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Abstract. It is proved that a polynomial p of the form

p(x) =
n∑

j=0

ajx
j , |a0| = 1 , |aj | ≤ 1 , aj ∈ C ,

has at most c
√
n zeros inside any polygon with vertices on the unit circle, where the

constant c depends only on the polygon.

Furthermore, if α ∈ (0, 1) then every polynomial p of the above form has at most
c/α zeros inside any polygon with vertices on the circle {z ∈ C : |z| = 1−α}, where
the constant c depends only on the number of vertices of the polygon.

It is also shown that there is an absolute constant c such that every polynomial
of the form

p(x) =
n∑

j=0

ajx
j , |a0| = |an| = 1 , |aj | ≤ 1 , aj ∈ C ,

has at most c(nα+
√
n) zeros in the strip {z ∈ C : |Im(z)| ≤ α}, and in the sector

{z ∈ C : |arg(z)| ≤ α}.

These essentially sharp results improve and generalize several earlier results.
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1. Introduction

The study of the location of zeros of polynomials from

Fn :=

{
p : p(x) =

n∑

i=0

aix
i , ai ∈ {−1, 0, 1}

}

begins with Bloch and Pólya [2]. They prove that the average number of real zeros
of a polynomial from Fn is at most c

√
n. They also prove that a polynomial from

Fn cannot have more than
cn log logn

logn

real zeros. This result, which appears to be the first on this subject, shows that
polynomials from Fn do not behave like unrestricted polynomials. Schur [11] and
by different methods Szegő [12] and Erdős and Turán [7] improve the above bound
to c

√
n logn (see also [5]).

In [6] we give the right upper bound of c
√
n for the number of real zeros of

polynomials from a large class, namely for all polynomials of the form

p(x) =
n∑

j=0

ajx
j , |aj | ≤ 1 , |a0| = |an| = 1 , aj ∈ C .

In this paper we extend this result by proving that a polynomial of the form

p(x) =

n∑

j=0

ajx
j , |aj | ≤ 1 , |a0| = 1 , aj ∈ C ,

cannot have more than c
√
n zeros inside any polygon with vertices on the unit

circle, where c depends only on the polygon.

We also prove another essentially sharp result stating that a polynomial of the
form

p(x) =

n∑

j=0

ajx
j , |a0| = |an| = 1 , |aj | ≤ 1 , aj ∈ C ,

has at most c(nα +
√
n) zeros in the strip {z ∈ C : |Im(z)| ≤ α}, where c is an

absolute constant.

Theorems 2.1 – 2.3, our main results, have self contained proofs distinct from
those in [6]. They sharpen and generalize some results of Amoroso [1], Bombieri
and Vaaler [4], and Hua [8], who gave upper bounds for the number of zeros of
polynomials with integer coefficients at 1.

The class Fn and various related classes have been studied from a number of
points of view. Littlewood’s monograph [9] contains a number of interesting, chal-
lenging, and still open problems about polynomials with coefficients from {−1, 1}.
The distribution of zeros of polynomials with coefficients from {0, 1} is studied in
[10] by Odlyzko and Poonen.
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2. New Results

Throughout the paper

D(z0, r) := {z ∈ C : |z − z0| < r}
denotes the open disk of the complex plane centered at z0 ∈ C with radius r > 0.

Theorem 2.1. Every polynomial p of the form

p(x) =

n∑

j=0

ajx
j , |a0| = 1 , |aj | ≤ 1 , aj ∈ C ,

has at most c
√
n zeros inside any polygon with vertices on the unit circle, where the

constant c depends only on the polygon.

Theorem 2.2. There is an absolute constant c such that

p(x) =

n∑

j=0

ajx
j , |a0| = |an| = 1 , |aj | ≤ 1 , aj ∈ C ,

has at most c(nα+
√
n) zeros in the strip

{z ∈ C : |Im(z)| ≤ α} ,
and in the sector

{z ∈ C : |arg(z)| ≤ α} .

