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PRODUCTS OF MÜNTZ POLYNOMIALS

Tamás Erdélyi

Abstract. Let Λ := (λj)
∞

j=0 be a sequence of distinct real numbers. The span of

{xλ0 , xλ1 , . . . , xλn}

over R is denoted by

Mn(Λ) := span{xλ0 , xλ1 , . . . , xλn}.

Elements of Mn(Λ) are called Müntz polynomials. The principal result of this paper is the
following Markov-type inequality for products of Müntz polynomials.

Theorem 2.1. Let Λ := (λj)
∞

j=0 and Γ := (γj)
∞

j=0 be increasing sequences of nonnegative

real numbers. Let

K(Mn(Λ),Mm(Γ)) := sup

{

‖x(pq)′(x)‖[0,1]

‖pq‖[0,1]
: p ∈ Mn(Λ) , q ∈ Mm(Γ)

}

.

Then

1

3
((m+ 1)λn + (n+ 1)γm) ≤ K(Mn(Λ),Mm(Γ)) ≤ 18 (n+m+ 1)(λn + γm) .

In particular,
2

3
(n+ 1)λn ≤ K(Mn(Λ),Mn(Λ)) ≤ 36 (2n+ 1)λn .

Under some necessary extra assumptions, an analog of the above Markov-type inequality

is extended to the cases when the factor x is dropped, and when the interval [0, 1] is replaced
by [a, b] ⊂ (0,∞).
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1. Introduction and Notation

Let Pn denote the family of all algebraic polynomials of degree at most n with real
coefficients. A classical inequality for polynomials is the

Markov Inequality. The inequality

‖p′‖[a,b] ≤
2n2

b− a
‖p‖[a,b]

holds for every p ∈ Pn and for every subinterval [a, b] of the real line.

For proofs see, for example, Borwein and Erdélyi [3] or DeVore and Lorentz [11].

Let Λ := (λj)
∞
j=0 be a sequence of distinct real numbers. The span of

{xλ0 , xλ1 , . . . , xλn}

over R will be denoted by

Mn(Λ) := span{xλ0 , xλ1 , . . . , xλn} .

Elements of Mn(Λ) are called Müntz polynomials. For notational convenience, let ‖ ·
‖[a,b] := ‖ · ‖L∞[a,b]. Newman [16] established an essentially sharp Markov-type inequality
for Mn(Λ).

Theorem 1.1 (Newman’s Inequality). Let Λ := (λj)
∞
j=0 be a sequence of distinct

nonnegative real numbers. Then

2

3

n∑

j=0

λj ≤ sup
0 6=f∈Mn(Λ)

|f ′(1)|

‖f‖[0,1]
≤ sup

0 6=f∈Mn(Λ)

‖xf ′(x)‖[0,1]

‖f‖[0,1]
≤ 11

n∑

j=0

λj .

Frappier [12] shows that the constant 11 in Newman’s inequality can be replaced by
8.29. By modifying and simplifying Newman’s arguments, Borwein and Erdélyi [6] showed
that the constant 11 in the above inequality can be replaced by 9. But more importantly,
this modification allowed us to prove the “right” Lp version (1 ≤ p ≤ ∞) of Newman’s
inequality [6] (an L2 version of which was proved earlier by Borwein, Erdélyi, and Zhang
[8]).

Note that the factor x in ‖xf ′(x)‖[0,1] can be dropped from Newman’s inequality if we

rewrite it in terms of exponential sums (the substitution x = e−t transforms exponential
sums into Müntz polynomials and the interval [0,∞) onto (0, 1]). However, it is non-
trivial and proved by Borwein and Erdélyi [5] that under a growth condition, ‖xf ′(x)‖[0,1]
in Newman’s inequality can be replaced by ‖f ′‖[0,1]. More precisely, the following result
holds.
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Theorem 1.2 (Newman’s Inequality Without the Factor x). Let Λ := (λj)
∞
j=0 be

a sequence of distinct real numbers with λ0 = 0 and λj ≥ j for each j. Then

‖f ′‖[0,1] ≤ 18

(
n∑

j=0

λj

)
‖f‖[0,1]

for every f ∈ Mn(Λ).

The following example shows that the growth condition in Theorem 1.2 is essential. It is
based on an example given by Len Bos (non-published communication). This is presented
in [3] with a correctable error, see E.3 b] on page 287. The correction of the mistake is
made in the second edition of [3]. For completeness we present this here as well.

Example 1.3. For every δ ∈ (0, 1) there exists a sequence Λ := (λj)
∞
j=0 with λ0 = 0,

λ1 ≥ 1, and
λj+1 − λj ≥ δ , j = 0, 1, 2, . . .

such that

lim
µ→∞

sup
0 6=p∈Mµ(Λ)

|p′(0)|(∑µ
j=0 λj

)
‖p‖[0,1]

= ∞ .

