FUNCTIONS WITH IDENTICAL L_{p} NORMS

TAMÁs ERDÉLYI

May 31, 2020

Abstract. Suppose $P:=\left(p_{j}\right)_{j=1}^{\infty}$ is a sequence of distinct real numbers $p_{j}>0$. We prove that the equalities

$$
\|f\|_{p}=\|g\|_{p}, \quad p \in P
$$

imply

$$
\mu(\{x \in E:|f(x)|<\alpha\})=\mu(\{x \in E:|g(x)|<\alpha\}), \quad \alpha \geq 0
$$

whenever $0<\mu(E)<\infty$ and $f, g \in L_{\infty}(E)$ if and only if $\sum_{j=1}^{\infty} \frac{p_{j}}{p_{j}^{2}+1}=\infty$.

1. Introduction

Associated with a measure space (E, \mathcal{A}, μ) let

$$
\|f\|_{p}:=\left(\int_{E}|f(x)|^{p} d \mu(x)\right)^{1 / p}, \quad p>0
$$

and

$$
\|f\|_{\infty}:=\inf \{\alpha \in \mathbb{R}: \mu(\{x \in E:|f(x)|>\alpha\})=0\}
$$

Using the "Full Müntz Theorem in $C[0,1]$ " $[1,2]$ G. Klun [6] proved the following result.
Theorem 1.1. Suppose $f, g \in L_{p}(E)$ for all $p \geq 1, f, g \in L_{\infty}(E)$, and $P:=\left(p_{j}\right)_{j=1}^{\infty}$ is a sequence of distinct real numbers $p_{j} \geq 1$ such that

$$
\sum_{j=1}^{\infty} \frac{p_{j}-1}{\left(p_{j}-1\right)^{2}+1}=\infty
$$

The equalities

$$
\|f\|_{p}=\|g\|_{p}, \quad p \in P
$$

Key words and phrases. "Full Müntz Theorem", denseness in $L_{p}[0,1]$, functions with identical L_{p} norms.

2010 Mathematics Subject Classifications. 41A17
imply

$$
\mu(\{x \in E:|f(x)|<\alpha\})=\mu(\{x \in E:|g(x)|<\alpha\}), \quad \alpha \geq 0
$$

It is quite remarkable that Klun does not assume $\mu(E)<\infty$ in the above theorem as he applies it elegantly when $E:=\mathbb{N}$ and $\mu(A)$ is the number of elements in $A \subset \mathbb{N}$.

2. New Result

In this note we prove the following result.
Theorem 2.1. Suppose $P:=\left(p_{j}\right)_{j=1}^{\infty}$ is a sequence of distinct real numbers $p_{j}>0$. The equalities

$$
\begin{equation*}
\|f\|_{p}=\|g\|_{p}, \quad p \in P \tag{2.1}
\end{equation*}
$$

imply

$$
\mu(\{x \in E:|f(x)|<\alpha\})=\mu(\{x \in E:|g(x)|<\alpha\}), \quad \alpha \geq 0
$$

whenever $0<\mu(E)<\infty$ and $f, g \in L_{\infty}(E)$ if and only if

$$
\begin{equation*}
\sum_{j=1}^{\infty} \frac{p_{j}}{p_{j}^{2}+1}=\infty \tag{2.2}
\end{equation*}
$$

Note that under the assumption $0<\mu(E)<\infty$ the above theorem allows arbitrary sequences $P:=\left(p_{j}\right)_{j=1}^{\infty}$ of distinct real numbers $p_{j}>0$ rather than only $p_{j} \geq 1$, and it is an "if and only if" extension of Theorem 1.1.

Note also that a careful reading of the "only if" part of Theorem 2.1 means that if (2.2) does not hold, then there is a measure space (E, \mathcal{A}, μ) with $0<\mu(E)<\infty$ and there are two functions $f, g \in L_{\infty}(E)$ such that (2.1) holds but

$$
\mu(\{x \in E:|f(x)|<\alpha\}) \neq \mu(\{x \in E:|g(x)|<\alpha\})
$$

for at least one value of $\alpha \geq 0$.

3. Proof

The proof of the "if" part of Theorem 2.1 is based on the following result called "Full Müntz Theorem" in $L_{p}(A)$ for $p \in(0, \infty)$ and for compact sets $A \subset[0,1]$ with positive lower density at 0 . In Theorem 3.1 below $L_{p}(A)$ is considered with respect to the Lebesgue measure.

