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Abstract. We give an elementary proof of the “convergent sum part” of the full Müntz
Theorem in Lp(A) and in C(A), together with the “Clarkson-Erdős-Schwartz phenomenon”

for all p ∈ (0,∞), and for all compact A ⊂ [0,∞) with positive lower density at 0. This
extends earlier results of Müntz [Mü], Szász [Szá], Clarkson and Erdős [CE], L. Schwartz

[Sch], P. Borwein and Erdélyi [BE1] and [BE2], and Operstein [Op], and offers an arguably

shorter and more elementary approach to reprove a large part of the result W.B. Johnson
achieved with me in [EJ]. This approach does not require the usage of Bastero’s extension of

the Krivine-Maurey stable theory. It requires only a standard undergraduate level familiarity

with real and complex analysis.
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1. Introduction

Denote by span{f1, f2, . . . } the collection of all finite linear combinations of the functions
f1, f2, . . . over R. For the sake of brevity we introduce the notation

σλ :=
∞∑

j=1

λj

λ2
j + 1

and

σλ,p :=
∞∑

j=1

λj + (1/p)
(λj + (1/p))2 + 1

,

which will be used throughout the paper. Extending earlier results of Müntz, Szász,
Clarkson, Erdős, L. Schwartz, P. Borwein, Erdélyi, and Operstein, in [EJ] we proved the
result below.

Theorem 1.1 (“Full Müntz Theorem” in Lp[0, 1] for p ∈ (0,∞)). Let p ∈ (0,∞).
Suppose (λj)∞j=1 is a sequence of distinct real numbers greater than −(1/p) . Then

span{xλ1 , xλ2 , . . .}

is dense in Lp[0, 1] if and only if σλ,p = ∞ . Moreover, if σλ,p < ∞ , then every function
from the Lp[0, 1] closure of span{xλ1 , xλ2 , . . .} can be represented as an analytic function
on {z ∈ C \ (−∞, 0] : |z| < 1} restricted to (0, 1).

In handling the “convergent sum part”, that is when σλ,p < ∞ , in [EJ] we use Bastero’s
[Ba] extension of the Krivine-Maurey stable theory. In [EJ] the authors were not able to
include the case p = ∞ in their discussion. The right result when p = ∞ is proved in [Er].

Theorem 1.2 (“Full Clarkson-Erdős-Schwartz Theorem” in C[0, 1]). Let (λj)∞j=1

be a sequence of distinct positive numbers. Then span{1, xλ1 , xλ2 , . . . } is dense in C[0, 1]
if and only if σλ = ∞ . Moreover, if σλ < ∞ , then every function from the C[0, 1] closure
of span{1, xλ1 , xλ2 , . . .} can be represented as an analytic function on {z ∈ C \ (−∞, 0] :
|z| < 1} restricted to (0, 1).

This result improves an earlier result by P. Borwein and Erdélyi (see [BE1] and [BE2])
stating that if σλ < ∞ , then every function from the C[0, 1] closure of span{1, xλ1 , xλ2 , . . .}
is in C∞(0, 1).

The purpose of this paper is to replace Bastero’s [Ba] extension of the Krivine-Maurey
stable theory in the proof of the above “full Müntz Theorem” in Lp[0, 1] for p ∈ (0,∞)
by more elementary text book methods. It turns out that this is possible. In Section
2 we show this in the case when p ≥ 1 by combining the “full Clarkson-Erdős-Schwartz
Theorem” in C[0, 1] above and a guided exercise from [BE] (see E.7 on page 216). We
formulate this guided exercise as well before presenting our new “text book proof” of the
“full Müntz Theorem” in Lp[0, 1] for p ∈ [1,∞) in the “convergent sum part”, that is,
when σλ,p < ∞ . In this “convergent sum part” a “Clarkson-Erdős-Schwartz phenomenon”
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is shown to hold as well. That is, we prove that every function in the Lp[0, 1] closure of
span{xλ1 , xλ2 , . . .} can be represented as an analytic function on

{z ∈ C \ (−∞, 0] : |z| < 1}

restricted to (0, 1). As far as the completeness of this paper is concerned, Section 2 may
as well be disregarded; in Sections 4 - 7 we formulate and prove more general results. In
Sections 4 and 5 we will discuss the full Müntz Theorem in C(A), while Sections 6 and
7 focus on the full Müntz Theorem in Lp(A) when p ∈ (0,∞). A large part of Sections
6 and 7 is similar to the discussion in Sections 4 and 5, however, it would be a bit of an
overstatement to call the presentation in the case of Lp(A) as a “simple modification” of
the arguments handling the case of C(A).

Compared with Section 2, in Sections 6 and 7 the main challenge is to include the case
p ∈ (0, 1), although replacing [0, 1] with a compact set A ⊂ [0,∞) with positive lower
density at 0 is also remarkable, where the lower density of a measurable set A ⊂ [0,∞) at
0 is defined by

d(A) := lim inf
y→0+

m(A ∩ [0, y])
y

.

Note that the guided exercise E.7 from [BE] on page 216, that is used in Section 2, offers
a bounded Nikolskii-type inequality only for p ∈ [1,∞), so one is unable to refer to this to
handle the p ∈ (0, 1) case in the proof of Theorem 3.1.