Theorem 2.3. Let α ∈ (0, 1). Every polynomial p of the form

p(x) =

n∑

j=0

ajx
j , |a0| = 1 , |aj | ≤ 1 , aj ∈ C ,

has at most c/α zeros inside any polygon with vertices on the circle

{z ∈ C : |z| = 1− α} ,
where the constant c depends only on the number of the vertices of the polygon.

The sharpness of Theorem 2.1 can be seen by the theorem below proved in [6].

Theorem 2.A. For every n ∈ N, there exists a polynomial pn of the form given
in Theorem 2.1 with real coefficients so that pn has a zero at 1 with multiplicity at
least ⌊√n⌋ − 1.

When 0 < α ≤ n−1/2, the sharpness of Theorem 2.2 is shown by the polynomials

qn(z) := pn(z) + z2n+1pn(z
−1) ,

where pn are the polynomials in Theorem 2.A. Namely the polynomials qn are of
the required form with ⌊√n⌋ − 1 ≥ c(nα +

√
n) zeros at 1. When n−1/2 ≤ α ≤ 1,

the sharpness of Theorem 2.2 is shown by the polynomials qn(z) := zn − 1.

The next theorem proved in [3] shows the sharpness of Theorem 2.3.
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Theorem 2.B. For every α ∈ (0, 1), there exists a polynomial pn of the form given
in Theorem 2.3 with real coefficients so that pn has a zero at 1−α with multiplicity
at least ⌊1/α⌋ − 1. (It can also be arranged that n ≤ 1/α2 + 2.)

As a remark to Theorem 2.3 we point out that a more or less straightforward
application of Jensen’s formula gives that there is an absolute constant c > 0 such
that every polynomial p of the form

p(x) =

n∑

j=0

ajx
j , |a0| = 1 , |aj | ≤ 1 , aj ∈ C ,

has at most (c/α) log(1/α) zeros in the disk D(0, 1− α), α ∈ (0, 1). (An interested
reader may view this remark as an exercise. We will not use it, and hence will not
present its proof.) A very recent (unpublished) example, suggested by Nazarov,
shows that this upper bound for the number of zeros in the disk D(0, 1 − α) is,
up to the absolute constant c > 0, best possible. So, in particular, the constant in
Theorem 2.3 cannot be made independent of the number of vertices of the polygon.

3. Lemmas

To prove our theorems we need some lemmas. Our first lemma states Jensen’s
formula. Its proof may be found in most of the complex analysis textbooks.

Lemma 3.1. Suppose h is a nonnegative integer and

f(z) =

∞∑

k=h

ck(z − z0)
k , ch 6= 0

is analytic on the closure of the disk D(z0, r) and suppose that the zeros of f in
D(z0, r) \ {z0} are a1, a2, . . . , am, where each zero is listed as many times as its
multiplicity. Then

log |ch|+ h log r +

m∑

k=1

log
r

|ak − z0|
=

1

2π

∫ 2π

0

log |f(z0 + reiθ)| dθ .

A straightforward calculation gives the next lemma.

Lemma 3.2. Suppose f is an analytic function on the open unit disk D(0, 1) that
satisfies the growth condition

(1) |f(z)| ≤ 1

1− |z| , z ∈ D(0, 1) .

Let D(z0, r) ⊂ D(0, 1). Then there is a constant c(r) depending only on r such that

1

2π

∫ 2π

0

log |f(z0 + reiθ)| dθ ≤ c(r) .

The next lemma is used in the proof of both Theorems 2.1 and 2.2.
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Lemma 3.3. There is an absolute constant c1 such that every polynomial of the
form

p(x) =

n∑

j=0

ajx
j , |a0| = 1 , |aj | ≤ 1 , aj ∈ C

has at most c1(nr +
√
n) zeros in any open disk D(z0, r) with |z0| = 1, z0 ∈ C.

To prove Lemma 3.3 we need the lemma below. Lemma 3.4 also plays a central
role in [6] where its reasonably simple proof may be found.

Lemma 3.4. There are absolute constants c2 > 0 and c3 > 0 such that

|f(0)|c2/a ≤ exp
(c3
a

)
‖f‖[1−a,1] , a ∈ (0, 1] ,

for every f analytic on the open unit disk D(0, 1) satisfying the growth condition
(1) in Lemma 3.2.