Theorem 3.1. Let $A \subset[0,1]$ be a compact set with positive lower density at 0 . Let $p \in(0, \infty)$. Suppose $\left(\lambda_{j}\right)_{j=1}^{\infty}$ is a sequence of distinct real numbers greater than $-(1 / p)$. Then $\operatorname{span}\left\{x^{\lambda_{1}}, x^{\lambda_{2}}, \ldots\right\}$ is dense in $L_{p}(A)$ if and only if

$$
\sum_{j=1}^{\infty} \frac{\lambda_{j}+(1 / p)}{\left(\lambda_{j}+(1 / p)\right)^{2}+1}=\infty
$$

Theorem 3.1 is proved in [5] by Erdélyi and Johnson, and it improves and extends earlier results of Müntz [7], Szász [10], Clarkson and Erdős [3], P. Borwein and Erdélyi [1,2], and Operstein [8]. Another proof of Theorem 3.1 is given in [4]. In fact, to prove the "if" part of Theorem 2.1 we need only the case where $p=1$ and $A=[0,1]$ proved first in [2]. To prove the "only if" part of Theorem 2.1 we also need the following result.

Theorem 3.2 (Full Müntz Theorem in $C[0,1]$). Suppose $\left(\lambda_{j}\right)_{j=1}^{\infty}$ is a sequence of distinct positive real numbers. Then $\operatorname{span}\left\{1, x^{\lambda_{1}}, x^{\lambda_{2}}, \ldots\right\}$ is dense in $C[0,1]$ if and only if

$$
\sum_{j=1}^{\infty} \frac{\lambda_{j}}{\lambda_{j}^{2}+1}=\infty
$$

Theorem 3.2 is proved by Borwein and Erdélyi $[1,2]$.
Proof of Theorem 2.1. First we prove the "if" part of the theorem. Assume that (2.2) holds. Let $0<\mu(E)<\infty$ and $f, g \in L_{\infty}(E)$. Multiplying by constants, without loss of generality, we may assume that $\mu(E)=1$ and

$$
\|f\|_{\infty} \leq\|g\|_{\infty}=1
$$

We define

$$
F(t):=\mu(\{x \in E:|f(x)|<t\}) \quad \text { and } \quad G(t):=\mu(\{x \in E:|g(x)|<t\}) .
$$

Then $h(t):=G(t)-F(t)$ is well defined for all $t \in \mathbb{R}$, and $h(t)=0$ for all $t \in \mathbb{R} \backslash[0,1]$, and $|h(t)| \leq 1$ for all $t \in[0,1]$. Hence (2.1) implies that

$$
0=\int_{E}\left(|g(x)|^{p}-|f(x)|^{p}\right) d \mu(x)=\int_{0}^{1}\left(G\left(y^{1 / p}\right)-F\left(y^{1 / p}\right)\right) d y, \quad p \in P .
$$

Substituting $t=y^{1 / p}$ we obtain

$$
\begin{equation*}
0=p \int_{0}^{1}(G(t)-F(t)) t^{p-1} d t=p \int_{0}^{1} h(t) t^{p-1} d t, \quad p \in P \tag{3.1}
\end{equation*}
$$

where $h(t):=G(t)-F(t) \in L_{\infty}[0,1]$. In the light of the case $p=1$ and $A=[0,1]$ of Theorem 3.1, (2.2) implies that $\operatorname{span}\left\{x^{p-1}: p \in P\right\}$ is dense in $L_{1}[0,1]$. Using (3.1) we obtain

$$
\int_{0}^{1} h(t) u(t) d t=0
$$

for every $u \in L_{1}[0,1]$, and hence, choosing $u=h \in L_{\infty}[0,1] \subset L_{1}[0,1]$, we have

$$
\int_{0}^{1} h(t)^{2} d t=0
$$

and $h(t)=0$ for almost every $t \in[0,1]$ follows. We conclude that $G(t)=F(t)$ for almost every $t \in[0,1]$. However, as both F and G are continuous from left on \mathbb{R}, we have $G(t)=F(t)$ for every $t \in \mathbb{R}$.

To prove the "only if" part of the theorem assume now that (2.2) does not holds. We show that there is a finite Borel measure μ on $E:=[0,1]$ with $0<\mu(E)<\infty$ and there are two functions $f, g \in L_{\infty}(E)$ such that (2.1) holds but

$$
\mu(\{x \in E:|f(x)|<\alpha\}) \underset{3}{\neq \mu(\{x \in E:|g(x)|<\alpha\})}
$$

for at least one value of $\alpha \geq 0$.
Combining Theorem 3.2, the Hahn-Banach Theorem (see [9, page 107]), and the Riesz Representation Theorem (see [9, page 40]) we can deduce that there is a finite signed Borel measure ν on $[0,1]$ and a function $h \in C[0,1]$ such that

$$
\begin{equation*}
\int_{0}^{1} t^{p} d \nu(t)=0, \quad p \in P \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{1} h(t) d \nu(t)=1 \tag{3.3}
\end{equation*}
$$