We conclude the introduction by expressing the opinion shortly that this paper offers
another, arguably more elementary and more elegant approach to handle the “convergent
sum part” of the “full Müntz Theorem” in Lp(A), together with the “Clarkson-Erdős-
Schwartz phenomenon”, for all p ∈ (0,∞) and for all compact sets A ⊂ [0,∞) with
positive lower density at 0. In addition, the paper extends the Erdős-Clarkson-Schwartz
phenomenon from the case of [0, 1] discussed in [Er] to the case of a compact set A ⊂ [0,∞)
with positive lower density at 0. This is the content of Theorem 3.2.

2. The “Full Müntz Theorem” in Lp[0, 1] together with the

“Clarkson-Erdős-Schwartz phenomenon” for p ∈ [1,∞)

Our main tool in this section is from [BE] (see E.7 on page 216).

Theorem 2.2 (Bounded Nikolskii Type Inequality). Suppose p ∈ [1,∞) and (λj)∞j=1

is a sequence of distinct real numbers greater than −(1/p) . If σλ,p < ∞ , then for every
γ > 0 there is a constant cγ depending only on γ > 0 and (λj)∞j=1 such that

|x1/pQ(x)| ≤ cγ‖Q‖Lp[0,1]

for every Q ∈ span{xλ1 , xλ2 , . . .} and for every x ∈ [0, 1− γ].

Now we are ready to present our new “text book proof” of the “convergent sum part”
of the “full Müntz Theorem” in Lp[0, 1] together with the “Clarkson-Erdős-Schwartz phe-
nomenon” for p ∈ [1,∞).
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A new proof of the “convergent sum part” of Theorem 1.1 when p ∈ [1,∞). Suppose
p ∈ [1,∞) and (λj)∞j=1 is a sequence of distinct real numbers greater than −(1/p) . Let
σλ,p = ∞ . Suppose f is in the Lp[0, 1] closure of span{xλ1 , xλ2 , . . .} , that is, there are

Qn ∈ span{xλ1 , xλ2 , . . .}
such that

lim
n→∞ ‖Qn − f‖Lp[0,1] = 0 .

Then the sequence (Qn) is Cauchy in Lp[0, 1] , and by Theorem 2.2 the sequence (Sn) with

Sn(x) := x1/pQn(x) , n = 1, 2, . . . ,

is uniformly Cauchy on [0, 1− γ]. Now we can apply a linearly scaled version of Theorem
1.2 to the interval [0, 1− γ]. We obtain that

lim
n→∞ ‖Sn − g‖L∞[0,1−γ] = 0 ,

where g can be represented as an analytic function on {z ∈ C \ (−∞, 0] : |z| < 1 − γ}
restricted to (0, 1−γ) and by a well known theorem in complex analysis, called the “Normal
Family Principle” (see Theorem 14.6 in [Ru2]) we have

lim
n→∞ ‖Sn − g‖L∞(A) = 0

for any compact set A ⊂ {z ∈ C \ (−∞, 0] : |z| < 1} . Therefore Qn(z) := z−1/pSn(z)
converges uniformly on any compact set A ⊂ {z ∈ C \ (−∞, 0] : |z| < 1} , and the “new
proof” is finished by a well-known theorem of complex analysis (see Theorem 10.28 in
[Ru2]).

3. “Full Müntz Theorem” in Lp(A), together with the

“Clarkson-Erdős-Schwartz phenomenon” for all p ∈ (0,∞), and

for all compact A ⊂ [0,∞) with positive lower density at 0

Our first theorem is an extension of the main result in [Er] from the case of [0, 1] to
the case of an arbitrary compact set A ⊂ [0,∞) with positive lower density at 0. The
reasonably straightforward changes required in the proof of this extension, which can be
made by following the method of the proof in [Er] closely (see Lemma 4.1) while keeping
in mind how the “convergent sum part” of a compact set A ⊂ [0,∞) with positive lower
density at 0 was handled in [EJ] (see Lemmas 4.2, 4.3, and 4.4 in [EJ]) are worked out
carefully. The key lemma to prove Theorem 3.1 is Lemma 4.1. Based on some ideas from
[Er], [EJ], and [BE3] we give a short proof of Lemma 4.1 in Section 5. The proof of the
“convergent sum part” of Theorem 3.1 is presented in Section 5 as well. It requires no
more than a familiarity with complex analysis at an introductory level. An elementary
proof of the fact that σλ = ∞ implies the denseness of span{1, xλ1 , xλ2 , . . .} in C(A) when
A = [0, 1] may be found in both [BE2] and [BE1]. However, this fact extends easily to the
case when A ⊂ [0,∞) is an arbitrary compact set by using a linear scaling and the Tietze’s
extension theorem.

4



Theorem 3.1 (“Full Clarkson-Erdős-Schwartz Theorem” in C(A)). Let A ⊂ [0,∞)
be a compact set with positive lower density at 0. Suppose (λj)∞j=1 is a sequence of distinct
positive numbers. Then span{1, xλ1 , xλ2 , . . .} is dense in C(A) if and only if σλ = ∞ .
Moreover, if σλ < ∞ , then every function from the C(A) closure of span{1, xλ1 , xλ2 , . . .}
can be represented as an analytic function on {z ∈ C \ (−∞, 0] : |z| < rA} restricted to
A ∩ (0, rA), where

rA := sup{y ∈ R : m(A ∩ [y,∞)) > 0}
(m(·) denotes the one-dimensional Lebesgue measure).

