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Abstract. Suppose P := (pj)
∞

j=1
is a sequence of distinct real numbers pj > 0. We prove

that the equalities

‖f‖p = ‖g‖p , p ∈ P ,

imply

µ({x ∈ E : |f(x)| < α}) = µ({x ∈ E : |g(x)| < α}) , α ≥ 0 ,

whenever 0 < µ(E) < ∞ and f, g ∈ L∞(E) if and only if

∞∑

j=1

pj

p2
j
+ 1

= ∞.

1. Introduction

Associated with a measure space (E,A, µ) let

‖f‖p :=

(
∫

E

|f(x)|p dµ(x)

)1/p

, p > 0 ,

and
‖f‖∞ := inf{α ∈ R : µ({x ∈ E : |f(x)| > α}) = 0} .

Using the“Full Müntz Theorem in C[0, 1]” [1,2] G. Klun [6] proved the following result.

Theorem 1.1. Suppose f, g ∈ Lp(E) for all p ≥ 1, f, g ∈ L∞(E), and P := (pj)
∞

j=1
is a

sequence of distinct real numbers pj ≥ 1 such that

∞
∑

j=1

pj − 1

(pj − 1)2 + 1
= ∞ .

The equalities

‖f‖p = ‖g‖p , p ∈ P ,
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imply

µ({x ∈ E : |f(x)| < α}) = µ({x ∈ E : |g(x)| < α}) , α ≥ 0 .

It is quite remarkable that Klun does not assume µ(E) < ∞ in the above theorem as
he applies it elegantly when E := N and µ(A) is the number of elements in A ⊂ N.

2. New Result

In this note we prove the following result.

Theorem 2.1. Suppose P := (pj)
∞

j=1
is a sequence of distinct real numbers pj > 0. The

equalities

(2.1) ‖f‖p = ‖g‖p , p ∈ P ,

imply

µ({x ∈ E : |f(x)| < α}) = µ({x ∈ E : |g(x)| < α}) , α ≥ 0 ,

whenever 0 < µ(E) < ∞ and f, g ∈ L∞(E) if and only if

(2.2)
∞
∑

j=1

pj
p2j + 1

= ∞ .

Note that under the assumption 0 < µ(E) < ∞ the above theorem allows arbitrary
sequences P := (pj)

∞

j=1
of distinct real numbers pj > 0 rather than only pj ≥ 1, and it is

an “if and only if” extension of Theorem 1.1.
Note also that a careful reading of the “only if” part of Theorem 2.1 means that if (2.2)

does not hold, then there is a measure space (E,A, µ) with 0 < µ(E) < ∞ and there are
two functions f, g ∈ L∞(E) such that (2.1) holds but

µ({x ∈ E : |f(x)| < α}) 6= µ({x ∈ E : |g(x)| < α})

for at least one value of α ≥ 0 .

3. Proof

The proof of the “if” part of Theorem 2.1 is based on the following result called “Full
Müntz Theorem” in Lp(A) for p ∈ (0,∞) and for compact sets A ⊂ [0, 1] with positive
lower density at 0. In Theorem 3.1 below Lp(A) is considered with respect to the Lebesgue
measure.

Theorem 3.1. Let A ⊂ [0, 1] be a compact set with positive lower density at 0. Let

p ∈ (0,∞). Suppose (λj)
∞

j=1
is a sequence of distinct real numbers greater than −(1/p) .

Then span{xλ1 , xλ2 , . . .} is dense in Lp(A) if and only if
∞
∑

j=1

λj + (1/p)

(λj + (1/p))2 + 1
= ∞ .

Theorem 3.1 is proved in [5] by Erdélyi and Johnson, and it improves and extends earlier
results of Müntz [7], Szász [10], Clarkson and Erdős [3], P. Borwein and Erdélyi [1,2], and
Operstein [8]. Another proof of Theorem 3.1 is given in [4]. In fact, to prove the “if” part
of Theorem 2.1 we need only the case where p = 1 and A = [0, 1] proved first in [2]. To
prove the “only if” part of Theorem 2.1 we also need the following result.
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Theorem 3.2 (Full Müntz Theorem in C[0, 1]). Suppose (λj)
∞

j=1
is a sequence of

distinct positive real numbers. Then span{1, xλ1 , xλ2 , . . .} is dense in C[0, 1] if and only if

∞
∑

j=1

λj

λ2

j + 1
= ∞ .

Theorem 3.2 is proved by Borwein and Erdélyi [1,2].

Proof of Theorem 2.1. First we prove the “if” part of the theorem. Assume that (2.2)
holds. Let 0 < µ(E) < ∞ and f, g ∈ L∞(E). Multiplying by constants, without loss of
generality, we may assume that µ(E) = 1 and

‖f‖∞ ≤ ‖g‖∞ = 1 .

We define

F (t) := µ({x ∈ E : |f(x)| < t}) and G(t) := µ({x ∈ E : |g(x)| < t}) .