Proof. Let Qn be the Chebyshev polynomial Tn transformed linearly from [−1, 1] to [0, 1],
that is,

Qn(x) = cos(n arccos(2x− 1)) , x ∈ [0, 1] .

Choose natural numbers u and v so that δ < u/v < 1. Let Λ := (λk)
∞
k=0 be defined by

λ0 := 0, λ1 := 1, and

λj := 1 +
(j − 1)u

v
, j = 2, 3, . . . .

Let
pn(x) := x1−u

(
Qn(x

u/v)− (−1)n
)v

∈ Mnv−v+1(Λ) .

Then
|p′n(0)| =

(
2n2
)v
.

Without loss of generality we may assume that 1/2 < δ < u/v < 1. Observe that pn is of
the form

pn(x) = xrnv−v(x
u/v) = (xu/v)v/urnv−v(x

u/v)

with an rnv−v ∈ Pnv−v. Use Theorem A.4.8 (Markov Inequality for GAPN ) from [3] to
deduce that there is an absolute constant c1 > 0 such that

‖pn‖[0,1] = ‖pn‖[y,1]

with
y := (c1v

2n2)−v/u .
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Hence, using the definition of pn, we obtain

‖pn‖[0,1] ≤ 2vy1−u = 2v(c1v
2n2)(u−1)v/u .

Therefore

|p′n(0)|(∑nv−v+1
j=0 λj

)
‖pn‖[0,1]

≥
(2n2)v(∑nv−v

j=0

(
1 + ju

v

))
2v(c1v2n2)(u−1)v/u

≥
(n2)v/u

(1 + nu)nv
(c1v

2)(1−u)v/u → ∞

as n → ∞. �

Note that the interval [0, 1] plays a special role in the study of Müntz polynomials. A
linear transformation y = αx+β does not preserve membership inMn(Λ) in general (unless
β = 0), that is, f ∈ Mn(Λ) does not necessarily imply that g(x) := f(αx+ β) ∈ Mn(Λ).
Analogs of the above results on [a, b], a > 0, cannot be obtained by a simple transformation.
However, Borwein and Erdélyi [5] proved the following result.

Theorem 1.4 (Newman’s Inequality on [a, b] ⊂ (0,∞)). Let Λ := (λj)
∞
j=0 be an

increasing sequence of nonnegative real numbers. Suppose λ0 = 0 and there exists a ̺ > 0
such that λj ≥ ̺j for each j. Suppose 0 < a < b. Then there exists a constant c(a, b, ̺)
depending only on a, b, and ̺ such that

‖f ′‖[a,b] ≤ c(a, b, ̺)

(
n∑

j=0

λj

)
‖f‖[a,b]

for every f ∈ Mn(Λ).

The above theorem is essentially sharp, as one can easily deduce it from the first in-
equality of Theorem 1.1 by a linear scaling.

Müntz’s classical theorem characterizes sequences Λ := (λj)
∞
j=0 with

0 = λ0 < λ1 < λ2 < · · ·

for which the Müntz space M(Λ) = span{xλ0 , xλ1 , . . .} is dense in C[0, 1]. Here

span{xλ0 , xλ1 , . . .}

denotes the collection of finite linear combinations of the functions xλ0 , xλ1 , . . . with real
coefficients and C(A) is the space of all real-valued continuous functions on A ⊂ [0,∞)
equipped with the uniform norm. If A := [a, b] is a finite closed interval, then the notation
C[a, b] := C([a, b]) is used. Müntz’s Theorem states the following.
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Müntz’s Theorem. Suppose 0 = λ0 < λ1 < λ2 < · · · . Then M(Λ) is dense in C[0, 1] if
and only if

∑∞
i=1 1/λi = ∞.

Proofs are available in, for example, Cheney [9], DeVore and Lorentz [11], and Borwein
and Erdélyi [3]. The original Müntz Theorem proved by Müntz [15] and by Szász [21] and
anticipated by Bernstein [2] was only for sequences of exponents tending to infinity. There
are many generalizations and variations of Müntz’s Theorem. See, for example, Borwein
and Erdélyi [3], [4], [5], [6], and [7], Clarkson and Erdős [10], DeVore and Lorentz [11], von
Golitschek [22], Lorentz, von Golitschek, and Makovoz [14], and Schwartz [18]. There are
also still many open problems.

