ON THE ZEROS OF COSINE POLYNOMIALS: SOLUTION TO AN OLD PROBLEM OF LITTLEWOOD

PETER BORWEIN, TAMÁS ERDÉLYI, RON FERGUSON, AND RICHARD LOCKHART

Abstract. Littlewood in his 1968 monograph “Some Problems in Real and Complex Analysis” [10, problem 22] poses the following research problem, which appears to still be open:

Problem. “If the n_j are integral and all different, what is the lower bound on the number of real zeros of $\sum_{j=1}^{N} \cos(n_j\theta)$? Possibly $N-1$, or not much less.”

No progress appears to have been made on this in the last half-century. We show that this is false.

Theorem. There exists a cosine polynomial $\sum_{j=1}^{N} \cos(n_j\theta)$ with the n_j integral and all different so that the number of its real zeros in the period is $O\left(N^{9/10}(\log N)^{1/5}\right)$.

1. Littlewood’s 22nd Problem

Problem. “If the n_j are integral and all different, what is the lower bound on the number of real zeros of $\sum_{j=1}^{N} \cos(n_j\theta)$? Possibly $N-1$, or not much less.”

Here “real zeros” means “zeros in a period”. Denote the number of zeros of a trigonometric polynomial T in the period $[-\pi, \pi]$ by $\mathcal{N}(T)$.

Note that if T is a real trigonometric cosine polynomial of degree n, then it is of the form $T(t) = \exp(-int)P(\exp(it))$, $t \in \mathbb{R}$, where P is a reciprocal algebraic polynomial of degree $2n$, and if T has only real zeros, then P has all its zeros on the unit circle. So in terms of reciprocal algebraic polynomials one is looking for a reciprocal algebraic polynomial with coefficients in $\{0, 1\}$, with $2N$ terms, and with $N-1$ or fewer zeros. Even achieving $N-1$ is fairly hard. An exhaustive search up to degree $2N = 32$ yields only 10

1991 Mathematics Subject Classification. 41A17.

Research of P. Borwein supported in part by NSERC of Canada, IRMACS and MITACS.

Research of R. Ferguson supported in part by NSERC of Canada, IRMACS and MITACS.

Research of R. Lockhart supported in part by NSERC of Canada.

©1997 American Mathematical Society
example achieving $N-1$ and only one example with fewer. This first example disproving the “possibly $N-1$” part of the conjecture is

$$\sum_{j=0, j \notin \{9, 10, 11, 14\}}^{14} (x^j + x^{28-j})$$

which has 8 roots of modulus 1 and corresponds to a cosine sum of 11 terms with 8 roots in the period.

It is hard to see how one might generate infinitely many such examples or indeed why Littlewood made his conjecture.

The following is a reciprocal polynomial with 32 terms and exactly 14 zeros of modulus 1:

$$\sum_{j=0, j \notin \{10, 11, 17, 19\}}^{19} (x^j + x^{38-j})$$

So it corresponds to a cosine sum of 16 terms with 14 zeros in $[-\pi, \pi)$. In other words the sharp version of Littlewood’s conjecture is false again, though barely. The following is a reciprocal polynomial with 280 terms and 52 zeros of modulus 1:

$$\sum_{j=0, j \notin \{124, 125, 126, 127, 128, 134, 141, 143, 145, 147, 148, 151, 152\}}^{152} (x^j + x^{304-j})$$

So it corresponds to a cosine sum of 140 terms with 52 zeros in $[-\pi, \pi)$. In other words the sharp version of Littlewood’s conjecture is false, though this time by a margin. It was found by a version of the greedy algorithm (and some guessing). There is no reason to believe it is a minimal example.

The interesting feature of this example is how close it is to the Dirichlet kernel $(1 + x + x^2 + \ldots + x^{304})$. This is not accidental and suggests the approach that leads to our main result.

