PROOF OF SAFFARI'S NEAR-ORTHOGONALITY CONJECTURE FOR ULTRAFLAT SEQUENCES
 OF UNIMODULAR POLYNOMIALS

Tamás Erdélyi
Department of Mathematics, Texas A\&M University
College Station, Texas 77843, USA
E-mail: terdelyi@math.tamu.edu

Abstract. Let $P_{n}(z)=\sum_{k=0}^{n} a_{k, n} z^{k} \in \mathbb{C}[z]$ be a sequence of unimodular polynomials $\left(\left|a_{k, n}\right|=1\right.$ for all $\left.k, n\right)$ which is ultraflat in the sense of Kahane, i.e.,

$$
\lim _{n \rightarrow \infty} \max _{|z|=1}\left|(n+1)^{-1 / 2}\right| P_{n}(z)|-1|=0
$$

We prove the following conjecture of Saffari (1991): $\sum_{k=0}^{n} a_{k, n} a_{n-k, n}=o(n)$ as $n \rightarrow \infty$, that is, the polynomial $P_{n}(z)$ and its "conjugate reciprocal" $P_{n}^{*}(z)=$ $\sum_{k=0}^{n} \bar{a}_{n-k, n} z^{k}$ become "nearly orthogonal" as $n \rightarrow \infty$. To this end we use results from [Er1] where (as well as in [Er3]) we studied the structure of ultraflat polynomials and proved several conjectures of Saffari.

Preuve de la conjecture de quasi-orthogonalité de Saffari POUR LES SUITES ULTRA-PLATES DE POLYNÔMES UNIMODULAIRES

Résumé. Soit $P_{n}(z)=\sum_{k=0}^{n} a_{k, n} z^{k} \in \mathbb{C}[z]$ une suite de polynômes unimodulaires $\left(\left|a_{k, n}\right|=1\right.$ pour tout $\left.k, n\right)$ supposée ultra-plate au sens de Kahane, c.à.d.

$$
\lim _{n \rightarrow \infty} \max _{|z|=1}\left|(n+1)^{-1 / 2}\right| P_{n}(z)|-1|=0
$$

Nous prouvons la conjecture suivante de Saffari (1991): $\sum_{k=0}^{n} a_{k, n} a_{n-k, n}=o(n)$ pour $n \rightarrow \infty$, c.à.d. que le polynôme $P_{n}(z)$ et son "reciproque conjugué" $P_{n}^{*}(z)=$ $\sum_{k=0}^{n} \bar{a}_{n-k, n} z^{k}$ deviennent "quasi-orthogonaux" lorsque $n \rightarrow \infty$. Pour ce faire nous employons des résultats de [Er1] où (ainsi que dans [Er3]) nous avons étudié la structure des polynômes ultra-plats et avons prouvé plusieurs conjectures de Saffari.

[^0]
Version Française Abrégée

Une suite de polynômes $P_{n}(z)=\sum_{k=0}^{n} a_{k, n} z^{k} \in \mathbb{C}[z]$ à coefficients unimodulaires (appelés, pour abréger, "polynômes unimodulaires") est dite ultra-plate s'il existe une suite positive $\left(\varepsilon_{n}\right)$ tendant vers zéro telle que, pout tout n, on ait

$$
\left.\left(1-\varepsilon_{n}\right) \sqrt{n+1} \leq\left|P_{n}\left(e^{i t}\right)\right| \leq\left(1+\varepsilon_{n}\right) \sqrt{n+1} \quad \text { (pour tout } t \in \mathbb{R}\right) .
$$

Le problème de l'existence de telles suites ultra-plates fut soulevé en 1966 par Littlewood [Li1] qui, selon ses collègues et selon des écrits ultérieurs, tantôt conjecturait leur existence et tantôt partageait l'opinion générale (laquelle penchait pour la conjecture d'inexistence). Cependant, en 1980, Kahane [Ka] prouva finalement leur existence par une méthode probabiliste (non constructive).

