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ABSTRACT. Suppose P := (pj)J‘?‘;l is a sequence of distinct real numbers p; > 0. We prove
that the equalities

Iflp =llglls,  pEP,
imply
p{z e E:|f(z)| <a})=p{z e E:lg(x)|<a}), a=0,
. NS P
whenever 0 < p(E) < co and f,g € Loo(E) if and only if Z 5 =00
j=1 P +1

1. INTRODUCTION

Associated with a measure space (E, A, ) let

1= ( [ 15 du(%))l/p L pso0.

and
[flloo :=inf{fa € R: p({z € E: [f(z)] > a}) =0}.

Using the“Full Miintz Theorem in C[0, 1]” [1,2] G. Klun [6] proved the following result.

Theorem 1.1. Suppose f,g € Ly(E) for allp > 1, f,g € Loo(E), and P := (p;)32, is a
sequence of distinct real numbers p; > 1 such that

The equalities
1flp=1lgll, peP,
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imply
p{z e E:[f(x)| <a}) =p({zr e E:lg(x)| <a}), a=0.

It is quite remarkable that Klun does not assume p(F) < oo in the above theorem as
he applies it elegantly when FE := N and p(A) is the number of elements in A C N.

2. NEw RESULT

In this note we prove the following result.

Theorem 2.1. Suppose P := (pj)(;‘;l is a sequence of distinct real numbers p; > 0. The
equalities

(2.1) 1flp=1lgll,, peP,
imply
p{z e E:[f(x)| <a})=p({z e E:lg(x)| <a}), a=0,
whenever 0 < pu(E) < oo and f,g € Loo(F) if and only if
2.2 =
(22) — p; +1

Note that under the assumption 0 < u(E) < oo the above theorem allows arbitrary
sequences P := (p;)32; of distinct real numbers p; > 0 rather than only p; > 1, and it is
an “if and only if” extension of Theorem 1.1.

Note also that a careful reading of the “only if” part of Theorem 2.1 means that if (2.2)
does not hold, then there is a measure space (E, A, 1) with 0 < u(E) < oo and there are
two functions f, g € Loo(E) such that (2.1) holds but

p{r e E:[f(z)l <a}) # p({z € E: |g(x)] < a})

for at least one value of a > 0.

3. PrROOF

The proof of the “if” part of Theorem 2.1 is based on the following result called “Full
Miintz Theorem” in L,(A) for p € (0,00) and for compact sets A C [0, 1] with positive
lower density at 0. In Theorem 3.1 below L, (A) is considered with respect to the Lebesgue
measure.

Theorem 3.1. Let A C [0,1] be a compact set with positive lower density at 0. Let
p € (0,00). Suppose (A;)32, is a sequence of distinct real numbers greater than —(1/p).
Then span{x™, x*2 ...} is dense in L,(A) if and only if

oo

Aj+ 1/p)
E: +(1/p))?

J=1

Theorem 3.1 is proved in [5] by Erdélyi and Johnson, and it improves and extends earlier
results of Miintz [7], Szész [10], Clarkson and Erdés [3], P. Borwein and Erdélyi [1,2], and
Operstein [8]. Another proof of Theorem 3.1 is given in [4]. In fact, to prove the “if” part
of Theorem 2.1 we need only the case where p = 1 and A = [0, 1] proved first in [2]. To
prove the “only if” part of Theorem 2.1 we also need the following result.
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Theorem 3.2 (Full Miintz Theorem in C|0, 1]) Suppose (X\;)52, is a sequence of
distinct positive real numbers. Then span{1,z* x*2 ...} is dense in C[0,1] if and only if

E:A?i1:

j=1

Theorem 3.2 is proved by Borwein and Erdélyi [1,2].

Proof of Theorem 2.1. First we prove the “if” part of the theorem. Assume that (2.2)
holds. Let 0 < u(FE) < oo and f,g € Loo(FE). Multiplying by constants, without loss of
generality, we may assume that yu(E) =1 and

||f||oo < ||g||o<, =1.
We define
Fit):=p({z € E:|f(x)|<t}) and G@):=upu({zeE:|gx)<t}).