In the paper [EJ] not only 0 < p < 1 has been allowed, but even the underlying set has
been extended in the “full Müntz Theorem”. Namely the interval [0, 1] has been replaced
by an arbitrary compact set A ⊂ [0,∞) with positive lower density at 0. In Sections 6
and 7 we give a new simple proof of the “convergent sum part” of the main result of [EJ]
below. That is, we offer a proof of the “convergent sum part” of the result below in its
complete form without using Bastero’s [Ba] extension of the Krivine-Maurey stable theory.
It is nice to see this difficult case of the full result from two quite different points of view.

Theorem 3.2 (“Full Müntz Theorem” in Lp(A) for p ∈ (0,∞) and for compact
sets A ⊂ [0,∞) with positive lower density at 0). Let A ⊂ [0,∞) be a compact
set with positive lower density at 0. Let p ∈ (0,∞). Suppose (λj)∞j=1 is a sequence of
distinct real numbers greater than −(1/p) . Then span{xλ1 , xλ2 , . . .} is dense in Lp(A) if
and only if σλ,p = ∞ . Moreover, if σλ,p < ∞ , then every function from the Lp(A) closure
of span{xλ1 , xλ2 , . . .} can be represented as an analytic function on {z ∈ C \ (−∞, 0] :
|z| < rA} restricted to A ∩ (0, rA), where

rA := sup{y ∈ R : m(A ∩ [y,∞)) > 0}

(m(·) denotes the one-dimensional Lebesgue measure).

The key lemma to prove Theorem 3.2 is Lemma 6.1. We give a short proof of Lemma
6.1 in Section 7. The proof of the “convergent sum part” of Theorem 3.2 is presented in
Section 7 as well. Similarly to the proof of the “convergent sum part” of Theorem 3.1 it
requires no more than a familiarity with complex analysis at an introductory level. An
elementary proof of the fact that σλ,p = ∞ implies the denseness of span{xλ1 , xλ2 , . . .} in
Lp(A) may be found in [EJ].

4. Lemmas to Theorem 3.1

The proof of the “convergent sum part” in Theorem 3.2 follows from Lemmas 4.1, 4.2,
and 4.3 below. The proof of Lemma 4.1 can be given by a simple modification of a key
observation in [Er], by replacing the interval [0, 1] by an arbitrary compact set A with
positive lower density at 0. This will be done in Section 5. For the sake of brevity we will
use the notation

‖f‖A = sup
x∈A

|f(x)|

for real-valued functions f defined on a set A.
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Lemma 4.1. Let A ⊂ [0,∞) be a compact set with positive lower density at 0. Suppose
(λj)∞j=1 is a sequence of distinct positive numbers satisfying σλ < ∞ . Suppose that the
positive numbers βj, γj, and δj are distinct and satisfy

{λj : j = 1, 2, . . .} = {βj : j = 1, 2, . . .} ∪ {γj : j = 1, 2, . . .} ∪ {δj : j = 1, 2, . . . , k} ,

where (βj)∞j=1 is decreasing, (γj)∞j=1 and (δj)k
j=1 are increasing, γ1 ≥ 1, and

∞∑
j=1

βj ≤ η and

∞∑
j=1

1/γj < ∞ .

Let
Hβ := span{xβ1 , xβ2 , . . .} , Hγ := span{1, xγ1 , xγ2, . . . } ,

and
Hδ := span{xδ1 , xδ2 , . . . , xδk} .

Suppose Q ∈ Hβ + Hγ is written as Q = Qβ + Qγ with some Qβ ∈ Hβ and Qγ ∈ Hγ.
Suppose η > 0 is sufficiently small. Then there are constants Cβ and Cγ depending only
on on Hβ and Hγ, respectively, so that

(4.1) ‖Qβ‖A ≤ Cβ‖Q‖A

and

(4.2) ‖Qγ‖A ≤ Cγ‖Q‖A

for every Q ∈ Hβ + Hγ.

To prove Lemma 4.1 one can follow the method used in [Er] to prove the weaker state-
ment in the case A := [0, 1], and replace the interval [0, 1] by an arbitrary compact set
A ⊂ [0,∞) with positive lower density at 0. To record a proof of Theorem 4.1, one can
modify the arguments in [Er]. This can be done simply with the help of Lemmas 4.2 - 4.5
below.

The proof of the next lemma is similar to that of Corollary 2.8 in [EJ]. It is a straightfor-
ward combination of the Mean Value Theorem and D. J. Newman’s Markov-type inequality
formulated in Theorem 2.6 of [EJ] (see also [BE1, Theorem 6.1.1 on page 276] or [Ne]).
Newman’s result is formulated by Lemma 4.5 of this section.

Lemma 4.2. Let p ∈ (0,∞) . Let B ⊂ [0, b] be a measurable set satisfying

m(B ∩ [0, β]) ≥ δβ

for every β ∈ [0, b] with some δ ∈ (0, 1]. Let β1, β2, . . . , βn be distinct positive real numbers.
Suppose that

n∑
j=1

βj =: η ≤ δ

18
.
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Then
‖Q‖[0,b] ≤ 2δ−1‖Q‖B ,

and hence
‖Q‖K ≤ c1(K, b, δ)‖Q‖B

for every Q ∈ span{xβ1 , xβ2 , . . . , xβn} and for every compact set K ⊂ C \ {0} , where the
constant c1(K, b, δ) depends only on K, b, and δ.