En 1991 B. Saffari [Sa] étudia les polynômes ultra-plats (a priori quelconques, et pas seulement ceux obtenus par la méthode de Kahane [Ka]). Dans deux articles très récents [Er1] et [Er3] nous avons étudié la structure des polynômes ultra-plats (a priori quelconques) et prouvé plusieurs conjectures de Saffari [Sa]. Dans cette Note, nous prouvons le résultat suivant, également conjecturé par Saffari [Sa]:

Théorème. Si la suite $P_{n}(z)=\sum_{k=0}^{n} a_{k, n} z^{k} \in \mathbb{C}[z]$ est ultra-plate, alors

$$
\sum_{k=0}^{n} a_{k, n} a_{n-k, n}=o(n)
$$

ce qui signifie que $P_{n}(z)$ et $P_{n}^{*}(z)=\sum_{k=0}^{n} \bar{a}_{n-k, n} z^{k}$, le polynôme "réciproqueconjugué" de $P_{n}(z)$, deviennent "quasi-orthogonaux" pour $n \rightarrow \infty$.

La démonstration, donnée dans la version anglaise, est basée sur des techniques d'analyse réelle et sur des résultats que nous avons prouvés dans [Er3] par des techniques d'analyse complexe.

1. Introduction and the New Result

Let D be the open unit disk of the complex plane. Its boundary, the unit circle of the complex plane, is denoted by ∂D. Let

$$
\mathcal{K}_{n}:=\left\{p_{n}: p_{n}(z)=\sum_{k=0}^{n} a_{k} z^{k}, a_{k} \in \mathbb{C},\left|a_{k}\right|=1\right\} .
$$

The class \mathcal{K}_{n} is often called the collection of all (complex) unimodular polynomials of degree n. Let

$$
\mathcal{L}_{n}:=\left\{p_{n}: p_{n}(z)=\sum_{k=0}^{n} a_{k} z^{k}, a_{k} \in\{-1,1\}\right\} .
$$

The class \mathcal{L}_{n} is often called the collection of all (real) unimodular polynomials of degree n. By Parseval's formula,

$$
\int_{0}^{2 \pi}\left|P_{n}\left(e^{i t}\right)\right|^{2} d t=2 \pi(n+1)
$$

for all $P_{n} \in \mathcal{K}_{n}$. Therefore

$$
\min _{z \in \partial D}\left|P_{n}(z)\right| \leq \sqrt{n+1} \leq \max _{z \in \partial D}\left|P_{n}(z)\right|
$$

An old problem (or rather an old theme) is the following.
Problem 1.1 (Littlewood's Flatness Problem). How close can a unimodular polynomial $P_{n} \in \mathcal{K}_{n}$ or $P_{n} \in \mathcal{L}_{n}$ come to satisfying

$$
\begin{equation*}
\left|P_{n}(z)\right|=\sqrt{n+1}, \quad z \in \partial D ? \tag{1.1}
\end{equation*}
$$

Obviously (1.1) is impossible if $n \geq 1$. So one must look for less than (1.1), but then there are various ways of seeking such an "approximate situation". One way is the following. In his paper [Li1] Littlewood had suggested that, conceivably, there might exist a sequence $\left(P_{n}\right)$ of polynomials $P_{n} \in \mathcal{K}_{n}$ (possibly even $P_{n} \in \mathcal{L}_{n}$) such that $(n+1)^{-1 / 2}\left|P_{n}\left(e^{i t}\right)\right|$ converge to 1 uniformly in $t \in \mathbb{R}$. We shall call such sequences of unimodular polynomials "ultraflat". More precisely, we give the following definition.

Definition 1.2. Given a positive number ε, we say that a polynomial $P_{n} \in \mathcal{K}_{n}$ is ε-flat if

$$
(1-\varepsilon) \sqrt{n+1} \leq\left|P_{n}(z)\right| \leq(1+\varepsilon) \sqrt{n+1}, \quad z \in \partial D
$$

Definition 1.3. Given a sequence $\left(\varepsilon_{n_{k}}\right)$ of positive numbers tending to 0 , we say that a sequence $\left(P_{n_{k}}\right)$ of unimodular polynomials $P_{n_{k}} \in \mathcal{K}_{n_{k}}$ is $\left(\varepsilon_{n_{k}}\right)$-ultraflat if each $P_{n_{k}}$ is $\left(\varepsilon_{n_{k}}\right)$-flat. We simply say that a sequence $\left(P_{n_{k}}\right)$ of unimodular polynomials $P_{n_{k}} \in \mathcal{K}_{n_{k}}$ is ultraflat if it is $\left(\varepsilon_{n_{k}}\right)$-ultraflat with a suitable sequence $\left(\varepsilon_{n_{k}}\right)$ of positive numbers tending to 0 .