Then h(t) := G(t) − F (t) is well defined for all t ∈ R, and h(t) = 0 for all t ∈ R \ [0, 1],
and |h(t)| ≤ 1 for all t ∈ [0, 1]. Hence (2.1) implies that

0 =

∫

E

(|g(x)|p − |f(x)|p) dµ(x) =

∫

1

0

(G(y1/p)− F (y1/p)) dy , p ∈ P .

Substituting t = y1/p we obtain

(3.1) 0 = p

∫

1

0

(G(t)− F (t)) tp−1 dt = p

∫

1

0

h(t)tp−1 dt , p ∈ P ,

where h(t) := G(t) − F (t) ∈ L∞[0, 1]. In the light of the case p = 1 and A = [0, 1] of
Theorem 3.1, (2.2) implies that span{xp−1 : p ∈ P} is dense in L1[0, 1]. Using (3.1) we
obtain

∫

1

0

h(t)u(t) dt = 0

for every u ∈ L1[0, 1], and hence, choosing u = h ∈ L∞[0, 1] ⊂ L1[0, 1], we have

∫

1

0

h(t)2 dt = 0 ,

and h(t) = 0 for almost every t ∈ [0, 1] follows. We conclude that G(t) = F (t) for almost
every t ∈ [0, 1]. However, as both F and G are continuous from left on R, we have
G(t) = F (t) for every t ∈ R.

To prove the “only if” part of the theorem assume now that (2.2) does not holds. We
show that there is a finite Borel measure µ on E := [0, 1] with 0 < µ(E) < ∞ and there
are two functions f, g ∈ L∞(E) such that (2.1) holds but

µ({x ∈ E : |f(x)| < α}) 6= µ({x ∈ E : |g(x)| < α})
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for at least one value of α ≥ 0 .
Combining Theorem 3.2, the Hahn-Banach Theorem (see [9, page 107]), and the Riesz

Representation Theorem (see [9, page 40]) we can deduce that there is a finite signed Borel
measure ν on [0, 1] and a function h ∈ C[0, 1] such that

(3.2)

∫

1

0

tp dν(t) = 0 , p ∈ P ,

and

(3.3)

∫

1

0

h(t) dν(t) = 1 .

Indeed, let M be the closure of the subspace spanned by {tp : p ∈ P} in C[0, 1], where
C[0, 1] is the linear space of continuous functions on [0, 1] equipped with the uniform norm.
If (2.2) does not hold then Theorem 3.2 implies that M 6= C[0, 1], and hence there is an
h ∈ C[0, 1] \ M . By the Hahn-Banach Theorem there is a bounded linear functional f
on C[0, 1] such that f(u) = 0 for all u ∈ M and f(h) = 1. By the Riesz representation
Theorem this bounded linear functional f on C[0, 1] can be represented by a finite signed
Borel measure ν on [0, 1] such that

f(u) =

∫

1

0

u(t) dν(t) ,

and the proof of (3.2) and (3.3) is finished.
Let {E1, E2} be the Hahn decomposition of the measure ν on [0, 1], that is, E1 and

E2 are Borel measurable, [0, 1] = E1 ∪ E2, E1 ∩ E2 = ∅, and ν(A) ≥ 0 for any Borel
set A ⊂ E1 and ν(A) ≤ 0 for any Borel measurable set A ⊂ E2. We define the Borel
measurable functions

f(t) :=

{

t, t ∈ E1

0, t ∈ E2 ,
and g(t) :=

{

t, t ∈ E2

0, t ∈ E1 .

We have ‖f‖∞ ≤ 1 and ‖g‖∞ ≤ 1. We define the finite nonnegative measure

|ν|(A) := ν(A ∩ E1)− ν(A ∩E2)

for Borel sets A ⊂ [0, 1]. It follows from (3.2) and the definitions of f and g that

0 =

∫

1

0

(|f(t)|p − |g(t)|p) d|ν|(t) , p ∈ P ,

that is,
∫

1

0

|f(t)|p d|ν|(t) =

∫

1

0

|g(t)|p d|ν|(t) , p ∈ P .
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Now we show that there is an α ≥ 0 such that

|ν|({x ∈ E : |f(x)| < α}) 6= |ν|({x ∈ E : |g(x)| < α}) .

Suppose to the contrary that

|ν|({x ∈ E : |f(x)| < α}) = |ν|({x ∈ E : |g(x)| < α})

for every α ≥ 0. Then
∫

1

0

(|f(t)|p − |g(t)|p) d|ν|(t) = 0 , p > 0 ,

and hence
∫

1

0

tp dν(t) = 0 , p > 0 .

Hence it follows from the Weierstrass Theorem that
∫

1

0

u(t) dν(t) = 0

for every u ∈ C[0, 1], which contradicts (3.3). This completes the proof of the “only if”
part of the theorem. �
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4. T. Erdélyi, The “Full Müntz Theorem” revisited, Constr. Approx. 21 (2005), no. 3, 319–335.
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