Proof of Lemma 4.2. Let Q ∈ span{xβ1 , xβ2 , . . . , xβn}. Without loss of generality we may
assume that Q is not identically 0. Choose a value β ∈ [0, b] such that

|Q(β)| = M := ‖Q‖[0,b] .

Note that Q(0) = 0 and Q is not identically 0, we have β > 0. Then the set [δβ/2, β]∩B is
not empty. Choose a point γ ∈ [δβ/2, β] ∩B. Then, combining the Mean Value Theorem
and D. J. Newman’s Markov-type inequality formulated in Lemma 4.5, we obtain

M − |Q(γ)| ≤ |Q(β)−Q(γ)| ≤ (β − γ)‖Q′‖[γ,β]

≤ (β − γ)‖Q′‖[δβ/2,b] ≤ (1− δ/2)β
9η

δβ/2
M

≤ (1− δ/2)β
δ/2
δβ/2

M ≤ (1− δ/2)M ,

that is, |Q(γ)| ≥ (δ/2)M , and hence

‖Q‖[0,b] ≤ 2δ−1‖Q‖B .

The second statement of the Lemma can be obtained as follows. Using a linear scaling if
it is necessary, we may assume that b = 1. Repeated applications of Lemma 4.5 with the
substitution x = e−t imply that

‖(Q(e−t))(m)‖[0,∞) ≤ (9η)m‖Q(e−t)‖[0,∞) , m = 1, 2, . . . ,

in particular

|Q(e−t))(m)(0)| ≤ (9η)m‖Q(e−t)‖[0,∞) , m = 1, 2, . . . ,

for every Q ∈ span{xλ1 , xλ2 , . . .} . By using the Taylor series expansion of Q(e−t) around
0, we obtain that

|Q(z)| ≤ c2(K, δ)‖Q‖[0,1] , z ∈ K ,

for every Q ∈ span{xβ1 , xβ2 , . . .} and for every compact K ⊂ C \{0}, where, recalling that
9η ≤ δ/2, we have

c2(K, δ) :=
∞∑

m=0

(δ/2)m
(

maxz∈K |log z|
)m

m!
= exp

(
(δ/2) max

z∈K
| log z|

)
is a constant depending only on K and δ. �

The next lemma is the key result in [BE3] (see Theorem 6.1 there). It gives a a Clarkson-
Erdős-Schwartz type result for Müntz spaces span{1, xγ1 , xγ2 , . . .} on sets A ⊂ [0,∞) of
positive Lebesgue measure when the exponents γj are positive and satisfy

∑∞
j=1 1/γj < ∞.
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Lemma 4.3. Suppose
∑∞

j=1 1/γj < ∞ and A ⊂ [0,∞) is a set of positive Lebesgue
measure. Then span{1, xγ1 , xγ2 , . . .} is not dense in C(A). Moreover, if the gap condition

(4.3) inf{γj+1 − γj : j ∈ N} > 0

holds, then every function f ∈ C(A) from the uniform closure of span{1, xγ1 , xγ2 , . . .} on
A is of the form

f(x) =
∞∑

j=0

ajx
γj , x ∈ A ∩ [0, rA) ,

where
rA := sup{x ∈ [0,∞) : m(A ∩ (x,∞)) > 0}

is the essential supremum of A.
If the gap condition (4.3) does not hold, then every function f ∈ C(A) from the uniform

closure of span{1, xγ1, xγ2 , . . .} on A can still be extended analytically throughout the region

{z ∈ C \ (−∞, 0] : |z| < rA} .

In the proof of Lemma 4.1 we also need the following well known fact the proof of which
is pretty standard (see Theorem 1.42 in [Ru1], in fact the result is true for any topological
vector space).

Lemma 4.4. Let p ∈ (0,∞) and suppose A ⊂ R is a compact set. Let X denote either
Lp(A) or C(A). Let U ⊂ X be a closed linear subspace and let V ⊂ X be a finite
dimensional (hence closed) linear subspace. Then U + V is closed in X.

The following Markov-type inequality for Müntz polynomials is due to Newman [BE1,
Theorem 6.1.1 on page 276] (see also [Ne]). It is used in the proof of Lemma 4.2.

Lemma 4.5. Suppose that β1, β2, . . . , βn are distinct nonnegative numbers. Then

‖xQ′(x)‖[0,1] ≤ 9


 n∑

j=1

βj


 ‖Q‖[0,1]

for every Q ∈ span{xβ1 , xβ2 , . . . , xβn} .

The bounded Bernstein-type inequality below (see the guided exercise E.5 b] on page
182 of [BE1]) for certain Müntz spaces on [0, 1] is needed in the proof of Lemma 4.1 as
well.

Lemma 4.6. Suppose Γ := (γj)∞j=1 is a sequence of distinct positive numbers satisfying
γ1 ≥ 1 and

∑∞
j=1 1/γj < ∞ . Then

‖Q′‖[0,x] ≤ c3(Γ, x)‖Q‖[0,1]

for every Q ∈ span{1, xγ1, xγ2 , . . . } and for every x ∈ [0, 1), where c3(Γ, x) depends only
on Γ and x.

The following bounded Remez-type inequality due to P. Borwein and Erdélyi [BE3] is
also an important ingredient of the proof of Lemma 4.1. In the proof of Theorem 3.1 it
can be exploited similarly to the treatment of the case A := [0, 1] in [Er].
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Lemma 4.7. Suppose (γj)∞j=1 is a sequence of distinct positive numbers satisfying

∞∑
j=1

1/γj < ∞ .