Somorjai [20] in 1976 and Bak and Newman [1] in 1978 proved that

R(Λ) := {p/q : p, q ∈ M(Λ)}

is always dense in C[0, 1] whenever Λ := (λj)
∞
j=0 contains infinitely many distinct real

numbers. This surprising result says that while the set M(Λ) of Müntz polynomials may
be far from dense, the set R(Λ) of Müntz rationals is always dense in C[0, 1], no matter
what the underlying sequence Λ. In light of this result, Newman [17] (p. 50) raises “the
very sane, if very prosaic question.” Are the functions

k∏

j=1

(
nj∑

i=0

ai,jx
i2

)
, ai,j ∈ R , nj ∈ N ,

dense in C[0, 1] for some fixed k ≥ 2 ? In other words does the “extra multiplication”
have the same power that the “extra division” has in the Bak-Newman-Somorjai result?
Newman speculated that it did not.

Denote the set of the above products by Hk. Since every natural number is the sum
of four squares, H4 contains all the monomials xn, n = 0, 1, 2, . . . . However, Hk is not
a linear space, so Müntz’s Theorem itself cannot be applied to resolve the denseness or
non-denseness of H4 in C[0, 1].

Borwein and Erdélyi [3], [4], and [7] deal with products of Müntz spaces and, in par-
ticular, the question of Newman is answered in the negative. In fact, in [7] we presented
a number of inequalities each of which implies the answer to Newman’s question. One of
them is the following bounded Bernstein-type inequality for products of Müntz polynomials
from non-dense Müntz spaces. For

Λj := (λi,j)
∞
i=0 , 0 = λ0,j < λ1,j < λ2,j < · · · , j = 1, 2, . . . ,

we define the sets

M(Λ1,Λ2, . . . ,Λk) :=



p =

k∏

j=1

pj : pj ∈ M(Λj)



 .
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Theorem 1.5. Suppose

∞∑

i=1

1

λi,j
< ∞ and λ1,j ≥ 1 , j = 1, 2, . . . , k .

Let s > 0. Then there exits a constant c depending only on Λ1,Λ2, . . . ,Λk, s, and k (and
not on ̺ or A) such that

‖p′‖[0,̺] ≤ c ‖p‖A

for every p ∈ M(Λ1,Λ2, . . . ,Λk) and for every set A ⊂ [̺, 1] of Lebesgue measure at least
s.

The purpose of this paper is to establish the right Markov-type inequalities for products
of Müntz polynomials when the factors come from arbitrary (not necessarily non-dense)
Müntz spaces. More precisely, we examine the magnitude of

sup

{
‖x(pq)′(x)‖[0,1]

‖pq‖[0,1]
: p ∈ Mn(Λ) , q ∈ Mm(Γ)

}

and

sup

{
‖(pq)′‖[a,b]

‖pq‖[a,b]
: p ∈ Mn(Λ) , q ∈ Mm(Γ)

}

for [a, b] ⊂ (0,∞).

2. New Results

Our first result is an essentially sharp Newman-type inequality for products of Müntz
polynomials.

Theorem 2.1. Let Λ := (λj)
∞
j=0 and Γ := (γj)

∞
j=0 be increasing sequences of nonnegative

real numbers. Let

K(Mn(Λ),Mm(Γ)) := sup

{
‖x(pq)′(x)‖[0,1]

‖pq‖[0,1]
: p ∈ Mn(Λ) , q ∈ Mm(Γ)

}
.

Then

1

3
((m+ 1)λn + (n+ 1)γm) ≤ K(Mn(Λ),Mm(Γ)) ≤ 18 (n+m+ 1)(λn + γm) .

In particular,
2

3
(n+ 1)λn ≤ K(Mn(Λ),Mn(Λ)) ≤ 36 (2n+ 1)λn .

Our next theorem drops the factor x from ‖x(pq)′(x)‖[0,1] in Theorem 2.1 in the expense
of a growth condition and establishes an essentially sharp Markov-type inequality on [0, 1].
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Theorem 2.2. Let Λ := (λj)
∞
j=0 and Γ := (γj)

∞
j=0 be increasing sequences of nonnegative

real numbers with λ0 = γ0 = 0 and with λj ≥ j and γj ≥ j for each j. Let

K̃(Mn(Λ),Mm(Γ), 0, 1) := sup

{
‖(pq)′‖[0,1]
‖pq‖[0,1]

: p ∈ Mn(Λ) , q ∈ Mm(Γ)

}
.

Then

1

3
((m+ 1)λn + (n+ 1)γm) ≤ K̃(Mn(Λ),Mm(Γ), 0, 1) ≤ 36 (n+m+ 1)(λn + γm) .

In particular,

2

3
(n+ 1)λn ≤ K̃(Mn(Λ),Mn(Λ), 0, 1) ≤ 72 (2n+ 1)λn .

