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Abstract. The principal result of this paper is the following Markov-type inequality
for Müntz polynomials.

Theorem (Newman’s Inequality on [a, b] ⊂ (0,∞)). Let Λ := (λj)
∞

j=0 be an

increasing sequence of nonnegative real numbers. Suppose λ0 = 0 and there exists a

δ > 0 so that λj ≥ δj for each j. Suppose 0 < a < b. Then there exists a constant

c(a, b, δ) depending only on a, b, and δ so that

‖P ′‖[a,b] ≤ c(a, b, δ)





n
∑

j=0

λj



 ‖P‖[a,b]

for every P ∈ Mn(Λ), where Mn(Λ) denotes the linear span of {xλ0 , xλ1 , . . . , xλn}
over R.

When [a, b] = [0, 1] and with ‖P ′‖[a,b] replaced with ‖xP ′(x)‖[a,b] this was proved

by Newman. Note that the interval [0, 1] plays a special role in the study of Müntz
spaces Mn(Λ). A linear transformation y = αx+β does not preserve membership in
Mn(Λ) in general (unless β = 0). So the analogue of Newman’s Inequality on [a, b]
for a > 0 does not seem to be obtainable in any straightforward fashion from the
[0, b] case.

1. Introduction and Notation

Let Λ := (λj)
∞
j=0 be a sequence of distinct real numbers. The span of

{xλ0 , xλ1 , . . . , xλn}
over R will be denoted by

Mn(Λ) := span{xλ0 , xλ1 , . . . , xλn}.
Elements of Mn(Λ) are called Müntz polynomials. Newman’s beautiful inequality
[6] is an essentially sharp Markov-type inequality for Mn(Λ), where Λ := (λj)

∞
j=0

is a sequence of distinct nonnegative real numbers. For notational convenience, let
‖ · ‖[a,b] := ‖ · ‖L∞[a,b].
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Theorem 1.1 (Newman’s Inequality). Let Λ := (λj)
∞
j=0 be a sequence of dis-

tinct nonnegative real numbers. Then

2

3

n
∑

j=0

λj ≤ sup
06=P∈Mn(Λ)

‖xP ′(x)‖[0,1]
‖P‖[0,1]

≤ 11
n
∑

j=0

λj .

Frappier [4] shows that the constant 11 in Newman’s Inequality can be replaced
by 8.29. In [2], by modifying (and simplifying) Newman’s arguments, we showed
that the constant 11 in the above inequality can be replaced by 9. But more impor-
tantly, this modification allowed us to prove the following Lp version of Newman’s
Inequality [2] (an L2 version of which was proved earlier in [3]).

Theorem 1.2 (Newman’s Inequality in Lp). Let p ∈ [1,∞). Let Λ := (λj)
∞
j=0

be a sequence of distinct real numbers greater than −1/p. Then

‖xP ′(x)‖Lp[0,1] ≤
(

1/p+ 12

(

n
∑

j=0

(λj + 1/p)

))

‖P‖Lp[0,1]

for every P ∈ Mn(Λ) := span{xλ0 , xλ1 , . . . , xλn}.

We believe on the basis of considerable computation that the best possible con-
stant in Newman’s Inequality is 4. (We remark that an incorrect argument exists
in the literature claiming that the best possible constant in Newman’s Inequality
is at least 4 +

√
15 = 7.87 . . . .)

Conjecture (Newman’s Inequality with Best Constant). Let Λ := (λj)
∞
j=0

be a sequence of distinct nonnegative real numbers. Then

‖xP ′(x)‖[0,1] ≤ 4

(

n
∑

j=0

λj

)

‖P‖[0,1]

for every P ∈ Mn(Λ) := span{xλ0 , xλ1 , . . . , xλn}.

It is proved in [1] that under a growth condition, which is essential, ‖xP ′(x)‖[0,1]
in Newman’s Inequality can be replaced by ‖P ′‖[0,1]. More precisely, the following
result holds.

Theorem 1.3 (Newman’s Inequality Without the Factor x). Let Λ :=
(λj)

∞
j=0 be a sequence of distinct real numbers with λ0 = 0 and λj ≥ j for each

j. Then

‖P ′‖[0,1] ≤ 18

(

n
∑

j=1

λj

)

‖P‖[0,1]

for every P ∈ Mn(Λ).