Let s > 0. Then there exists a constant c4(Γ, s) depending only on Γ := (γj)∞j=1 and s (and
not on % , B , or the number of terms in Q) so that

‖Q‖[0,%] ≤ c4(Γ, s) ‖Q‖B

for every Q ∈ span{1, xγ1 , xγ2 , . . .} and for every set B ⊂ [%, 1] of Lebesgue measure at
least s .

5. Proof of Lemma 4.1 and Theorem 3.2

Proof of Lemma 4.1. Without loss of generality we may assume that

1 = rA := sup{y ∈ R : m(A ∩ [y,∞)) > 0} .

It is sufficient to prove only (4.1); (4.2) follows from (4.1).
Suppose to the contrary that inequality (4.1) fails for a sufficiently small η > 0 (we will

tell later in the proof how small η should be to get a contradiction). Then there are Müntz
polynomials Qβ,n ∈ Hβ and Qγ,n ∈ Hγ so that

(5.1) ‖Qβ,n‖A = 1 , lim
n→∞ ‖Qγ,n‖A = 1 ,

and

(5.2) lim
n→∞ ‖Qβ,n + Qγ,n‖A = 0 .

Choose a number α > 0 so that the set [α, 1−α]∩A has a positive measure s depending only
on A. Let η > 0 be sufficiently small. Then by Lemmas 4.2 and 4.5 {Qβ,n : n = 1, 2, . . .}
is a family of bounded, equi-continuous functions on [α, 1], while by Lemmas 4.7 and 4.6
{Qγ,n : n = 1, 2, . . .} is a family of bounded, equi-continuous functions on [0, 1−α]. So by
the Arzela-Ascoli Theorem there are a subsequence of (Qβ,n) (without loss of generality
we may assume that this is (Qβ,n) itself) and a subsequence of (Qγ,n) (without loss of
generality we may assume that this is (Qγ,n) itself) so that

(5.3) lim
n→∞ ‖Qβ,n − f‖[α,1] = 0

and

(5.4) lim
n→∞ ‖Qγ,n − g‖[0,1−α] = 0
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with some continuous functions f on [α, 1] and g on [0, 1− α]. By (5.2), (5.3), and (5.4)
we have f = −g on [α, 1− α] ∩ A, so the function

(5.5) h(x) :=

{
f(x) ,

−g(x) ,

x ∈ [α, 1] ∩A

x ∈ [0, 1− α] ∩A

is well-defined on A. By (5.2) – (5.5) we can deduce that

(5.6) lim
n→∞ ‖Qβ,n − h‖A = 0

and

(5.7) lim
n→∞ ‖ −Qγ,n − h‖A = 0 .

Let η ∈ (0, δ/18), where

0 < δ := inf
y∈(0,1]

m(A ∩ [0, y])
y

.

Using (5.1), (5.6), Lemma 4.5,
∑∞

j=1 βj ≤ η, Lemma 4.2, and (5.7), we can deduce that

|h(x)− h(1)| ≤ 18η‖h‖[0,1] ≤ 18η2δ−1‖h‖A = 36ηδ−1 , x ∈ [1/2, 1] ∩ A .

Note that (5.1), (5.5), and (5.6) imply that ‖h‖A = 1 and h(0) = 0. Now observe that the
function h− h(1) is in the uniform closure of

Hγ = span{1, xγ1 , xγ2 , . . .}

on A, hence Lemma 4.7 implies with s := c5(A) := m([1/2, 1] ∩A) that

‖h− h(1)‖A ≤ c4(Γ, s) ‖h− h(1)‖[1/2,1]∩A ≤ c4(Γ, c5(A)) 36ηδ−1 < 1/2

whenever η is sufficiently small (more precisely whenever, in addition to η ∈ (0, δ/18), we
have

η <
δ

72c4(Γ, c5(A))
.

This contradicts the facts that h(0) = 0 and ‖h‖A = 1 (note that ‖h − h(1)‖A < 1/2
implies that h(x) ∈ (h(1)− 1/2, h(1) + 1/2) for every x ∈ A, and 0 ∈ A). Hence the proof
of (4.1) is finished for all sufficiently small η > 0..

Proof of Theorem 3.1. An elementary proof of the fact that σλ = ∞ implies the denseness
of span{1, xλ1 , xλ2 , . . .} in C(A) when A = [0, 1] may be found in both [BE2] and [BE1].
However, this fact extends easily to the case when A ⊂ [0,∞) is an arbitrary compact
set by using a linear scaling and the Tietze’s extension theorem. To extend the full result
from the interval [0, 1] to an arbitrary compact set A ⊂ [0,∞) with positive lower density
at 0, here we consider the case when σλ = ∞ . To handle this case, suppose (λj)∞j=1 is a
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sequence of distinct positive numbers satisfying σλ < ∞ . Then there are positive numbers
η, βj , γj , and δj such that

{λj : j = 1, 2, . . .} = {βj : j = 1, 2, . . .} ∪ {γj : j = 1, 2, . . .} ∪ {δj : j = 1, 2, . . . , k} ,

where γ1 ≥ 1, (βj)∞j=1 is decreasing, (γj)∞j=1 and (δj)k
j=1 are increasing, and

∞∑
j=1

βj ≤ η ,

∞∑
j=1

1/γj < ∞ ,

and η > 0 is as small as in Lemma 4.1. Without loss of generality we may assume that

1 = rA := sup{y ∈ R : m(A ∩ [y,∞)) > 0} .