Under a growth condition again, we can extend Theorem 2.2 to the interval [0, 1] replaced
by [a, b] ⊂ (0,∞) and an essentially sharp Markov-type inequality is established on [a, b].

Theorem 2.3. Let Λ := (λj)
∞
j=0 and Γ := (γj)

∞
j=0 be increasing sequences of nonnegative

real numbers. Suppose λ0 = γ0 = 0 and there exists a ̺ > 0 such that λj ≥ ̺j and γj ≥ ̺j
for each j. Suppose 0 < a < b. Let

K̃(Mn(Λ),Mm(Γ), a, b) := sup

{
‖(pq)′‖[a,b]

‖pq‖[a,b]
: p ∈ Mn(Λ) , q ∈ Mm(Γ)

}
.

Then there is a constant c(a, b, ̺) depending only on a, b, and ̺ such that

b

3
((m+ 1)λn + (n+ 1)γm) ≤ K̃(Mn(Λ),Mm(Γ), a, b) ≤ c(a, b, ̺) (n+m+ 1)(λn + γm) .

In particular,

2b

3
(n+ 1)λn ≤ K̃(Mn(Λ),Mn(Λ), a, b) ≤ 2 c(a, b, ̺) (2n+ 1)λn .

Remark 1. Analogs of the above three theorems dealing with products of several Müntz
polynomials can also be proved by straightforward modifications.
Remark 2. Let Λ := (λj)

∞
j=0 with λj = j2. If we multiply pq out, where p, q ∈ Mn(Λ),

and we apply Newman’s inequality, we get

K(Mn(Λ),Mn(Λ)) ≤ cn4

with an absolute constant c. However, if we apply Theoren 2.1, we obtain

K(Mn(Λ),Mn(Λ)) ≤ 36 (2n+ 1)n2 .

It is quite remarkable that K(Mn(Λ),Mn(Λ)) is of the same order of magnitude as the

Markov factor 11
(∑n

j=0 j
2
)

in Newman’s inequality for Mn(Λ). When the exponents

λj grow sufficiently slowly, similar improvements can be observed in all of our theorems
compared with the “natural first idea” of “multiply out and use Newman’s inequality.”
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3. Lemmas

Our first lemma is no more than a simple exercise.

Lemma 3.1. Let 0 < a < b and c ≥ 0. If c = 0, assume in addition that λ1 ≥ 1 (to
guarantee differentiability at 0). Then there are P ∈ Mn(Λ) and Q ∈ Mm(Γ) such that

|(P ′Q)(c)|

‖PQ‖[a,b]
= sup

{
|(p′q)(c)|

‖pq‖[a,b]
: p ∈ Mn(Λ) , q ∈ Mm(Γ)

}
.

Our next lemma is an essential tool in proving our key lemmas, Lemmas 3.3 and 3.4.

Lemma 3.2. Let c > b or 0 < c < a in Lemma 3.1. Then P changes sign exactly n times
in (a, b); and Q changes sign exactly m times in (a, b).

The heart of the proof of our theorems is the following pair of comparison lemmas.
The proof of the next couple of lemmas is based on basic properties of Descartes systems,
in particular on Descartes’ Rule of Sign, and on a technique used earlier by P.W. Smith
and Pinkus. Lorentz ascribes this result to Pinkus, although it was P.W. Smith [19] who
published it. I have learned about the proofs of these lemmas from Peter Borwein, who
also ascribes the short proof to Pinkus. This is the proof we present here.

Lemma 3.3. Let Λ := (λj)
∞
j=0, Λ̃ := (λ̃j)

∞
j=0, Γ := (γj)

∞
j=0, and Γ̃ := (γ̃j)

∞
j=0 be increasing

sequences of nonnegative real numbers satisfying λj ≤ λ̃j and γj ≤ γ̃j for each j. Let
0 ≤ a < b ≤ c. Then

sup

{
|(p′q)(c)|

‖pq‖[a,b]
: p ∈ Mn(Λ) , q ∈ Mm(Γ)

}

≤ sup

{
|(p′q)(c)|

‖pq‖[a,b]
: p ∈ Mn(Λ̃) , q ∈ Mm(Γ̃)

}
.