The existence of an ultraflat sequence of unimodular polynomials seemed very unlikely, in view of a 1957 conjecture of P. Erdős (Problem 22 in [Er]) asserting that, for all $P_{n} \in \mathcal{K}_{n}$ with $n \geq 1$,

$$
\begin{equation*}
\max _{z \in \partial D}\left|P_{n}(z)\right| \geq(1+\varepsilon) \sqrt{n+1} \tag{1.2}
\end{equation*}
$$

where $\varepsilon>0$ is an absolute constant (independent of n). Yet, refining a method of Körner [Kö], Kahane [Ka] proved that there exists a sequence $\left(P_{n}\right)$ with $P_{n} \in \mathcal{K}_{n}$ which is $\left(\varepsilon_{n}\right)$-ultraflat, where $\varepsilon_{n}=O\left(n^{-1 / 17} \sqrt{\log n}\right)$. (Kahane's paper contained though a slight error which was corrected in [QS2].) Thus the Erdős conjecture (1.2) was disproved for the classes \mathcal{K}_{n}. For the more restricted class \mathcal{L}_{n} the analogous Erdős conjecture is unsettled to this date. It is a common belief that the analogous Erdős conjecture for \mathcal{L}_{n} is true, and consequently there is no ultraflat sequence of polynomials $P_{n} \in \mathcal{L}_{n}$. An interesting result related to Kahane's breakthrough is given in [Be]. For an account of some of the work done till the mid 1960's, see Littlewood's book [Li2] and [QS2].

Let $\left(\varepsilon_{n}\right)$ be a sequence of positive numbers tending to 0 . Let the sequence (P_{n}) of unimodular polynomials $P_{n} \in \mathcal{K}_{n}$ be $\left(\varepsilon_{n}\right)$-ultraflat. We write

$$
\begin{equation*}
P_{n}\left(e^{i t}\right)=R_{n}(t) e^{i \alpha_{n}(t)}, \quad R_{n}(t)=\left|P_{n}\left(e^{i t}\right)\right|, \quad t \in \mathbb{R} \tag{1.3}
\end{equation*}
$$

It is a simple exercise to show that α_{n} can be chosen so that it is differentiable on \mathbb{R}. This is going to be our understanding throughout the paper.

The structure of ultraflat sequences of unimodular polynomials is studied in [Er1] and [Er3] where several conjectures of Saffari are proved. Here, based on the results in [Er1], we prove yet another Saffari conjecture formulated in [Sa].

Theorem 1.4 (Saffari's Near-Orthogonality Conjecture). Assume that (P_{n}) is an ultraflat sequence of unimodular polynomials $P_{n} \in \mathcal{K}_{n}$. Let

$$
P_{n}(z):=\sum_{k=0}^{n} a_{k, n} z^{k}
$$

Then

$$
\sum_{k=0}^{n} a_{k, n} a_{n-k, n}=o(n)
$$

Here, as usual, o(n) denotes a quantity for which $\lim _{n \rightarrow \infty} o(n) / n=0$. The statement remains true if the ultraflat sequence $\left(P_{n}\right)$ of unimodular polynomials $P_{n} \in \mathcal{K}_{n}$ is replaced by an ultraflat sequence $\left(P_{n_{k}}\right)$ of unimodular polynomials $P_{n_{k}} \in \mathcal{K}_{n_{k}}$, $0<n_{1}<n_{2}<\ldots$.

If Q_{n} is a polynomial of degree n of the form $Q_{n}(z)=\sum_{k=0}^{n} a_{k} z^{k}, a_{k} \in \mathbb{C}$, then its conjugate reciprocal polynomial is defined by $Q_{n}^{*}(z):=z^{n} \bar{Q}_{n}(1 / z):=$ $\sum_{k=0}^{n} \bar{a}_{n-k} z^{k}$. In terms of the above definition Theorem 1.4 may be rewritten as

