
ON THE EQUATION a(a + d)(a + 2d)(a + 3d) = x2

Tamás Erdélyi

Finding all three-term arithmetic progressions of squares is easy. We are led to
the equation a2 + c2 = 2b2, which is equivalent to (a+ c)2 +(a− c)2 = (2b)2, so the
family of all three-term arithmetic progressions of squares can be given by using
the known formula for the Pythagorean triples [4, p. 396].

In [3, p. 199] Erdős and Surányi remark that Euler proved that four squares
cannot make an arithmetic progression with positive difference. They also mention
that it can also be proved that the equation a(a + d)(a + 2d)(a + 3d) = x2 cannot
be solved in positive integers (which obviously implies Euler’s result). I was not
able to get a reference for either of these results. After communicating with a few
experts in number theory, I learned that the stronger result can be obtained from
some known results on elliptic curves. For example, an expert gave me the following
outline: If y2 = a(a+d)(a+2d)(a+3d), then dividing both sides by a4 and setting
y′ = y/a2 and x′ = d/a yields y′2 = (1 + x′)(1 + 2x′)(1 + 3x′), a nice elliptic curve.
We can rewrite this as y′2 = 6(x′ +1)(x′ +1/2)(x′ +1/3). If we multiply both sides
by 62 and set u = 6y′ and v = 6x′, we get u2 = (v + 2)(v + 3)(v + 6). Finally, if we
replace v by v − 4, we get u2 = (v − 1)(v2 − 4), which is curve number 24B of the
Antwerp tables [1]. There or from John Cremona’ tables [2] we learn that it has
rank 0. Reducing mod 5 and mod 7, we see that the only torsion points are the
points of order 2 (the conductor is 24) and we can deduce that the original equation
has only trivial rational solutions.

This argument is comprehensible only to specialists in elliptic curves and is
far from being self-contained. The purpose of this note is to present a totally
elementary proof of the fact that the equation a(a+d)(a+2d)(a+3d) = x2 cannot
be solved in positive integers. The method of proof is an infinite descent with
respect to (a + d)(a + 2d). This is a proof that Fermat could have found, but there
is no trace of this in the literature. The canonical example that textbooks present
as an application of the method of infinite descent is Fermat’s proof of the fact that
x4 +y4 = z2 is not solvable in positive integers. In fact, it is hard to find non-trivial
applications of infinite descent; the current proof is one.

Theorem. The equation a(a+d)(a+2d)(a+3d) = x2 cannot be solved in positive
integers.

Proof. Assume that (a, d, x) satisfies a(a+d)(a+2d)(a+3d) = x2 for some positive
integers for which (a + d)(a + 2d) is minimal. We show that there exists a triple
(A, D, X) of positive integers for which A(A + D)(A + 2D)(A + 3D) = X2 and
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(A+D)(A+2D) < (a+d)(a+2d), which implies that a(a+d)(a+2d)(a+3d) = x2

cannot be solved in positive integers.

We may assume that a and d are relative primes, otherwise we may divide by
(a; d)4, where, and in what follows, (m; n) denotes the greatest common divisor of
the nonnegative integers m and n. Observe that a(a + d)(a + 2d)(a + 3d) = x2 can
be written as

(a2 + 3ad + d2)2 = x2 + d4 ,

so by the well-known formula for the Pythagorean triples [4, p. 396] we have one of
the following two cases.

Case 1. a2 + 3ad + d2 = u2 + v2; d2 = 2uv; u and v are positive integers,
(u; v) = 1, and uv is even.

Case 2. a2 +3ad+d2 = u2 +v2; d2 = u2−v2; u and v are positive integers,
(u; v) = 1, and uv is even.

First we study Case 1. Since (2u; v) = 1, we have 2u = (2u1)2 and v = v2
1 with

some positive integers u1 and v1. These lead to

a2 + 3ad + d2 = u2 + v2 = 4u4
1 + v4

1 and d = 2u1v1 .

Hence the discriminant of the quadratic equation

f(a) = a2 + 6u1v1a + 4u2
1v

2
1 − 4u4

1 − v4
1 = 0

is a square, so
36u2

1v
2
1 − 16u2

1v
2
1 + 16u4

1 + 4v4
1 = y2 ,

that is
4u4

1 + v4
1 + 5u2

1v
2
1 = y2

1

with some positive integers y and y1 := y/2. We conclude

(1) (u2
1 + v2

1)(4u2
1 + v2

1) = y2
1 .

Observe that

(2)
(
(u2

1 + v2
1); (4u2

1 + v2
1)

)
= 1 .