Lemma 3.4. Let Λ := (λj)
∞
j=0, Λ̃ := (λ̃j)

∞
j=0, Γ := (γj)

∞
j=0, and Γ̃ := (γ̃j)

∞
j=0 be increasing

sequences of nonnegative real numbers satisfying

λ0 = λ̃0 = γ0 = γ̃0 = 0

and λj ≤ λ̃j and γj ≤ γ̃j for each j. Let 0 ≤ c ≤ a < b. If c = 0, assume in addition that
λ1 ≥ 1 (to guarantee differentiability at 0). Then

sup

{
|(p′q)(c)|

‖pq‖[a,b]
: p ∈ Mn(Λ) , q ∈ Mm(Γ)

}

≥ sup

{
|(p′q)(c)|

‖pq‖[a,b]
: p ∈ Mn(Λ̃) , q ∈ Mm(Γ̃)

}
.
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4. Proofs

Proof of Lemma 3.1. Although the argument is slightly more than a standard compactness
argument it is no more than an exercise. We omit the details. �

Proof of Lemma 3.2. Assume that c > b, the case 0 < c < a is similar. We show that
P changes sign exactly n times in (a, b). Since Mn(Λ) is a Chebyshev space of dimension
n + 1 on [a, b], it is sufficient to show that P changes sign at least n times in (a, b). To
show that Q changes sign exactly m times in (a, b) is a straightforward modification of the
argument below, so we omit that part of the proof.

Suppose to the contrary that P changes sign exactly at

(a <)x1 < x2 < · · · < xk(< b)

on (a, b), where k < n. Without loss of generality we may assume that P (x) ≥ 0 for
x ∈ [xk, b]. Let

P1 ∈ span{xλ0 , xλ1 , . . . , xλk}

change sign exactly at x1, x2, . . . , xk and be normalized so that P1(c) > 0, therefore
P ′
1(c) > 0. Let

P2 ∈ span{xλ0 , xλ1 , . . . , xλk+1} ⊂ Mn(Λ)

change sign exactly at x1, x2, . . . , xk and b and be normalized so that P1(c) < 0, therefore
P ′
1(c) < 0. The existence of such P1 and P2 follows from the elementary properties of the

Chebyshev space Mn(Λ) on [a, b]. Let

Rε := P − εP1 ∈ Mn(Λ) and Sε := P − εP2 ∈ Mn(Λ) .

Observe that for sufficiently small ε > 0,

‖RεQ‖[a,b] < ‖PQ‖[a,b]

and

‖SεQ‖[a,b] < ‖PQ‖[a,b] .

Also, for sufficiently small ε > 0, either |P ′(c)| ≤ |R′
ε(c)| or |P ′(c)| ≤ |S′

ε(c)|. Therefore
either RεQ or SεQ contradicts the extremality of PQ. This contradiction shows that
k ≥ n, so P changes sign at least (hence exactly) n times in (a, b), indeed. �

The following comparison theorem for Müntz polynomials is similar to the one in Bor-
wein and Erdélyi [3] (see E.4 f] of Section 3.3). Its proof assumes familiarity with the basic
properties of Chebyshev and Descartes systems. All of these may be found in Borwein and
Erdélyi [3] or Karlin and Studden [13].

Proof of Lemma 3.3. We may assume that 0 < a < b < c. The general case when
0 ≤ a < b ≤ c follows by a standard continuity argument. We study the following two
cases:
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Case 1. Let k ∈ {0, 1, . . . , n} be fixed. Let (γ̃j)
m
j=0 = (γj)

m
j=0, and let (λ̃j)

n
j=0 be such

that

0 ≤ λ̃0 < λ̃1 < · · · < λ̃n , λ̃j = λj , j 6= k , and λk < λ̃k < λk+1 .

Case 2. Let k ∈ {0, 1, . . . , m} be fixed. Let (λ̃j)
n
j=0 = (λj)

n
j=0, and let (γ̃j)

m
j=0 be such

that

0 ≤ γ̃0 < γ̃1 < · · · < γ̃m , γ̃j = γj, j 6= k , and γk < γ̃k < γk+1 .

To prove the lemma it is sufficient to study the above cases since the general case follows
from this by a finite number of pairwise comparisons.

Case 2 can be handled by a straightforward modification of the arguments given in Case
1. Therefore we present the details only in Case 1.

By Lemmas 3.1 and 3.2, there are P ∈ Mn(Λ) and Q ∈ Mm(Γ) such that

|(P ′Q)(c)|

‖PQ‖[a,b]
= sup

{
|(p′q)(c)|

‖pq‖[a,b]
: p ∈ Mn(Λ) , q ∈ Mm(Γ)

}
,

where P has exactly n zeros in (a, b); Q has exactly m zeros in (a, b). Let t1 < t2 < · · · < tn
denote the n zeros of P in (a, b) and let t0 := 0 and tn+1 := c. Let

P (x) =:

n∑

j=0

cjx
λj , cj ∈ R .