Note that the interval [0, 1] plays a special role in the study of Müntz polynomials.
A linear transformation y = αx + β does not preserve membership in Mn(Λ) in
general (unless β = 0), that is P ∈ Mn(Λ) does not necessarily imply that Q(x) :=
P (αx + β) ∈ Mn(Λ). Analogues of the above results on [a, b], a > 0, cannot be
obtained by a simple transformation. We can, however, prove the following result.
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2. New Results

Theorem 2.1 (Newman’s Inequality on [a, b] ⊂ (0,∞)). Let Λ := (λj)
∞
j=0 be

an increasing sequence of nonnegative real numbers. Suppose λ0 = 0 and there

exists a δ > 0 so that λj ≥ δj for each j. Suppose 0 < a < b. Then there exists a

constant c(a, b, δ) depending only on a, b, and δ so that

‖P ′‖[a,b] ≤ c(a, b, δ)

(

n
∑

j=0

λj

)

‖P‖[a,b]

for every P ∈ Mn(Λ), where Mn(Λ) denotes the linear span of {xλ0 , xλ1 , . . . , xλn}
over R.

Theorem 2.1 is sharp up to the constant c(a, b, δ). This follows from the lower
bound in Theorem 1.1 by the substitution y = b−1x. Indeed, take a P ∈ Mn(Λ) so
that

|P ′(1)| ≥ 2

3





n
∑

j=0

λj



 ‖P‖[0,1].

Then Q(x) := P (x/b) satisfies

‖Q′‖[a,b] ≥ |Q′(b)| = b−1|P ′(1)| ≥ 2

3b





n
∑

j=0

λj



 ‖P‖[0,1]

≥ 2

3b





n
∑

j=0

λj



 ‖Q‖[a,b].

The following example shows that the growth condition λj ≥ δj with a δ > 0 in
the above theorem cannot be dropped. It will also be used in the proof of Theorem
2.1.

Theorem 2.2. Let Λ := (λj)
∞
j=0, where λj = δj. Let 0 < a < b. Then

max
06=P∈Mn(Λ)

|P ′(a)|
‖P‖[a,b]

= |Q′
n(a)| =

2δaδ−1

bδ − aδ
n2

where, with Tn(x) = cos(n arccosx),

Qn(x) := Tn

(

2xδ

bδ − aδ
− bδ + aδ

bδ − aδ

)

is the Chebyshev “polynomial” for Mn(Λ) on [a, b]. In particular

lim
δ→0

max
06=P∈Mn(Λ)

|P ′(a)|
(

n
∑

j=0

λj

)

‖P‖[a,b]
= ∞.

Theorem 2.2 is a well-known property of differentiable Chebyshev spaces. See,
for example, [5] or [1].
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3. Lemmas

The following comparison theorem for Müntz polynomials is proved in [1, E.4 f]
of Section 3.3]. For the sake of completeness, in the next section we outline a short
proof suggested by Pinkus. This proof assumes familarity with the basic properties
of Chebyshev and Descartes systems. All of these may be found in [5].

Lemma 3.1 (A Comparison Theorem). Let Λ := (λj)
∞
j=0 and Γ := (γj)

∞
j=0 be

increasing sequences of nonnegative real numbers with λ0 = γ0 = 0, and γj ≤ λj

for each j. Let 0 < a < b. Then

max
P∈Mn(Γ)

|P ′(a)|
‖P‖[a,b]

≥ max
P∈Mn(Λ)

|P ′(a)|
‖P‖[a,b]

.

The following result is essentially proved by Saff and Varga [7]. They assume
that Λ := (λj)

∞
j=0 is an increasing sequence of nonnegative integers and δ = 1 in the

next lemma, however, this assumption can be easily dropped from their theorem,
see [1, E.9 of Section 6.1]. In fact, their proof remains valid almost word by word,
the modifications are straightforward.

Lemma 3.2 (The Interval Where the Norm of a Müntz Polynomial Lives).
Let Λ := (λj)

∞
j=1 be an increasing sequence of nonnegative real numbers. Let 0 6=

P ∈ Mn(Λ) and Q(x) := xkδP (x), where k is a nonnegative integer and δ is a

positive real number. Let ξ ∈ [0, 1] be a point so that |Q(ξ)| = ‖Q‖[0,1]. Suppose

λj ≥ δj for each j. Then
(

k

k + n

)2/δ

≤ ξ.

The above result is sharp in a certain limiting sense which is described in detail
in Saff and Varga [7].

4. Proofs

Proof of Lemma 3.1. It can be proved by a standard perturbation argument (see,
for example, [5]) that

sup
06=P∈Mn(Λ)

|P ′(a)|
‖P‖[a,b]

=
|T ′

n(a)|
‖Tn‖[a,b]

where Tn is the Chebyshev polynomial for the Chebyshev space Mn(Λ). In partic-
ular, Tn has n distinct zeros in (a, b) and

|Tn(a)| = |Tn(b)| = ‖Tn‖[a,b] = 1 .