Let H denote the uniform closure of a subspace H ⊂ C(A). Using the notation introduced
in Lemma 4.1, we want to prove that restricted to A we have Hβ + Hγ + Hδ ⊂ A, where
A ⊂ C(A) denotes the collection of functions f ∈ C(A), which can be represented as
an analytic function on {z ∈ C \ (−∞, 0] : |z| < rA} restricted to A. Since Hδ is finite
dimensional, Lemma 4.4 implies that

Hβ + Hγ + Hδ ⊂ Hβ + Hγ + Hδ ,

so it is sufficient to prove that

(5.8) Hβ + Hγ ⊂ A .

However, (4.1) and (4.2) imply that

Hβ + Hγ ⊂ Hβ + Hγ ,

where Hβ ⊂ A by Lemma 4.2 and Hγ ⊂ A by Lemma 4.3. Hence (5.8) holds, indeed, and
the proof of the theorem is finished. �

6. Lemmas to Theorem 3.2

The proof of the “convergent sum part” in Theorem 3.1 follows from Lemmas 6.1, 6.2,
and 6.3 below. The proof of Lemma 6.1 can be given by a simple modification of the
method used in the proof of Lemma 4.1. This will be done in Section 7.

Lemma 6.1. Let p ∈ (0,∞). Let A ⊂ [0,∞) be a compact set with positive lower density
at 0. Suppose (λj)∞j=1 is a sequence of distinct numbers greater than −1/p satisfying
σλ,p < ∞ . Suppose that the positive numbers βj, γj, and δj are distinct and satisfy

{λj : j = 1, 2, . . .} = {βj : j = 1, 2, . . .} ∪ {γj : j = 1, 2, . . .} ∪ {δj : j = 1, 2, . . . , k} ,
11



where (βj)∞j=1 is decreasing, (γj)∞j=1 and (δj)k
j=1 are increasing, γ1 ≥ 1, and

∞∑
j=1

(βj + (1/p)) ≤ η and

∞∑
j=1

1/γj < ∞ .

Let
Hβ := span{xβ1 , xβ2 , . . .} , Hγ := span{1, xγ1 , xγ2, . . . } ,

and
Hδ := span{xδ1 , xδ2 , . . . , xδk} .

Suppose Q ∈ Hβ + Hγ is written as Q = Qβ + Qγ with some Qβ ∈ Hβ and Qγ ∈ Hγ.
Suppose η > 0 is sufficiently small. Then there are constans Cβ and Cγ depending only on
Hβ and Hγ, respectively, so that

(6.1) ‖Qβ‖Lp(A) ≤ Cβ‖Q‖Lp(A)

and

(6.2) ‖Qγ‖Lp(A) ≤ Cγ‖Q‖Lp(A)

for every Q ∈ Hβ + Hγ.

To prove Lemma 6.1 we need to combine the bounded Nikolskii-type inequality below
with Lemmas 4.3, 4.4, and 4.5.

Lemma 6.2. Let p ∈ (0,∞) . Let B ⊂ [0, b] be a measurable set satisfying m(B ∩ [0, y]) ≥
δy for every y ∈ [0, b]. Let β1, β2, . . . , βn be distinct real numbers greater than −(1/p) .
Suppose that

n∑
j=1

(βj + (1/p)) =: η ≤ δb/36 ,

where δ ∈ (0, 1]. Then

‖x1/pQ(x)‖L∞[0,b] ≤
(

2p+1

δb

)1/p

‖Q‖Lp(B) ,

and hence
max
z∈K

|Q(z)| ≤ c6(K, p, b, δ)‖Q‖Lp(B)

for every Q ∈ span{xβ1 , xβ2 , . . . , xβn} and for every compact K ⊂ C \ {0} , where the
constant c6(K, p, b, δ) depends only on K, p, b, and δ.

Lemma 6.2 is borrowed from [EJ], see Lemma 2.8 there. For the sake of completeness
we present its short proof here as well.
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Proof of Lemma 6.2. The proof of the lemma is easy. By using a linear scaling if necessary,
without loss of generality we may assume that b = 1. Let Q ∈ span{xβ1 , xβ2 , . . . , xβn} ,
and pick a point y ∈ (0, 1] for which

|y1/pQ(y)| = max
t∈[0,1]

|t1/pQ(t)| .

Then using the Mean Value Theorem and applying Lemma 4.5 to

x1/pQ(x) ∈ span{xβ1+(1/p), xβ2+(1/p), . . . , xβn+(1/p)} ,

we obtain for x ∈ [(δ/2)y, y] that

(
max

t∈[0,1]
|t1/pQ(t)|

)
− |x1/pQ(x)| ≤ |y1/pQ(y)| − |x1/pQ(x)|

≤ |y1/pQ(y)− x1/pQ(x)| ≤ (y − x) max
t∈[x,y]

|(t1/pQ(t))′|

≤ y
1
x

max
t∈[x,y]

|t(t1/pQ(t))′| ≤ 2
δ

x
9η

x
max
t∈[0,1]

|t1/pQ(t)|

≤ 18η

δ
max
t∈[0,1]

|t1/pQ(t)| ≤ 1
2

max
t∈[0,1]

|t1/pQ(t)| .