Littlewood explored many problems concerning polynomials with various restrictions on the coefficients. See [7], [8], and [9], and in particular Littlewood’s delightful monograph [10]. Related problems and results may be found in [2] and [3], for example. One of these is Littlewood’s well-known conjecture of around 1948 asking for the minimum L_1 norm of polynomials of the form

$$p(z) := \sum_{j=0}^{n} a_j z^{k_j},$$

where the coefficients a_j are complex numbers of modulus at least 1 and the exponents k_j are distinct nonnegative integers. It states that such polynomials have L_1 norms on the unit circle that grow at least like $c \log n$. This was proved by S. Konyagin [6] and independently by McGehee, Pigno, and Smith [11] in 1981. A short proof is available in [4]. It is believed that the minimum, for polynomials of degree n with complex coefficients of modulus at least 1 is attained by $1 + z + z^2 + \ldots + z^n$, but this is open.
2. Auxiliary Functions

The key is to construct \(n \) term cosine sums that are large most of the time. This is the content of this section.

Lemma 1. There is an absolute constant \(c_1 \) such that for all \(n \) and \(\alpha > 1 \) there are coefficients \(a_0, a_1, \ldots, a_n \) with each \(a_j \in \{0, 1\} \) such that

\[
\text{meas}\{t \in [-\pi, \pi) : |P_n(t)| \leq \alpha\} \leq c_1 \alpha n^{-1/2},
\]

where

\[
P_n(t) = \sum_{j=0}^{n} a_j \cos(jt).
\]

Proof. We will prove the stronger result that there is an absolute constant \(c_1 \) such that for all \(\alpha > 0 \) and all \(n \)

\[
\lambda(\alpha) := 2^{-(n+1)} \sum_{\{a_0,a_1,\ldots,a_n\}} \text{meas}\{t \in [-\pi, \pi) : |P_n(t)| \leq \alpha\} \leq c_1 \alpha n^{-1/2}.
\]

If \(X_0, X_1, \ldots, X_n \) are independent Bernoulli random variables with

\[
P(X_j = 0) = P(X_j = 1) = \frac{1}{2}, \quad j = 0, 1, \ldots, n,
\]

then the indicated average is an expected value. Let

\[
R_n(t) = \sum_{j=0}^{n} X_j \cos(jt)
\]

and note that

\[
\lambda(\alpha) = \int_{-\pi}^{\pi} P(|R_n(t)| \leq \alpha) \, dt.
\]

Define

\[
D_n(t) := \sum_{j=0}^{n} \cos(jt).
\]

The expected value of \(R_n(t) \) is \(\mu_n(t) := D_n(t)/2 \); its variance is

\[
\sigma_n^2(t) := \frac{1}{4} \sum_{0}^{n} \cos^2(jt) = \frac{1}{8}(n + 1 + D_n(2t)).
\]

We now apply a uniform normal approximation to get the desired result. Define the cumulative normal distribution function by

\[
\Phi(x) := \int_{-\infty}^{x} \frac{e^{-u^2/2}}{\sqrt{2\pi}} \, du.
\]
Define
\[\varrho_2 := \frac{1}{n+1} \sum_{j=0}^{n} \text{Var}(X_j \cos(jt)) = \]
\[= \frac{1}{4(n+1)} \sum_{j=0}^{n} \cos^2(jt) = \frac{1}{8} \left(1 + \frac{D_n(2t)}{n+1} \right), \]
\[\varrho_3 = \frac{1}{n+1} \sum_{j=0}^{n} \mathbb{E} \left(\left| X_j - \frac{1}{2} \cos(jt) \right|^3 \right) \]

We suppress the dependence of each of these on \(n\) and \(u\). The Berry-Esseen bound in Bhattacharya and Ranga Rao [1, Theorem 12.4, page 104] is that
\[\mathbb{P}\left(R_n(t) - \mu_n(t) \right) \leq \Phi \left(\frac{c - \mu_n(t)}{\sigma_n(t)} \right) \leq \frac{11\varrho_3}{4\sqrt{n} \varrho_2^{3/2}}. \]

It is elementary that \(\varrho_3 \leq 1/8\). Moreover there is an absolute constant \(c_2 > 0\) such that
\[\varrho_2 > c_2 \]

for all \(t \in \mathbb{R}\) and all \(n = 1, 2, \ldots\). Finally the function \(\Phi\) has derivative bounded by \((2\pi)^{-1/2}\) so
\[|\Phi(x) - \Phi(y)| \leq (2\pi)^{-1/2} |x - y|, \quad x, y \in \mathbb{R}. \]

It follows that there is an absolute constant \(c_1\) such that
\[\mathbb{P}(-\alpha \leq R_n(u) \leq \alpha) \leq c_1\alpha n^{-1/2}. \]

\[\Box \]