Corollary 1.5. Assume that $\left(P_{n}\right)$ is an ultraflat sequence of unimodular polynomials $P_{n} \in \mathcal{K}_{n}$. Then

$$
\int_{\partial D}\left|P_{n}(z)-P_{n}^{*}(z)\right|^{2}|d z|=2 n+o(n)
$$

2. Proof of Theorem 1.4

To prove the theorem we need a few lemmas. The first two are from $[\operatorname{Er} 1]$.
Lemma 2.1 (Uniform Distribution Theorem for the Angular Speed). Suppose $\left(P_{n}\right)$ is an ultraflat sequence of unimodular polynomials $P_{n} \in \mathcal{K}_{n}$. Then, with the notation (1.3), in the interval $[0,2 \pi]$, the distribution of the normalized angular speed $\alpha_{n}^{\prime}(t) / n$ converges to the uniform distribution as $n \rightarrow \infty$. More precisely, we have

$$
\operatorname{meas}\left(\left\{t \in[0,2 \pi]: 0 \leq \alpha_{n}^{\prime}(t) \leq n x\right\}\right)=2 \pi x+\gamma_{n}(x)
$$

for every $x \in[0,1]$, where $\lim _{n \rightarrow \infty} \max _{x \in[0,1]}\left|\gamma_{n}(x)\right|=0$.

Lemma 2.2 (Negligibility Theorem for Higher Derivatives). Suppose (P_{n}) is an ultraflat sequence of unimodular polynomials $P_{n} \in \mathcal{K}_{n}$. Then, with the notation (1.3), for every integer $r \geq 2$, we have

$$
\max _{0 \leq t \leq 2 \pi}\left|\alpha_{n}^{(r)}(t)\right| \leq \gamma_{n, r} n^{r}
$$

with suitable constants $\gamma_{n, r}>0$ converging to 0 for every fixed $r=2,3, \ldots$.
Lemma 2.3. Suppose $\left(P_{n}\right)$ is an ultraflat sequence of unimodular polynomials $P_{n} \in$ \mathcal{K}_{n}. Let

$$
P_{n}(z):=\sum_{k=0}^{n} a_{k, n} z^{k}
$$

Then, with the notation (1.3),

$$
\sum_{k=0}^{n} a_{k, n} a_{n-k, n}-\frac{n}{2 \pi} \int_{0}^{2 \pi} \exp \left(i\left(2 \alpha_{n}(t)-n t\right)\right)=o(n)
$$

Proof of Lemma 2.3. This follows easily by using the formula

$$
\sum_{k=0}^{n} a_{k, n} a_{n-k, n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} P_{n}\left(e^{i t}\right)^{2} e^{-i n t} d t
$$

and the ultraflatness inequalities

$$
\left(1-\varepsilon_{n}\right) \sqrt{n+1} \leq\left|P_{n}\left(e^{i t}\right)\right| \leq\left(1+\varepsilon_{n}\right) \sqrt{n+1}, \quad n=1,2, \ldots
$$

(cf. Definitions 1.2 and 1.3), where $\left(\varepsilon_{n}\right)$ is a sequence of positive numbers tending to 0 .

Proof of Theorem 1.4. By Lemma 2.3 it is sufficient to prove that

$$
\int_{0}^{2 \pi} \exp \left(i \beta_{n}(t)\right) d t=\eta_{n}, \quad \text { with } \quad \beta_{n}(t):=2 \alpha_{n}(t)-n t
$$

where $\left(\eta_{n}\right)$ is a sequence tending to 0 . To see this let $\varepsilon>0$ be fixed. Let $K_{n}:=$ $\gamma_{n, 2}^{-1 / 4}$, where $\gamma_{n, 2}$ is defined in Lemma 2.2. We divide the interval [$0,2 \pi$] into subintervals

$$
I_{m}:=\left[a_{m-1}, a_{m}\right]:=\left[\frac{(m-1) K_{n}}{n}, \frac{m K_{n}}{n}\right], \quad m=1,2, \ldots, N-1:=\left\lfloor\frac{2 \pi n}{K_{n}}\right\rfloor
$$

and

$$
I_{N}:=\left[a_{N-1}, a_{N}\right]:=\left[\frac{(N-1) K_{n}}{n}, 2 \pi\right]
$$