Without loss of generality we may assume that P (c) > 0. (Note that P (c) 6= 0 since
P ∈ Mn(Λ), Mn(Λ) is a Chebyshev space of dimension n + 1 on [a, b], P has exactly n
zeros in (a, b), and c > b.) We have limx→∞ P (x) = ∞, otherwise, in addition to its n
zeros in (a, b), P would have one more zero in (c,∞), which is impossible, since 0 6= P
comes from a Chebyshev space of dimension n+ 1.

Because of the extremal property of P , P ′(c) 6= 0. We show that P ′(c) > 0. To see
this observe that Rolle’s Theorem implies that

P ′ ∈ span{xλ0−1, xλ1−1, . . . , xλn−1}

has at least n − 1 zeros in (t1, tn). If P ′(c) < 0, then P (tn) = 0 and limx→∞ P (x) = ∞
imply that P ′ has at least 2 more zeros in (tn,∞). Thus P ′(c) < 0 would imply that P ′ has
at least n + 1 zeros in [a,∞), which is impossible, since 0 6= P ′ comes from a Chebyshev
space of dimension n+ 1. Hence P ′(c) > 0, indeed.

Since
(xλ0 , xλ1 , . . . , xλn)

is a Descartes system on (0,∞) it follows from Descartes’ Rule of Signs that

(−1)n−jcj > 0 , j = 0, 1, . . . , n .
10



Choose R ∈ Mn(Λ̃) of the form

R(x) =
n∑

j=0

djx
λ̃j , dj ∈ R,

so that
R(ti) = P (ti) , i = 1, 2, . . . , n+ 1

By the unique interpolation property of Chebyshev spaces, R is uniquely determined, has
n zeros (the points t1, t2, . . . , tn) in (a, b), and is positive at c. Since

(xλ̃0 , xλ̃1 , . . . , xλ̃n)

is a Descartes system on (0,∞), by Descartes’ Rule of Signs,

(−1)n−jdj > 0 , j = 0, 1, . . . , n .

We have

(P −R)(x) = ckx
λk − dkx

λ̃k +

n∑

j=0,j 6=k

(cj − dj)x
λj .

The function P − R changes sign in (0,∞) strictly at the points t1, t2, . . . , tn+1, and has
no other zeros. Since

(xλ0 , xλ1 , . . . , xλk , xλ̃k , xλk+1 , . . . , xλn)

is a Descartes system on (0,∞), by Descartes’ Rule of Signs, the sequence

(c0 − d0, c1 − d1, . . . , ck−1 − dk−1, ck, −dk, ck+1 − dk+1, . . . , cn − dn)

strictly alternates in sign. Since (−1)n−kck > 0, this implies that cn − dn < 0 so

(P −R)(x) < 0 , x > tn+1 .

Thus for x ∈ (tj, tj+1), we have

(−1)n−jP (x) > (−1)n−jR(x) > 0 , j = 0, 1, . . . , n .

In addition, we recall that R(c) = P (c) > 0.
The observations above imply that

‖RQ‖[a,b] ≤ ‖PQ‖[a,b] and R′(c) ≥ P ′(c) > 0 .

(Note that even |(RQ)(x)| ≤ |(PQ)(x)| holds for all x ∈ [a, b] ⊂ [a, c].)
11



Thus

|(R′Q)(c)|

‖RQ‖[a,b]
≥

|(P ′Q)(c)|

‖PQ‖[a,b]
= sup

{
|(p′q)(c)|

‖pq‖[a,b]
: p ∈ Mn(Λ) , q ∈ Mm(Γ)

}
.

Since R ∈ Mn(Λ̃), the desired conclusion follows from this. This finishes the proof in Case
1. �

Proof of Lemma 3.4. The proof is a straightforward modification of the arguments in the
proof of Lemma 3.3. We omit the details. �

Proof of Theorem 2.1. To prove the upper bound of the theorem, it is sufficient to prove
that

(4.1) |(p′q)(1)| ≤ (9 + η)(n+m+ 1)(λn + γm)‖pq‖[δ,1−δ]

for every p ∈ Mn(Λ) and q ∈ Mm(Γ), where η denotes a quantity that tends to 0 as
δ ∈

(
0, 14

)
tends to 0. The rest follows by the product rule of differentiation (the role of

Λ and Γ can be interchanged), by taking the limit when δ ∈
(
0, 14

)
tends to 0, and by a

linear scaling. To prove the above inequality, by Lemma 3.3 we may assume that

λj := λn − (n− j)ε , j = 0, 1, . . . , n

γj := γm − (m− j)ε , j = 0, 1, . . . , m

for some ε > 0. By Lemma 3.2 we may also assume that p has n zeros in (δ, 1− δ) and q
has m zeros in (δ, 1− δ). We normalize p and q so that p(1) > 0 and q(1) > 0. Then, using
the information on the zeros of p and q, we can easily see that p′(1) > 0 and q′(1) > 0.
Therefore

|(p′q)(1)| ≤ |(pq)′(1)| .