For the sake of completeness we present the proof of Lemma 3.4 in Section 4.

Proof of Lemma 3.3. Without loss of generality we may assume that z0 := 1 and
n−1/2 ≤ r ≤ 1 (the case 0 < r < n−1/2 follows from the case r = n−1/2, and the
case r > 1 is obvious.) Let p be a polynomial of the form given in the lemma.
Observe that such a polynomial satisfies the growth condition (1) in Lemma 3.4.
Choose a point z1 ∈ [1− r, 1] such that

|p(z1)| ≥ exp

(−c3
r

)
.

There is such a point by Lemma 3.4. Using the bounds for the coefficients of p, we
have

log |p(z)| ≤ log((n+ 1)(1 + 4r)n) ≤ log(n+ 1) + 4nr , |z| ≤ 1 + 4r .

Let m denote the number of zeros of p in the open disk D(z1, 2r). Applying Jensen’s
formula on the disk D(z1, 4r), then using the above inequality, we obtain

−c3
r

+m log 2 ≤ log |p(z1)|+m log 2 ≤ 1

2π
2π(log(n+ 1) + 4nr) .

This, together with n−1/2 ≤ r ≤ 1, implies m ≤ c(nr +
√
n). Now observe that

D(1, r) is a subset of D(z1, 2r), and the result follows. �

Lemma 3.5. Suppose that p is a polynomial of the form

p(x) =
n∑

j=0

ajx
j , |a0| = 1 , |aj | ≤ 1 , aj ∈ C

Let D(z0, r) ⊂ D(0, 1). Let r ∈
[
3
4 , 1
)
. Let 0 < δ < r. Then there is a constant

c(r) depending only on r such that p has at most c(r)δ−1 zeros in the open disk
D(z0, r − δ).
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Proof. Let p be a polynomial of the form given in the lemma. Observe that r ∈[
3
4 , 1
)
implies that |z0| < 1

4 . Hence

|p(z0)| ≥
2

3
.

Let m denote the number of zeros of p in the open disk D(z0, r − δ). Applying
Jensen’s formula on D(z0, r) and Lemma 3.2, we obtain

log
2

3
+m log

r

r − δ
≤ log |p(z0)|+m log

r

r − δ

≤ 1

2π

∫ 2π

0

log |p(z0 + reiθ)| dθ ≤ c(r) .

As 0 < r < 1 and 0 < δ < r, we have

log
r

r − δ
= log

1

1− (δ/r)
≥ δ

r
≥ δ ,

and with the previous inequality this implies that m ≤ (c(r) + 1)δ−1. �

4. Proof of Lemma 3.4

In this section, for the sake of completeness, we present the proof of Lemma 3.4
given in [6]. We need some lemmas.

Hadamard Three Circles Theorem. Suppose f is regular in

{z ∈ C : r1 ≤ |z| ≤ r2} .

For r ∈ [r1, r2], let
M(r) := max

|z|=r
|f(z)| .

Then
M(r)log(r2/r1) ≤ M(r1)

log(r2/r)M(r2)
log(r/r1) .

Corollary 4.1. Let a ∈ (0, 1]. Suppose f is regular inside and on the ellipse Ea

with foci at 1− a and 1− a+ 1
4a and with major axis

[
1− a− 13a

32
, 1− a+

21a

32

]
.

Let Ẽa be the ellipse with foci at 1− a and 1− a+ 1
4a and with major axis

[
1− a− 6a

32
, 1− a+

14a

32

]
.

Then

max
z∈Ẽa

|f(z)| ≤
(

max
z∈[1−a,1−a+ 1

4
a]
|f(z)|

)1/2(
max
z∈Ea

|f(z)|
)1/2

.
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Proof. This follows from the Hadamard Three Circles Theorem with the substitu-
tion

w =
a

8

(
z + z−1

2

)
+
(
1− a+

a

8

)
.