Let

Tn(x) =:

n
∑

j=0

cjx
λj , cj ∈ R .
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Since

T ′
n(x) =

n
∑

j=1

cjγjx
λj−1

and since
(xσ0 , xσ1 , . . . , xσn)

is a Descartes system on [a, b] for any choice of σ0 < σ1 < · · · < σn, it follows that

T ′
n has exactly n− 1 zeros in [a, b], and thus if we normalize Tn so that T

′(a)
n > 0,

then Tn(a) < 0. Under this normalization,

cj(−1)j+1 > 0, j = 0, 1, . . . , n .

Now let k ∈ {1, 2, . . . n} be fixed. Let (γj)
n
j=0 be such that

0 = γ0 < γ1 < · · · < γn, γj = λj , j 6= k, and λk−1 < γk < λk.

To prove the lemma it is sufficient to study the above case since the general case
follows from this by a finite number of pairwise comparisons.

Choose Qn ∈ Mn(Γ) of the form

Qn(x) =

n
∑

j=0

djx
γj , dj ∈ R

so that
Qn(ti) = Tn(ti), i = 0, 1, . . . , n

where t0 := a and t1 < t2 < · · · < tn are the n zeros of Tn in (a, b). By the
unique interpolation property of Chebyshev spaces, Qn is uniquely determined, has
n zeros (the points t1, t2, . . . , tn), and is negative at a. (Thus (−1)j+1dj > 0 for
each j = 0, 1, . . . , n.)

We have

(Tn −Qn)(x) =

n
∑

j=0,j 6=k

(cj − dj)x
λj + ckx

λk − dkx
γk .

The function Tn−Qn changes sign on (0,∞) strictly at the points ti, i = 0, 1, . . . , n,
and has no other zeros. As such a sequence,

c0 − d0, c1 − d1, . . . , ck−1 − dk−1, −dk, ck, ck+1 − dk+1, . . . , cn − dn

strictly alternates in sign. Since (−1)k+1ck > 0, this implies that

(−1)n+1(Tn −Qn)(x) > 0 for x > tn .

Thus for x ∈ (tj−1, tj) we have

(−1)jTn(x) > (−1)jQn(x) > 0 .
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In addition, we recall that Qn(a) = Tn(a) < 0.

The observations above imply that

‖Qn‖[a,b] ≤ ‖Tn‖[a,b] = 1 and Q′
n(a) ≥ T ′

n(a) > 0.

Thus
|Q′

n(a)|
‖Qn‖[a,b]

≥ |T ′
n(a)|

‖Tn‖[a,b]
= sup

06=P∈Mn(Λ)

|P ′(a)|
‖P‖[a,b]

.

The desired conclusion follows from this. �

Proof of Theorem 2.1. Let P ∈ Mn(Λ). We want to estimate |P ′(y)| for every
y ∈ [a, b]. First let y ∈

[

1
2 (a+ b), b

]

. We define Q(x) := xmnδP (x), where m is the
smallest positive integer satisfying

a ≤ a+ b

2

(

m

m+ 1

)2/δ

.

Scaling Newman’s Inequality from [0, 1] to [0, y], then using Lemma 3.2, we obtain

|Q′(y)| ≤ 9

y

n
∑

j=0

(λj +mnδ)‖Q‖[0,y]

=
9

y

n
∑

j=0

(λj +mnδ)‖Q‖[
y( m

m+1 )
2/δ

,y
]

≤ c1(a, b, δ)

(

n
∑

j=0

λj

)

‖Q‖[a,y]

with a constant c1(a, b, δ) depending only on a, b, and δ. Hence

|P ′(y)| ≤
∣

∣Q′(y)y−mnδ
∣

∣+
mnδ

y
|P (y)|

≤ y−mnδc1(a, b, δ)

(

n
∑

j=0

λj

)

‖Q‖[a,y] +
mnδ

y
‖P‖[a,y]

≤ c2(a, b, δ)

(

n
∑

j=0

λj

)

‖P‖[a,y]

≤ c2(a, b, δ)

(

n
∑

j=0

λj

)

‖P‖[a,b]

with a constant c2(a, b, δ) depending only on a, b, and δ.

Now let y ∈
[

a, 1
2 (a+ b)

]

. Then, by Lemma 3.1 and Theorem 2.2, we can deduce
that

|P ′(y)| ≤ 2δyδ−1

bδ − yδ
n2 ‖P‖[y,b]

≤ c3(a, b, δ)n
2‖P‖[y,b]

≤ c4(a, b, δ)

(

n
∑

j=0

λj

)

‖P‖[y,b]
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with constants c3(a, b, δ) and c4(a, b, δ) depending only on a, b, and δ. This finishes
the proof. �
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2. P. B. Borwein and T. Erdélyi, The Lp version of Newman’s inequality for lacunary polyno-

mials, Proc. Amer. Math. Soc. (to appear).
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