we can establish the following.
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Theorem 2.3. Let n > 1 be an integer. Let A, = {Xo,A\1,..., \n} be a set of n+ 1
distinct real numbers. Let 0 < a < b and 1 < p < oco. Then there is a positive constant
c1(a,b) depending only on a and b such that

P’ a i
sup Lilh AL < ci(a,b) ("2 +Z|>\j|> :
5=0

0£PeM(n,) [1PlL,[a0)

Theorem 2.3 was proved by T. Erdélyi under the additonal assumptions that \; > dj
for each j with a constant § > 0 and with c¢;(a,b) replaced by c¢(a,b,d), see [3]. The
novelty of Theorem 2.3 is the fact again that A, := {Ag, A\1,..., A} is an arbitrary set of
n + 1 distinct real numbers, not even the nonnegativity of the exponents \; is needed.

3. LEMMAS

The following comparison theorem for Miintz polynomials is proved in [1, E.4 f] of
Section 3.3].

Lemma 3.1 (A Comparison Theorem). Suppose
Api={ o< < - <A} and Cp={v<m<:--<mm},
A >0, and \j <, for each j =0,1,... ,n. Let 0 <a <b. Then

Q) _ Q')

max max .
0£QeM (M) [|Qllfa,p) ~ 0£QeM () [|Q|l (5]

The following result is essentially proved by Saff and Varga [5]. They assume that
A = ()\j);?’;o is an increasing sequence of nonnegative integers and 6 = 1 in the next
lemma, however, this assumption can be easily dropped from their theorem, see [1, E.9 of
Section 6.1]. In fact, their proof remains valid almost word for word, the modifications are
straightforward.

Lemma 3.2 (The Interval Where the Norm of a Miintz Polynomial Lives). Let
An:={>\0<)\1<"'<)\n} and Ao > 0.

Let 0 # P € M(A,) and Q(x) := x* P(z), where k is a nonnegative integer and & is a
positive real number. Let & € [0,1] be a point so that |Q(§)| = ||Q|lj0,1]- Suppose \j > &j

for each j. Then
po\ 2/
< €.
(k+n) =¢
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4. PROOFS

Proof of Theorem 2.1. First we prove the upper bound. Let P € M(A,). We want to
show that

128n—|—1)
Y|P’ (y)] < 112\>\\ Tog(b/a) 1P [{a,0)

for every y € [a,b]. To this end we distinguish two cases. Without loss of generality we
may assume that A\; = 0 for some k, otherwise we add the 0 exponent by changing n for
(n+1).

Case 1. Let y € [(ab)'/?,b]. First we examine the subcase when A := 0. That is, we
have 0 = g < A1 < --- < A,,. Let

s
O<(5::min{1 min —J} <1,
1<j<n ]
Observe that the inequalities
>\]>6j7 ]_]‘727 7n’

are satisfied. We define Q(z) := ™" P(z), where with the choice m := | Milgo(%/za)j, using
the inequality 272% <1 —u (0 < u < 1/2) we have

- \ 1 2/6 o \2/0
a:xﬁﬁvg}gv@@wmﬁsgvﬂa(l_____) :\ﬁﬁ(————) |

m+1 m+1

Scaling Newman'’s Inequality from [0, 1] to [0, y], then using Lemma 3.2, we obtain

y|Q'(y \<11§: i +mnd)||Qllo.4)

=11 ) N +mn(n+1)s ”QH[y(m

J=0

n )2/5’?}]

<1 D) A +mn(n+1)6 | [1Qlla,y-
j=0
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Hence

y P ()] < 1Q W)y ™" +mnd|P(y)|

<y L[ DN Fmnn 4+ 1) | [Qllja,y) + mnd||Pllay
7=0

11 Xj + mn(11n+12)8 | ||Pja,y
j=0

128n
< 112A ogvja) | 1Fllie:

IN

This finishes the proof in Case 1 under the additional assumption Ay := 0. Now we drop
this additional assumption. Suppose

Ap={ <A1 < - <A}
and A\ = 0 for some 0 < k < n. For a fixed € > 0 let

Fnﬁ = {70,5 < V,e < e < fynva}
with
Vje:=(0—ke, i=0,1,2,...k,

and
Yie=2Xj, Jj=k+LE+2,....n

If € > 0 is sufficiently small, then by Lemma 3.1 we have

QW) S,
O7AQ€M(A ) HQH[CL Y] 07’5Qa€M(Fn <) HQEH

(4.1)

Let Q. € M(I',,c). Then Q. is of the form

Q:(z) = x*ksRE(:c) , R, € span{xWJrkE, gntke ,m%ﬁke},

where each 7, + ke is nonnegative. Hence, using the upper bound of the theorem in the
already proved case

Amzo,ye[mmﬂaﬂ

we obtain

Bl < (103 (e k) + 2 ) a2
Yl \y)| = : Vi,e log(b/a) ellla,y] *
7=0
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Recalling (4.1), and taking the limit when € > 0 tends to 0, we obtain

/
MQ(NS i A MQ(N
0¢Q6be)HQHmy] E‘m+0¢Q&JﬂFnd’Kk
- 128n2
< lim 11 -+ k
= AR 20 R )

Sy log(b/a)

= 128n2
<11 A

2+ o

The proof of the upper bound of the theorem is now finished in Case 1.