Hence, for x ∈ [(δ/2)y, y] we have

|x1/pQ(x)| ≥ 1
2

max
t∈[0,1]

|t1/pQ(t)| .

Using the assumption on the set B, we conclude that

m(B ∩ [(δ/2)y, y]) ≥ δy − (δ/2)y = (δ/2)y

and hence

‖Q‖p
Lp(B) =

∫
B

|Q(t)|p dt ≥
∫

B∩[(δ/2)y,y]

|Q(t)|p dt

≥ (δ/2)y2−p
(
y−(1/p)

)p
(

max
t∈[0,1]

|t1/pQ(t)|
)p

≥ (δ/2)2−p

(
max
t∈[0,1]

|t1/pQ(t)|
)p

This finishes the proof of the first inequality of the lemma when b = 1. As we have already
remarked, the case of an arbitrary b > 0 follows by a linear scaling. The second inequality
of the lemma follows from the first one combined with Lemma 4.2. �
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7. Proof of Lemma 6.1 and Theorem 3.2

Proof of Lemma 6.1. Without loss of generality we may assume that

1 = rA := sup{y ∈ R : m(A ∩ [y,∞)) > 0} .

It is sufficient to prove only (6.1); (6.2) follows from (6.1). Suppose to the contrary that
inequality (6.1) fails for a sufficiently small η > 0. Then there are Müntz polynomials
Qβ,n ∈ Hβ and Qγ,n ∈ Hγ so that

(7.1) ‖Qβ,n‖Lp(A) = 1 , lim
n→∞ ‖Qγ,n‖Lp(A) = 1 ,

and

(7.2) lim
n→∞ ‖Qβ,n + Qγ,n‖Lp(A) = 0 .

Choose a number α > 0 so that the set [α, 1 − α] ∩ A has a positive measure depending
only on A. Let η > 0 be sufficiently small. Then by Lemmas 6.2 and 4.5

{Sβ,n(x) := x1/pQβ,n(x) : n = 1, 2, . . .}
is a family of bounded, equi-continuous functions on [α, 1], while by Lemmas 4.7 and 4.6
{Qγ,n : n = 1, 2, . . .} is a family of bounded, equi-continuous functions on [0, 1− α] (note
that (7.1) ensures that there are measurable sets Bn ⊂ [1 − α/2, 1] ∩ A with M(Bn) ≥
1
2m([1− α/2, 1] ∩A) such that

‖Qγ,n‖Bn
≤

(
1
2
m([1− α/2, 1] ∩ A)

)−1/p

‖Qγ,n‖Lp(A)

≤
(

1
2
m([1− α/2, 1] ∩ A)

)−1/p

sup
k
‖Qγ,k‖Lp(A) < ∞ ,

hence by Lemma 4.7, we have supn ‖Qγ,n‖[0,1−α/2] < ∞). So by the Arzela-Ascoli Theorem
there are a subsequence of (Qβ,n) (without loss of generality we may assume that this is
(Qβ,n) itself) and a subsequence of (Qγ,n) (without loss of generality we may assume that
this is (Qγ,n) itself) so that

(7.3) lim
n→∞ ‖Qβ,n − f‖[α,1] = 0

and

(7.4) lim
n→∞ ‖Qγ,n − g‖[0,1−α] = 0

with some continuous functions f on [α, 1] and g on [0, 1− α]. By (7.2), (7.3), and (7.4)
we have f = −g on [α, 1− α] ∩ A, so the function

(7.5) h(x) :=

{
f(x) ,

−g(x) ,

x ∈ [α, 1] ∩ A ,

x ∈ [0, 1− α] ∩ A ,
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is well-defined on A. By (7.2) – (7.5) we can deduce that

(7.6) lim
n→∞ ‖Qβ,n − h‖Lp(A) = 0

and

(7.7) lim
n→∞ ‖ −Qγ,n − h‖Lp(A) = 0 .

Together with (7.1) either (7.6) or (7.7) shows that

(7.8) ‖h‖Lp(A) = 1 .

Let H(x) := x1/ph(x). We claim that

(7.9) ‖H‖A ≥ c7(Γ, α, A, p) > 0 .

Indeed, we have

(7.10) ‖h‖[α,1]∩A ≤ α−1/p‖H‖A .

Also, using (7.4), (7.5), m([α, 1− α] ∩ A) > 0, and Lemma 4.7, we deduce that

‖h‖[0,α]∩A ≤ c8(Γ, α, A)‖h‖[α,1−α]∩A ≤ c8(Γ, α, A)α−1/p‖H‖A

with a constant c8(Γ, α, A) ≥ 1 depending only on Γ, α, and A. This, together with (7.10)
gives

(7.11) ‖h‖A ≤ c8(Γ, α, A)α−1/p‖H‖A .

As a consequence of (7.8) we have

m(A)−1/p = m(A)−1/p‖h‖Lp(A) ≤ ‖h‖A ,

which, together with (7.11), yields (7.9). Let η ∈ (0, δ/36), where

0 < δ := inf
y∈(0,1]

m(A ∩ [0, y])
y

.