Indeed, let M be the closure of the subspace spanned by $\left\{t^{p}: p \in P\right\}$ in $C[0,1]$, where $C[0,1]$ is the linear space of continuous functions on $[0,1]$ equipped with the uniform norm. If (2.2) does not hold then Theorem 3.2 implies that $M \neq C[0,1]$, and hence there is an $h \in C[0,1] \backslash M$. By the Hahn-Banach Theorem there is a bounded linear functional f on $C[0,1]$ such that $f(u)=0$ for all $u \in M$ and $f(h)=1$. By the Riesz representation Theorem this bounded linear functional f on $C[0,1]$ can be represented by a finite signed Borel measure ν on $[0,1]$ such that

$$
f(u)=\int_{0}^{1} u(t) d \nu(t),
$$

and the proof of (3.2) and (3.3) is finished.
Let $\left\{E_{1}, E_{2}\right\}$ be the Hahn decomposition of the measure ν on $[0,1]$, that is, E_{1} and E_{2} are Borel measurable, $[0,1]=E_{1} \cup E_{2}, E_{1} \cap E_{2}=\emptyset$, and $\nu(A) \geq 0$ for any Borel set $A \subset E_{1}$ and $\nu(A) \leq 0$ for any Borel measurable set $A \subset E_{2}$. We define the Borel measurable functions

$$
f(t):=\left\{\begin{array}{ll}
t, & t \in E_{1} \\
0, & t \in E_{2},
\end{array} \quad \text { and } \quad g(t):= \begin{cases}t, & t \in E_{2} \\
0, & t \in E_{1}\end{cases}\right.
$$

We have $\|f\|_{\infty} \leq 1$ and $\|g\|_{\infty} \leq 1$. We define the finite nonnegative measure

$$
|\nu|(A):=\nu\left(A \cap E_{1}\right)-\nu\left(A \cap E_{2}\right)
$$

for Borel sets $A \subset[0,1]$. It follows from (3.2) and the definitions of f and g that

$$
0=\int_{0}^{1}\left(|f(t)|^{p}-|g(t)|^{p}\right) d|\nu|(t), \quad p \in P
$$

that is,

$$
\int_{0}^{1}|f(t)|^{p} d|\nu|(t)=\int_{0}^{1}|g(t)|^{p} d|\nu|(t), \quad p \in P
$$

Now we show that there is an $\alpha \geq 0$ such that

$$
|\nu|(\{x \in E:|f(x)|<\alpha\}) \neq|\nu|(\{x \in E:|g(x)|<\alpha\}) .
$$

Suppose to the contrary that

$$
|\nu|(\{x \in E:|f(x)|<\alpha\})=|\nu|(\{x \in E:|g(x)|<\alpha\})
$$

for every $\alpha \geq 0$. Then

$$
\int_{0}^{1}\left(|f(t)|^{p}-|g(t)|^{p}\right) d|\nu|(t)=0, \quad p>0
$$

and hence

$$
\int_{0}^{1} t^{p} d \nu(t)=0, \quad p>0
$$

Hence it follows from the Weierstrass Theorem that

$$
\int_{0}^{1} u(t) d \nu(t)=0
$$

for every $u \in C[0,1]$, which contradicts (3.3). This completes the proof of the "only if" part of the theorem.

4. Acknowledgment

The author thanks the referees for their careful reading of the paper.

References

1. P.B. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Springer-Verlag, New York, 1995.
2. P.B. Borwein and T. Erdélyi, The full Müntz theorem in $C[0,1]$ and $L_{1}[0,1]$, J. London Math. Soc. 54 (1996), 102-110.
3. J.A. Clarkson and P. Erdős, Approximation by polynomials, Duke Math. J. 10 (1943), 5-11.
4. T. Erdélyi, The "Full Müntz Theorem" revisited, Constr. Approx. 21 (2005), no. 3, 319-335.
5. T. Erdélyi and W. Johnson, The "Full Müntz Theorem" in $L_{p}[0,1]$ for $0<p<\infty$, J. Anal. Math. 84 (2001), 145-172.
6. G. Klun, On functions having coincident p-norms, Ann. Mat. Pur. Appl. (to appear).
7. C. Müntz, Über den Approximationsatz von Weierstrass, H.A. Schwartz Festschrift, Berlin (1914).
8. V. Operstein, Full Müntz theorem in $L_{p}[0,1]$, J. Approx. Theory 85 (1996), 233-235.
9. W. Rudin, Real and Complex Analysis. Third edition, McGraw-Hill, New York, 1987.
10. O. Szász, Über die Approximation steliger Funktionen durch lineare Aggregate von Potenzen, Math. Ann. 77 (1916), 482-496.

Department of Mathematics, Texas A\&M University, College Station, Texas 77843
E-mail address: terdelyi@math.tamu.edu (Tamás Erdélyi)