Indeed, if q | u2
1 + v2

1 and q | 4u2
1 + v2

1 , then q | 3u2
1 and q | 3v2

1 . As (u1; v1) = 1, we
have q = 1 or q = 3. However, q | u2

1 + v2
1 implies q 6= 3, otherwise 3 | u1 and 3 | v1,

which is impossible. Hence q = 1, indeed. Now (1) and (2) imply that

u2
1 + v2

1 = e2 and (2u1)2 + v2
1 = f2

with some positive integers e and f . Using the formula for the Pythagorean triples
[4, p. 396] again, and using also that v1 is odd and (u1; v1) = 1, we obtain

u1 = 2u2v2 and v1 = u2
2 − v2

2

and
2u1 = 2u3v3 and v1 = u2

3 − v2
3
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with some positive integers u3 and v3. That is,

u3v3 = 2u2v2 and u2
3 − v2

3 = u2
2 − v2

2 ,

so

(3)
(
u2

3 − v2
3

)2
+ u2

3v
2
3 =

(
u2

2 − v2
2

)2
+ 4u2

2v
2
2 =

(
u2

2 + v2
2

)2
.

It is easy to see that the solutions of the equation

(4) x2 + y2 − xy = z2

in positive integers can be expressed by the formulae

(5) x = 1
3 tb1(2a1 − b1) and y = 1

3 ta1(2b1 − a1) ,

where a1 and b1 are positive integers. This can be obtained by rewriting (4) as

z2 − (x − y/2)2 = 3(y/2)2

and modifying the proof of the well-known formula giving all the Pythagorean
triples [4, p. 396]. From (3) and (5) we obtain

9
t2

u2
3v

2
3 = a1b1(2a1 − b1)(2b1 − a1) = a2(a2 + b2)(a2 + 2b2)(a2 + 3b2) ,

where a2 = 2a1− b1 and b2 = b1−a1. Observe that b2 6= 0, otherwise a1 = b1, that
is x = y, u3 = v3, v1 = 0, and d2 = 0. Also,

(a2 + b2)(a2 + 2b2) < 1
2a2(a2 + b2)(a2 + 2b2)(a2 + 3b2)

=
9

2t2
u2

3v
2
3 =

9
2t2

u2
1 =

9
8t2

4u2
1 ≤

9
8t2

4u2
1v

2
1

≤ 9
8
4u2

1v
2
1 =

9
8
d2 < 2d2 < a2 + 3ad + 2d2 = (a + d)(a + 2d) .

By this the proof is finished in Case 1.

Now we study Case 2, where we have

(6) a2 + 3ad + d2 = u2 + v2 = 1
2 [(u + v)2 + (u − v)2]

and

(7) d2 = u2 − v2 = (u + v)(u− v) .

As (u; v) = 1 and uv is even, we have (u + v; u − v) = 1. This, together with
d2 = (u + v)(u − v), gives

(8) u + v = x2
1 and u− v = x2

2
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with positive integers x1 and x2. Also, d = x1x2. Combining (8) with (6) and (7)
shows that the discriminant of the quadratic equation

f(a) = a2 + 3x1x2a + x2
1x

2
2 − 1

2x4
1 − 1

2x4
2 = 0

is a square, so
9x2

1x
2
2 − 4x2

1x
2
2 + 2x4

1 + 2x4
2 = y2 ,

that is,

(9) (2x2
1 + x2

2)(2x2
2 + x2

1) = y2

with a positive integer y. It is impossible that both 3 | x1 and 3 | x2, since
(x1; x2) = 1. It is also impossible that both 3 | x1 and 3 - x2 or both 3 | x2 and
3 - x1 hold, since in these cases

(2x2
1 + x2

2)(2x2
2 + x2

1) ≡ 2 (mod 3)

which contradicts (9). We conclude that 3 - x1 and 3 - x2, hence

3 | 2x2
1 + x2

2 and 3 | 2x2
2 + x2

1 .

We conclude that

x2
2 ·

2x2
2 + x2

1

3
· 2x2

1 + x2
2

3
· x2

1 = x2
1x

2
2y

2 =: y2
1 ,

that is,
a2(a2 + b2)(a2 + 2b2)(a2 + 3b2) = y2

1

with a positive integer y1, where a2 := x2
2 and b2 := 1

3 (x2
1 − x2

2). Here b2 6= 0
otherwise x1 = x2, that is u + v = u− v, v = 0, a2 + 3ad + d2 = d2, a2 + 3ad = 0,
and a = d = 0, which contradicts our assumption. Also

(a2 + b2)(a2 + 2b2) =
1
9
(2x4

1 + 2x4
2 + 5x2

1x
2
2)

<
1
9
(4(a2 + 3ad + d2) + 5d2) <

1
9
(9(a2 + 3ad + d2))

= a2 + 3ad + d2 < (a + d)(a + 2d) .

By this the proof is finished in Case 2 as well. �
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