3. The Main Theorem

Theorem. There exists a cosine polynomial \(\sum_{j=1}^{N} \cos(n_j \theta)\) with the \(n_j\) integral and all different so that the number of its real zeros in the period is
\[O \left(N^{9/10} (\log N)^{1/5} \right). \]

The proof follows immediately from the following Lemma 2 stated below and Lemma 1. Namely, take \(m := N + 1\), \(n = m^{2/5} (\log m)^{-4/5}\), \(\alpha = n^{1/4}\) and \(\beta = c_1\alpha n^{-1/2} = c_1 n^{-1/4}\).

Lemma 2. Let \(m \leq n\),
\[D_m(t) := \sum_{j=0}^{m} \cos(jt), \]
\[P_n(t) := \sum_{j=0}^{n} a_j \cos(jt), \quad a_j \in \{0, 1\}. \]
Suppose $\alpha \geq 1$ and
\[
\meas\{t \in [-\pi, \pi] : |P_n(t)| \leq \alpha\} \leq \beta.
\]
Let $S_m := D_m - P_n$. Then the number of zeros of S_m in $[-\pi, \pi]$ is at most
\[
\frac{c_3 m}{\alpha} + c_4 m \beta + c_5 n m^{1/2} \log m,
\]
where c_3, c_4, and c_5 are absolute constants.

To prove Lemma 2 we need the following consequence of the Erdős-Turan Theorem [12, p. 278], see also [5].

Lemma 3. Let
\[
S_m(t) = \sum_{j=0}^{n} a_j \cos(jt), \quad a_j \in \{0, 1\}.
\]
Denote the number of zeros of S_m in $[\alpha, \beta] \subset [-\pi, \pi]$ by $N([\alpha, \beta])$. Then
\[
N([\alpha, \beta]) \leq c_6 m (\beta - \alpha) + c_6 \sqrt{m} \log m,
\]
where c_6 is an absolute constant.

Now we prove Lemma 2.

Proof. We write
\[
\{t \in [-\pi, \pi] : |P_n(t)| \leq \alpha\} = \bigcup_{j=1}^{k} I_j,
\]
where the intervals I_j are disjoint and $k \leq 2n$. Let
\[
I_0 := \{t \in [-\pi, \pi] : |D_m(t)| \geq \alpha\}.
\]
Note that $I_0 \subset [-c/\alpha, c/\alpha]$. Then S_m has all its zeros in $\bigcup_{j=0}^{k} I_j$. By Lemma 3 we have
\[
N(I_j) \leq c_6 m |I_j| + c_6 \sqrt{m} \log m, \quad j = 1, 2, \ldots, k,
\]
and
\[
N(I_0) \leq c_6 m |I_0| + c_6 \sqrt{m} \log m \leq \frac{c_7 m}{\alpha} + c_7 \sqrt{m} \log m
\]
with an absolute constant c_7. So
\[
N([\pi, \pi]) \leq \sum_{j=0}^{k} N(I_j)
\]
\[
\leq \frac{c_7 m}{\alpha} + c_7 \sqrt{m} \log m + c_6 \sum_{j=1}^{k} m |I_j| + kc_7 \sqrt{m} \log m
\]
\[
\leq \frac{c_7 m}{\alpha} + c_6 m \beta + 2nc_7 \sqrt{m} \log m
\]
and the proof is finished. \qed
4. Average Number of Zeros

Why did Littlewood make this conjecture? Perhaps because usually there are a lot of zeros. This is the point of this section.

Lemma 4. Suppose that p is a polynomial of degree exactly n and p has k zeros of modulus greater than 1 and j zeros of modulus 1 then for any $m \geq 0$

$$z^m p(z) \pm p^*(z)$$

has degree $m + n$ and at least $m + n - 2k$ roots of modulus 1.

Here and throughout, as usual, $p^*(z) = z^{\deg(p)} p(1/z)$ is the reciprocal of p.