Then h(t) := ( ) — F(t) is well defined for all t € R, and h(t) = 0 for all t € R\ [0, 1],
and |h(t)] <1 for all £ € [0, 1]. Hence (2.1) implies that

0= [E (lg(@)[P — | F(@)[P) du(z) = / (G~ PG ?)dy,  peP.

Substituting ¢ = y'/? we obtain

1

(3.1) 0=p (m@—Fﬁﬁﬁ*ﬁ:m[fMOW*ﬁ, peEP,

S~

where h(t) := G(t) — F(t) € L[0,1]. In the light of the case p = 1 and A = [0, 1] of
Theorem 3.1, (2.2) implies that span{zP~! : p € P} is dense in L1[0,1]. Using (3.1) we
obtain

/ 1 h(t)u(t)dt = 0
0

for every u € L1[0, 1], and hence, choosing u = h € L[0,1] C L]0, 1], we have

1
/,hﬁfdtzo,
0

and h(t) = 0 for almost every t € [0, 1] follows. We conclude that G(t) = F(t) for almost
every t € [0,1]. However, as both F' and G are continuous from left on R, we have
G(t) = F(t) for every t € R.

To prove the “only if” part of the theorem assume now that (2.2) does not holds. We
show that there is a finite Borel measure p on E := [0, 1] with 0 < p(E) < oo and there
are two functions f, g € Lo (F) such that (2.1) holds but

p{r e E:[f(z)| <a}) ? p{z e E:g(z)| < a})



for at least one value of a > 0.

Combining Theorem 3.2, the Hahn-Banach Theorem (see [9, page 107]), and the Riesz
Representation Theorem (see [9, page 40]) we can deduce that there is a finite signed Borel
measure v on [0, 1] and a function h € C[0, 1] such that

1
(3.2) / #dv(t)=0, peP,
0

and

1
(3.3) /O h(t) du(t) = 1.

Indeed, let M be the closure of the subspace spanned by {t? : p € P} in C|0, 1], where
C'[0, 1] is the linear space of continuous functions on [0, 1] equipped with the uniform norm.
If (2.2) does not hold then Theorem 3.2 implies that M # C|0, 1], and hence there is an
h € C[0,1] \ M. By the Hahn-Banach Theorem there is a bounded linear functional f
on C[0, 1] such that f(u) = 0 for all w € M and f(h) = 1. By the Riesz representation
Theorem this bounded linear functional f on C]0,1] can be represented by a finite signed
Borel measure v on [0, 1] such that

and the proof of (3.2) and (3.3) is finished.

Let {E1, Eo} be the Hahn decomposition of the measure v on [0, 1], that is, F; and
E5 are Borel measurable, [0,1] = Ey U Ey, E; N Ey; = (), and v(A) > 0 for any Borel
set A C Ej and v(A) < 0 for any Borel measurable set A C E3. We define the Borel
measurable functions

t, telk;

f(t) == { 0. teb,. and  g(t):= {

t, te ks
0, teFb.

We have || f|loo < 1 and ||g]|co < 1. We define the finite nonnegative measure

V[(A) :=v(ANE;) —v(AN Ey)
for Borel sets A C [0, 1]. It follows from (3.2) and the definitions of f and g that
1
0 :/0 (LF@F = lg®F)dlvlt),  pePp,

that is,

[1swravio= [sorane,  per
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Now we show that there is an o > 0 such that

v({z e E:|f(z)] <a}) # v[({z € E:g(z)] < a}).
Suppose to the contrary that

vl({z e E:[f(2)] <a}) =[v|({z € E:[g(z)| <a})

for every a > 0. Then

/O(\f(t)\p—\g(t)\p)d\VI(t)ZO, p>0,

and hence )
/tpdy(t):O, p>0.
0

Hence it follows from the Weierstrass Theorem that

/0 1 u(t) du(t) = 0

for every u € C]0, 1], which contradicts (3.3). This completes the proof of the “only if”
part of the theorem. [J
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