Case 2. Let y € [a, (ab)l/Q]. Suppose again that
Api={ o <A1 < - <A}

and A = 0 for some 0 < k < n. Associated with P € M(A,,) let Pc M(/NXn) be defined
by
P(z) := P(ab/z),

Ai={ho <A < <Adi={-A < —Ap_1 < < —Ao}.

Using the upper bound of the theorem in the already proved Case 1 with PeM (Kn) and
y=ably € [(ab)l/z, b], we obtain

m8n+D

P
b/@) || H[a,b]

yIP'(y)| = |P'(§)|(ab/y) < 112£:|A |+

H8n+D
= 112‘)‘ ‘ b/ ) HP‘ [a,b]

and the proof is finished in Case 2 as well.
Now we show the lower bound of the theorem. Suppose

Api={do <A1 < <A},

and 0 < k& < n is chosen so that \; < 0 for all j = 1,2,... ,k and \; > 0 for all
j=k+1Lk+2,...,n Let

AT_L = {_)\k <A1 <0 < —)\0}
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and
AI = {)\k+1 < Apgo < -+ < )\n}

The lower bound of Theorem 1.1 (combined with a linear scaling, if necessary) shows the
existence of a @ € M(A;}) for which

> A IR,

j=k+1

Wl N

Q'] =

Then R(z) := Q(z/b) € M(A,) satisfies

2R (2)||ap) = bIR'(B)] = |Q'(1)] > >l 1Rl

j=k+1

Wl N

n

2
Z3 > Nl IR
j=k+1

Similarly, the lower bound of Theorem 1.1 (combined with a linear scaling if necessary)
shows the existence of a @ € M(A;,) for which

k

> =2 ] IRl

J=0

Q' (1)

[0,1] -

v
GUIEN

Then R(x) := Q(a/z) € M(A,,) satisfies

2R (2)[l 0.0y = al B (a)| = [Q"(1)] =

GV )

k
> 1l 1Rl
§=0

k
2
= D
j=0

The two observations above already give

AN |2Q (@)l 0,0
gZP\j! < sup Lah ANLC2IY
o 0£QeM(ry)  |1Qlla)

To prove that

n-17 _ Q@)

(n—1)" [a,b]
dlog(b/a) ~ ozemrn) Qe
7
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we argue as follows. Let

2a¢ b¢ + a®
e —af b — af

Qme(z) =T ( ) € span{l, 2%, 2%°,... 2™},

where T,,,(z) = cos(marccosz), = € [—1,1], is the Chebyshev polynomial of degree m.
Then

0| Q. (b)) 2
4.3 — e = |T) (1
( ) ||Qm’5 [a’b] | ( )‘ bg _ ae

2

eb®

2m . 2m?

b —_—.
e7l(bs—1) —e71(a® - 1) ——0 logb —loga

Now suppose, as before,
A, = {)\0<)\1 <"'<)\n}7

and 0 < k < n is chosen so that \; < 0 for all j = 1,2,...,k and A\; > 0 for all
j=k+1,k+2,... ,n. Using Lemma 3.1 and (4.3), we obtain that for k¥ <n —1 there is a

Q € span{z 1 gz gAnd
such that

2n—k—1) _ blQ'(b)

4.4 ’
(4.4) logb—loga = [|Qllfa

Similarly, using Lemma 3.1 and (4.4), we obtain for £ > 0 that there is an
R espan{z=0 =™ .z}
such that

2k? < b|R'(D)|
logb —loga ~ ||R]

[ab]

and hence for

Q € span{z?0, 2™, ... 2}
defined by Q(z) := R(ab/z) we have
(45) 2k2 2k> < alQ’(a)|

logb —loga - logb —loga — HQH[GJJ] .

Now (4.2) follows from (4.4) and (4.5), and the proof of the lower bound of the theorem
is finished. O

Proof of Theorem 2.2. One can copy the proof in [3] by putting the upper bound of
Theorem 1.1 in the appropriate place in the arguments. We omit the details. [
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