Proof. Rouche’s theorem shows that $(1 + \epsilon) z^m p(z) \pm p^*(z)$ and $z^m p(z)$ have the same number of roots inside the unit disk. Note that $|p(z)| = |p^*(z)|$ for $|z| = 1$. So with $\epsilon = 0$, $z^m p(z) \pm p^*(z)$ has all but k zeros in the closed unit disk. Now use the fact that $z^m p(z) \pm p^*(z)$ is reciprocal so has the same number of zeros of modulus less than 1 as of modulus greater than 1. □

Lemma 5. Suppose that p is a polynomial of degree exactly n and $p(0) \neq 0$. Consider

$$P(z) := z^m p(z) \pm p^*(z)$$

and

$$Q(z) := z^m p^*(z) \pm p(z)$$

with the same choice of sign (i.e. the cos case and the sin case). Suppose P has j_1 zeros of modulus 1 and Q has j_2 zeros of modulus 1. Then

$$j_1 + j_2 \geq 2m.$$

Proof. Use the previous lemma and note that if p has k zeros of modulus greater than 1 and j zeros of modulus 1 then p^* has $n - k - j$ zeros of modulus greater than 1 and j zeros of modulus 1. □

Note that if $M := (m - N)/2 \geq 1$ with M an integer then

$$C(t) := \sum_{j=M}^{n+M} a_j \cos(jt)$$

and

$$S(t) := \sum_{j=M}^{n+M} a_j \sin(jt)$$

correspond to

$$P(z) := (z^m p(z) \pm p^*(z)), \quad z = \exp(it),$$

with

$$p(z) = \sum_{j=0}^{n} a_j z^j, \quad a_j \in \mathbb{R}.$$
Also zeros of P of modulus 1 correspond (with the same count) to zeros of the trigonometric polynomials C and S in the period $[0, \pi)$.

The next theorem explains why in any reasonable class one expects cosine sums with many real zeros in the period. The cosine sums naturally break into pairs, more-or-less by conjugation, with a large combined total number of real zeros.

Theorem 1. Suppose $a_{n+M} \neq 0$. Consider

$$C(t) := \sum_{j=M}^{n+M} a_j \cos(jt)$$

and

$$C^*(t) := \sum_{j=M}^{n+M} a_{n+2M-j} \cos(jt)$$

which reverses the coefficients. Let w_1 be the number of zeros of C in $[0, \pi)$ and let w_2 be the number of zeros of C^* in $[0, \pi)$ then

$$w_1 + w_2 \geq n + 1.$$

Furthermore $w_1 \geq M$ and $w_2 \geq M$.

Proof. Use the previous lemmas. \qed

Averaging gives results like:

Theorem 2. The average number of zeros of trigonometric polynomials in the classes

$$\left\{ \sum_{j=1}^{n} a_j \cos(jt), \ a_j \in \{-1, 1\} \right\}$$

and

$$\left\{ \sum_{j=1}^{n} a_j \cos(jt), \ a_j \in \{0, 1\} \right\},$$

respectively in $[0, \pi)$ is at least $n/2$.

Proof. Use the previous lemmas \qed

5. Conclusion

A cosine polynomial of the form $\sum_{j=1}^{N} \cos(n_j \theta)$ must have at least one real zero in a period. This is obvious if none of the integers n_j is 0, since then the integral of the sum on a period is 0. The above statement is less obvious if one of the integers n_j is 0, but it follows from Littlewood’s Conjecture simply. Here we mean the already mentioned Littlewood’s Conjecture proved by S. Konyagin [6] and independently by McGehee, Pigno, and Smith [11] in 1981. It seems likely that the number of zeros of the above sums in a period must tend to infinity with N. This does not appear to be easy. The case when the sequence $0 \leq n_0 \leq n_1 \leq \cdots$ is fixed will be handled in a forthcoming paper.
References

[9] J.E. Littlewood, On polynomials $\sum \pm z^n$ and $\sum e^{i\alpha n}z^n$, $z = e^{i\theta}$, J. London Math. Soc. 41 (1966), 367–376.

Department of Mathematics, Simon Fraser University, Burnaby, B.C. V5A 1S6 Canada

E-mail address: pborwein@cecm.sfu.ca

Department of Mathematics, Texas A&M University, College Station, Texas 77843

E-mail address: terdelyi@math.tamu.edu

Department of Mathematics, Simon Fraser University, Burnaby, B.C. V5A 1S6 Canada

E-mail address: rferguson@pims.math.ca

Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, B.C. V5A 1S6 Canada

E-mail address: lockhart@stat.sfu.ca