Now observe that f := pq ∈ Mk(Ω), where k := n+m and Ω := (ωj)
∞
j=0 with

ωj := λn + γm − (n+m− j)ε .

Hence by Newman’s inequality (see also the remark after it),

|(p′q)(1)| ≤ |(pq)′(1)| = |f ′(1)| ≤ 9 (n+m+ 1)(λn + γm) ‖f‖[0,1]

= 9 (n+m+ 1)(λn + γm) ‖pq‖[0,1]

≤ (9 + η) (n+m+ 1)(λn + γm) ‖pq‖[δ,1−δ]

with η → 0 as δ → 0. The proof of the upper bound of the theorem is now finished.
The proof of the lower bound of the theorem can be easily reduced to the lower bound

in Newman’s inequality. Because of symmetry, we may assume that

(m+ 1)λn ≤ (n+ 1)γm .
12



The lower bound of Newman’s inequality guarantees a

0 6= f ∈ span{xλ0+γm , xλ1+γm , . . . , xλn+γm}

such that

|f ′(1)| ≥
2

3

(
n∑

j=0

(λj + γm)

)
‖f‖[0,1] ≥

2

3
(n+ 1)γm ‖f‖[0,1]

≥
1

3
((m+ 1)λn + (n+ 1)γm) ‖f‖[0,1] .

Now observe that f = pq with some p ∈ Mn(Λ) and with q ∈ Mm(Γ) defined by q(x) :=
xγm . This finishes the proof of the lower bound in the theorem. �

Proof of Theorem 2.2. The lower bound of the theorem was shown in the proof of Theorem
2.1. We now prove the upper bound of the theorem. We want to prove that

(4.2) |(p′q)(y)| ≤ 18 (n+m+ 1)(λn + γm) ‖pq‖[0,1]

for every p ∈ Mn(Λ), q ∈ Mm(Γ), and y ∈ [0, 1]. The rest follows by the product rule of
differentiation (the role of Λ and Γ can be interchanged). When y ∈ [1/2, 1], (4.2) follows
from (4.1) by a linear scaling. Now let y ∈ (0, 1/2]. To prove (4.2) for y ∈ (0, 1/2], we
show that

|(p′q)(y)| ≤ (18 + η) (n+m+ 1)(λn + γm) ‖pq‖[y+δ,1] ,

where η denotes a quantity that tends to 0 as δ ∈
(
0, 14

)
tends to 0 (the rest follows by

taking the limit when δ ∈
(
0, 14

)
tends to 0).

To see this, by Lemma 3.4 we may assume that

λj := j , j = 0, 1, . . . , n ,

γj := j , j = 0, 1, . . . , m .

By Lemma 3.2 we may also assume that p has n zeros in (y + δ, 1) and q has m zeros in
(y+δ, 1). We normalize p and q so that p(y) > 0 and q(y) > 0. Then, using the information
on the zeros of p and q, we can easily see that p′(y) < 0 and q′(y) < 0. Therefore

|(p′q)(y)| ≤ |(pq)′(y)| .

Now observe that f := pq ∈ Mk(Ω), where k := n + m and Ω := (ωj)
∞
j=0 with ωj := j.

Hence by Markov’s inequality,

|(p′q)(y)| ≤ |(pq)′(y)| = |f ′(y)| ≤
2

1− y
(n+m)2 ‖f‖[y,1]

≤ 4 (n+m)2 ‖f‖[y,1]

≤ 18 (n+m+ 1)(λn + γm) ‖pq‖[y,1]

≤ (18 + η) (n+m+ 1)(λn + γm) ‖pq‖[y+δ,1]

13



with η → 0 as δ → 0. The proof of the upper bound of the theorem is now finished. �

Proof of Theorem 2.3. The lower bound of the theorem can be obtained by considering
g(x) := f(x/b), where f is the product that shows the lower bound in Theorem 2.1. We
now prove the upper bound of the theorem. We want to prove that

(4.3) |(p′q)(y)| ≤ c(a, b, ̺) (n+m+ 1)(λn + γm) ‖pq‖[a,b]

for every p ∈ Mn(Λ), q ∈ Mm(Γ), and y ∈ [a, b]. The rest follows by the product rule of
differentiation (the role of Λ and Γ can be interchanged). Let d := 2ab

a+b < b.
First we show that

(4.4) |(p′q)(b)| ≤ c1(a, b, ̺) (n+m+ 1)(λn + γm) ‖pq‖[d,b]

for every p ∈ Mn(Λ) and q ∈ Mm(Γ). To show (4.4), it is sufficient to prove that

(4.5) |(p′q)(b)| ≤ (c1(a, b, ̺) + η) (n+m+ 1)(λn + γm) ‖pq‖[d,b−δ]

for every p ∈ Mn(Λ) and q ∈ Mm(Γ), where η denotes a quantity that tends to 0 as
δ ∈ (0, b− d) tends to 0. The rest follows by taking the limit when δ ∈ (0, b− d) tends to
0.