For the sake of brevity let

$$
A_{m-1}:=\beta_{n}\left(a_{m-1}\right), \quad m=1,2, \ldots, N
$$

and

$$
B_{m-1}:=\beta_{n}^{\prime}\left(a_{m-1}\right), \quad m=1,2, \ldots, N
$$

Then by Taylor's Theorem

$$
\mid \beta_{n}(t)-\left(A_{m-1}+B_{m-1}\left(t-a_{m-1}\right) \mid \leq \gamma_{n, 2} n^{2}\left(K_{n} / n\right)^{2} \leq \gamma_{n, 2} \gamma_{n, 2}^{-1 / 2} \leq \gamma_{n, 2}^{1 / 2}\right.
$$

for every $t \in I_{m}$, where $\lim _{n \rightarrow \infty} \gamma_{n, 2}^{1 / 2}=0$ by Lemma 2.2. Hence

$$
\int_{I_{m}} \exp \left(i \beta_{n}(t)\right) d t=\int_{I_{m}} \exp \left(i\left(A_{m-1}+B_{m-1}\left(t-a_{m-1}\right)\right)\right) d t+\int_{I_{m}} \delta_{n}(t) d t
$$

with functions $\delta_{n}(t)$ satisfying

$$
\lim _{n \rightarrow \infty} \max _{0 \leq t \leq 2 \pi}\left|\delta_{n}(t)\right|=0
$$

Hence for $\left|B_{m-1}\right| \geq n \varepsilon$ we have

$$
\left|\int_{I_{m}} \exp \left(i \beta_{n}(t)\right) d t\right| \leq \frac{2}{\left|B_{m-1}\right|}+\Delta_{n} \operatorname{meas}\left(I_{m}\right) \leq \frac{2}{n \varepsilon}+\Delta_{n} \operatorname{meas}\left(I_{m}\right)
$$

where

$$
\Delta_{n}:=\max _{0 \leq t \leq 2 \pi}\left|\delta_{n}(t)\right|>0 \quad \text { with } \quad \lim _{n \rightarrow \infty} \Delta_{n}=0
$$

Therefore $\lim _{n \rightarrow \infty} K_{n}=\infty$ implies

$$
\begin{align*}
\sum_{m}\left|\int_{I_{m}} \exp \left(i \beta_{n}(t)\right) d t\right| & \leq \frac{2}{n \varepsilon} N+2 \pi \Delta_{n} \tag{2.1}\\
& \leq \frac{2}{n \varepsilon}\left(\frac{2 \pi n}{K_{n}}+1\right)+2 \pi \Delta_{n} \leq \eta_{n}^{*}(\varepsilon)
\end{align*}
$$

where the summation is taken over all $m=1,2, \ldots, N$ for which $\left|B_{m-1}\right| \geq n \varepsilon$, and where $\left(\eta_{n}^{*}(\varepsilon)\right)$ is a sequence tending to 0 . Now let

$$
E_{n, \varepsilon}:=\bigcup_{m:\left|B_{m-1}\right| \leq n \varepsilon} I_{m}
$$

For $\left|B_{m-1}\right| \leq n \varepsilon$ we deduce by Lemma 2.2 that

$$
\begin{aligned}
\left|\beta_{n}^{\prime}(t)\right| & \leq\left|B_{m-1}\right|+\frac{K_{n}}{n} \max _{t \in I_{m}}\left|\beta_{n}^{\prime \prime}(t)\right|= \\
& =\left|B_{m-1}\right|+\frac{K_{n}}{n} \max _{t \in I_{m}}\left|2 \alpha_{n}^{\prime \prime}(t)\right|=\left|B_{m-1}\right|+\frac{\gamma_{n, 2}^{-1 / 4}}{n} 2 \gamma_{n, 2} n^{2} \leq 2 n \varepsilon
\end{aligned}
$$

for every $t \in I_{m}$ and for every sufficiently large n (independent of m). So

$$
E_{n, \varepsilon} \subset\left\{t \in[0,2 \pi]:\left|\beta_{n}^{\prime}(t)\right| \leq 2 n \varepsilon\right\} \subset\left\{t \in[0,2 \pi]:\left|\alpha_{n}^{\prime}(t)-n / 2\right| \leq n \varepsilon\right\}
$$

for every $t \in I_{m}$ and every sufficiently large n. Hence we obtain by Lemma 2.1 that

$$
\operatorname{meas}\left(E_{n, \varepsilon}\right) \leq 4 \pi \varepsilon+\eta_{n}^{* *}(\varepsilon)
$$

where $\left(\eta_{n}^{* *}(\varepsilon)\right)$ is a sequence tending to 0 . Therefore

$$
\begin{equation*}
\sum_{m}\left|\int_{I_{m}} \exp \left(i \beta_{n}(t)\right) d t\right| \leq \operatorname{meas}\left(E_{n, \varepsilon}\right) \leq 4 \pi \varepsilon+\eta_{n}^{* *}(\varepsilon) \tag{2.2}
\end{equation*}
$$

where the summation is taken over all $m=1,2, \ldots, N$ for which $\left|B_{m-1}\right| \leq n \varepsilon$. Since $\varepsilon>0$ is arbitrary, the result follows from (2.1) and (2.2).