Observe that Lemma 6.2 and (7.6) imply that the sequence (Sβ,n) with

(7.12) Sβ,n(x) := x1/pQβ,n(x) , n = 1, 2, . . . ,

is uniformly Cauchy on [0, 1], and by (7.6) it has a subsequence that converges to H almost
everywhere on A. This together with Lemma 6.2 yields that H has a unique continuous
extension from A to [0, 1] (denote this extension by H as well) for which

(7.13) lim
n→∞ ‖Sβ,n −H‖[0,1] = 0 .

15



Using (7.1), Lemma 6.2, (7.12), and (7.13), we obtain

(7.14) ‖H‖[0,1] ≤
(

2p+1

δ

)1/p

= c9(A, p)

with a constant c9(A, p) depending only on A and p. Applying (7.12), (7.13), Lemma 4.5,∑∞
j=1 (βj + (1/p)) ≤ η, and (7.14), we can deduce that

H(x)−H(1) ≤ 18η‖H‖[0,1] ≤ c10(A, p)η , x ∈ [1/2, 1] ∩ A ,

with a constant c10(A, p) depending only on A and p. Note that since each βj is greater
than −1/p, (7.13) implies that H(0) = 0. Since the sequence (Sγ,n) with

Sγ,n(x) := x1/pQγ,n(x)−H(1)

converges to H(x) − H(1) in Lp(A) , it has a subsequence (without loss of generality we
may assume that it is the sequence (Sγ,n) itself) that converges almost everywhere on
A. Therefore by Yegoroff’s Theorem, for every % ∈ (0, 1), the sequence (Sγ,n) converges
uniformly on a compact set B% ⊂ [%, 1] ∩ A of a positive measure s% depending only on %
and A. Hence by Lemma 4.7 the sequence (Sγ,n) converges to H(x)−H(1) uniformly on
[0, %] and

‖H −H(1)‖[0,1/2] ≤ c11(Γ, A, p)‖H −H(1)‖[1/2,1]∩A

with a constant c11(Γ, A, p) ≥ 1 depending only on Γ, A and p. We conclude that

‖H −H(1)‖A ≤ c11(Γ, A, p) ‖H −H(1)‖[1/2,1]∩A ≤ c11(Γ, A, p)c10(A, p) η

< (1/2)c7(Γ, α, A, p)

whenever η ∈ (0, δ/36) is sufficiently small (more precisely whenever in addition to η ∈
(0, δ/36) we have

η <
c7(Γ, α, A, p)

2c11(Γ, A, p)c10(A, p)
.

Therefore

H(x) ∈ (
H(1)− 1

2
c7(Γ, α, A, p), H(1) + 1

2
c7(Γ, α, A, p)

)
, x ∈ A .

Since 0 ∈ A and H(0) = 0, this contradicts (7.9). ‖H‖A ≥ c7(Γ, α, A, p). Hence the proof
of (6.1) is finished for all sufficiently small η > 0. �

Proof of Theorem 3.2. An elementary proof of the fact that σλ,p = ∞ implies the denseness
of span{xλ1 , xλ2 , . . .} in Lp(A) may be found in [EJ]. Suppose now that σλ,p < ∞ . To
handle this case, suppose (λj)∞j=1 is a sequence of distinct numbers greater than −1/p
satisfying σλ,p < ∞ . Then there are positive numbers η, βj , γj, and δj such that

{λj : j = 1, 2, . . .} = {βj : j = 1, 2, . . .} ∪ {γj : j = 1, 2, . . .} ∪ {δj : j = 1, 2, . . . , k} ,
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where γ1 ≥ 1, (βj)∞j=1 is decreasing, (γj)∞j=1 and (δj)k
j=1 are increasing, and

∞∑
j=1

(βj + (1/p)) ≤ η ,
∞∑

j=1

1/γj < ∞ ,

and η > 0 is as small as in Lemma 7.1. Without loss of generality we may assume that

1 = rA := sup{y ∈ R : m(A ∩ [y,∞)) > 0} .

Let H denote the uniform closure of a subspace H ⊂ Lp(A). Using the notation introduced
in Lemma 6.1, we want to prove that restricted to A we have Hβ + Hγ + Hδ ⊂ A, where
A ⊂ Lp(A) denotes the collection of functions f ∈ Lp(A), which can be represented as
an analytic function on {z ∈ C \ (−∞, 0] : |z| < rA} restricted to A. Since Hδ is finite
dimensional, Lemma 4.4 implies that

Hβ + Hγ + Hδ ⊂ Hβ + Hγ + Hδ ,

so it is sufficient to prove that
Hβ + Hγ ⊂ A .

However, (6.1) and (6.2) imply that

Hβ + Hγ ⊂ Hβ + Hγ ,

where Hβ ⊂ A by Lemma 6.2. The fact that Hγ ⊂ A can be seen as follows. Suppose
that Qn,γ ∈ Hγ converges in Lp(A). Let % ∈ (0, 1). Then there is a subsequence of
(Qn,γ) (without loss of generality we may assume that this is (Qn,γ) itself) that converges
on [%, 1] ∩ A almost everywhere. Then by Yegoroff’s Theorem, it converges uniformly on
a compact set B ⊂ [%, 1] ∩ A with positive Lebesgue measure. Then, by Lemma 4.7 it
converges uniformly on [0, %], hence by Lemma 4.3 the limit function can be extended
analytically throughout

{z ∈ C \ (−∞, 0] : |z| < %} .

Since % ∈ (0, 1) is arbitrary and rA = 1 the proof is finished. �
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