To prove the above inequality, by Lemma 3.3 we may assume that

λj := λn − (n− j)ε , j = 0, 1, . . . , n ,

γj := γm − (m− j)ε , j = 0, 1, . . .m ,

for some ε > 0. By Lemma 3.2 we may also assume that p has n zeros in (d, b− δ) and q
has m zeros in (d, b− δ). We normalize p and q so that p(b) > 0 and q(b) > 0. Then, using
the information on the zeros of p and q, we can easily see that p′(b) > 0 and q′(b) > 0.
Therefore

|(p′q)(b)| ≤ |(pq)′(b)| .

Now observe that f := pq ∈ Mk(Ω), where k := n+m and Ω := (ωj)
∞
j=0 with

ωj := λn + γm − (n+m− j)ε .

Hence Theorem 1.4 (Newman’s Inequality on [a, b] ⊂ (0,∞)) implies

|(p′q)(b)| ≤ |(pq)′(b)| = |f ′(b)| ≤ c1(a, d, ̺) (n+m+ 1)(λn + γm) ‖f‖[d,b]

= c1(a, b, ̺) (n+m+ 1)(λn + γm) ‖pq‖[d,b] .

By this (4.5), and hence (4.4), is proved.
Now let y ∈

[
1
2
(a+ b), b

]
. Applying (4.4) with p ∈ Mn(Λ) and q ∈ Mm(Γ) replaced by

P ∈ Mn(Λ) and Q ∈ Mm(Γ) defined by P (x) := p(ηx) and Q(x) := q(ηx) with η := y/b,
we obtain that

|(p′q)(y)| =
b

y
|(P ′Q)(b)| ≤

b

y
c1(a, b, ̺) (n+m+ 1)(λn + γm) ‖PQ‖[d,b]

≤ c2(a, b, ̺) (n+m+ 1)(λn + γm) ‖pq‖[dη,y]

≤ c2(a, b, ̺) (n+m+ 1)(λn + γm) ‖pq‖[a,b] .
14



Note that dη = dy/b ≥ a for y ∈
[
1
2 (a+ b), b

]
. So (4.3) is proved for all y ∈

[
1
2 (a+ b), b

]
.

Now let y ∈
[
a, 12 (a+ b)

]
. We show that

(4.6) |(p′q)(y)| ≤ c3(a, b, ̺) (n+m+ 1)(λn + γm) ‖pq‖[y,b]

for every p ∈ Mn(Λ) and q ∈ Mm(Γ). To show (4.6), it is sufficient to prove that

(4.7) |(p′q)(y)| ≤ (c3(a, b, ̺) + η) (n+m+ 1)(λn + γm) ‖pq‖[y+δ,b]

for every p ∈ Mn(Λ) and q ∈ Mm(Γ), where η denotes a quantity that tends to 0 as δ > 0
tends to 0. The rest follows by taking the limit when δ > 0 tends to 0.

To see (4.7), by Lemma 3.3 we may assume that

λj := ̺j , j = 0, 1, . . . , n ,

γj := ̺j , j = 0, 1, . . . , m .

By Lemma 3.2 we may also assume that p has n zeros in (y + δ, b) and q has m zeros in
(y+δ, b). We normalize p and q so that p(y) > 0 and q(y) > 0. Then, using the information
on the zeros of p and q, we can easily see that p′(y) < 0 and q′(y) < 0. Therefore

|(p′q)(y)| ≤ |(pq)′(y)| .

Now observe that f := pq ∈ Mk(Ω), where k := n +m and Ω := (ωj)
∞
j=0 with ωj := ̺j.

Hence by Markov’s inequality,

|(p′q)(y)| ≤ |(pq)′(y)| = |f ′(y)| ≤
2̺ y̺−1

b̺ − y̺
(n+m)2 ‖f‖[y,b]

≤ c3(a, b, ̺) (n+m)2 ‖f‖[y,b]

≤ c3(a, b, ̺) (n+m+ 1)(λn + γm) ‖pq‖[y,b] .

So (4.7), and hence (4.6), is proved for all y ∈
[
a, 12 (a+ b)

]
.

The proof of the theorem is now complete. �
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