The Hadamard Three Circles Theorem is applied with r1 := 1, r := 2, and r2 :=
4. �

Corollary 4.2. Let Ẽa be as in Corollary 4.1. Then

max
z∈Ẽa

|f(z)| ≤
(

32

11a

)1/2(
max

z∈[1−a,1]
|f(z)|

)1/2

for every f analytic in the open unit disk D(0, 1) that satisfies the growth condition
(1) (see Lemma 3.2) and for every a ∈ (0, 1].

Proof. This follows from Corollary 4.1 and the Maximum Principle. �

Proof of Lemma 3.4. Let h(z) = 1
2 (1−a)(z+z2). Observe that h(0) = 0, and there

are absolute constants c4 > 0 and c5 > 0 such that

|h(eit)| ≤ 1− c4t
2 , −π ≤ t ≤ π ,

and for t ∈ [−c5a, c5a], h(e
it) lies inside the ellipse Ẽa. Now let m := ⌊2πc5/a⌋+1.

Let ξ := exp(2πi/(2m)) be the first 2mth root of unity, and let

g(z) :=

2m−1∏

j=0

f(h(ξjz)) .

Using the Maximum Principle and the properties of h, we obtain

|f(0)|2m = |g(0)| ≤ max
|z|=1

|g(z)| ≤
(
max
z∈Ẽa

|f(z)|
)2 m−1∏

k=1

(
1

c4(k/m)2

)2

=
(
max
z∈Ẽa

|f(z)|
)2

ec6(m−1)

(
mm−1

(m− 1)!

)4

<
(
max
z∈Ẽa

|f(z)|
)2

ec7(m−1) ,

and the lemma follows by Corollary 4.2. �

5. Proof of the Theorems

Proof of Theorem 2.1. It is sufficient to prove the upper bound of the theorem
for the number of zeros in a triangle with vertices 0, w, and w−1, where |w| = 1
and Re(w) ≥ 1

2 . Let S1 := D(z0, r − δ), where z0 := 1
4 , r := 3

4 , and δ := n−1/2.

Let S2 := D(z0, r), where z0 := w and r := cn−1/2. Let S3 := D(z0, r), where
z0 := w−1 and r := cn−1/2. Note that if c = c(w) is sufficiently large, then the
triangle with vertices 0, w, and w−1 is covered by the union of S1, S2, and S3.
Hence the theorem follows from Lemmas 3.3 and 3.5. �
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Proof of Theorem 2.2. Without loss of generality we may assume that n−1/2 ≤ α ≤
1
2 . it is sufficient to prove that every polynomial p of the form

p(x) =

n∑

j=0

ajx
j , |a0| = 1 , |aj | ≤ 1 , aj ∈ C ,

has at most c(nα+
√
n) zeros in

{z ∈ C : |Im(z)| ≤ α , |z| ≤ 1} .

The remaining part of the theorem follows from this by studying the polynomials
qn(z) := znpn(z

−1) .

Let S1 := D(z0, r−δ), where z0 := 1
4 , r := 3

4 , and δ := α. Let S2 := D(z0, r−δ),

where z0 := − 1
4 , r :=

3
4 , and δ := α. Let S3 := D(z0, r), where z0 := 1 and r := 4α.

Let S4 := D(z0, r), where z0 := −1 and r := 4α. Note that S1, S2, S3, and S4

cover
{z ∈ C : |Im(z)| ≤ α , |z| ≤ 1} .

Hence the theorem follows from Lemmas 3.4 and 3.5 (note that n−1/2 ≤ α ≤ 1
2

implies α−1 ≤ nα). �

Proof of Theorem 2.3. Without loss of generality we may assume that α ∈ (0, 1
2 ],

otherwise the statement of the theorem is trivial. It is sufficient to prove the upper
bound of the theorem for the number of zeros in a triangle with vertices 0, w, and
w, where |w| = 1 − α and Re(w) ≥ 1

2 . Let w =: |w|eiθ . Let S1 := D(z0, r − δ),

where z0 := 1
4e

iθ, r := 3
4 , δ := α. Let S2 := D(z0, r− δ), where z0 := 1

4e
−iθ, r := 3

4 ,
δ := α. Note that the triangle with vertices 0, w, and w is covered by the union of
S1 and S2. Hence the theorem follows from Lemma 3.5. �
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