3. REMARKS

In [Sa] another "near orthogonality" relation has been conjectured. Namely it was suspected that if $\left(P_{n_{m}}\right)$ is an ultraflat sequence of unimodular polynomials $P_{n_{m}} \in \mathcal{K}_{n_{m}}$ and

$$
P_{n}(z):=\sum_{k=0}^{n} a_{k, n} z^{k}, \quad n=n_{m}, \quad m=1,2, \ldots
$$

then

$$
\sum_{k=0}^{n} a_{k, n} \bar{a}_{n-k, n}=o(n), \quad n=n_{m}, \quad m=1,2, \ldots
$$

where, as usual, $o\left(n_{m}\right)$ denotes a quantity for which $\lim _{n_{m} \rightarrow \infty} o\left(n_{m}\right) / n_{m}=0$. However, it was Saffari himself, together with Queffelec [QS2], who showed that this could not be any farther away from being true. Namely they constructed an ultraflat sequence $\left(P_{n_{m}}\right)$ of plain-reciprocal unimodular polynomials $P_{n_{m}} \in \mathcal{K}_{n_{m}}$ such that

$$
P_{n}(z):=\sum_{k=0}^{n} a_{k, n} z^{k}, \quad a_{k, n}=a_{n-k, n}, \quad k=0,1,2, \ldots n
$$

and hence

$$
\sum_{k=0}^{n} a_{k, n} \bar{a}_{n-k, n}=n+1
$$

for the values $n=n_{m}, m=1,2, \ldots$.

References

[Be] J. Beck, "Flat" polynomials on the unit circle - note on a problem of Littlewood, Bull. London Math. Soc. (1991), 269-277.
[BE] P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Springer-Verlag, New York, 1995.
[Er1] T. Erdélyi, The phase problem of ultraflat unimodular polynomials: the resolution of the conjecture of Saffari, Math. Annalen (to appear).
[Er2] T. Erdélyi, On the zeros of polynomials with Littlewood-type coefficient constraints, Michigan Math. J. 49 (2001), 97-111.
[Er3] T. Erdélyi, How far is a sequence of ultraflat unimodular polynomials from being conjugate reciprocal, Michigan Math. J. (to appear).
[Er] P. Erdős, Some unsolved problems, Michigan Math. J. 4 (1957), 291-300.
[Ka] J.P. Kahane, Sur les polynomes a coefficient unimodulaires, Bull. London Math. Soc. 12 (1980), 321-342.
[Kö] T. Körner, On a polynomial of J.S. Byrnes, Bull. London Math. Soc. 12 (1980), 219224.
[Li1] J.E. Littlewood, On polynomials $\sum \pm z^{m}, \sum \exp \left(\alpha_{m} i\right) z^{m}, z=e^{i \theta}$, J. London Math. Soc. 41, 367-376, yr 1966.
[Li2] J.E. Littlewood, Some Problems in Real and Complex Analysis, Heath Mathematical Monographs, Lexington, Massachusetts, 1968.
[QS1] H. Queffelec and B. Saffari, Unimodular polynomials and Bernstein's inequalities, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995, 3), 313-318.
[QS2] H. Queffelec and B. Saffari, On Bernstein's inequality and Kahane's ultraflat polynomials, J. Fourier Anal. Appl. 2 (1996, 6), 519-582.
[Sa] B. Saffari, The phase behavior of ultraflat unimodular polynomials, in Probabilistic and Stochastic Methods in Analysis, with Applications (1992), Kluwer Academic Publishers, Printed in the Netherlands, 555-572.

[^0]: 1991 Mathematics Subject Classification. 41A17.
 Key words and phrases. unimodular polynomials, ultraflat polynomials, angular derivatives.
 Research supported in part by the NSF of the USA under Grant No. Grant No. DMS-9623156

