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Abstract. Let Vn be a vectorspace of complex-valued functions defined on R of dimension

n + 1 over C. We say that Vn is shift invariant (on R) if f ∈ Vn implies that fa ∈ Vn for
every a ∈ R, where fa(x) := f(x− a) on R. In this note we prove the following.

Theorem. Let Vn ⊂ C[a, b] be a shift invariant vectorspace of complex-valued functions

defined on R of dimension n+ 1 over C. Let p ∈ (0, 2]. Then

‖f‖L∞[a+δ,b−δ] ≤ 22/p
2

(

n+ 1

δ

)1/p

‖f‖Lp[a,b]

for every f ∈ Vn and δ ∈
(

0, 1
2
(b− a)

)

.

1. Introduction

The well known results of Nikolskii assert that the essentially sharp inequality

‖hn‖Lq[−1,1] ≤ c(p, q)n2/p−2/q‖hn‖Lp[−1,1]

holds for all algebraic polynomials hn of degree at most n with complex coefficients and
for all 0 < p < q ≤ ∞, while the essentially sharp inequality

‖tn‖Lq[−π,π] ≤ c(p, q)n1/p−1/q‖tn‖Lp[−π,π]

holds for all trigonometric polynomials tn of degree at most n with complex coefficients
and for all 0 < p < q ≤ ∞. The subject started with two famous papers [5] and [6]. There
are quite a few related papers in the literature. A recent one, for example, is [3].

Let Vn be a vectorspace of complex-valued functions defined on R of dimension n + 1
over C. We say that Vn is shift invariant (on R) if f ∈ Vn implies that fa ∈ Vn for every
a ∈ R, where fa(x) := f(x − a) on R. Let Λn := {λ0, λ1, . . . , λn} be a set of distinct
COMPLEX numbers. The collection of all linear combinations of eλ0t, eλ1t, . . . , eλnt over
C will be denoted by

E(Λn) := span{eλ0t, eλ1t, . . . , eλnt} .
Elements of E(Λn) are called exponential sums of n+1 terms. Examples of shift invariant
spaces of dimension n + 1 include E(Λn). In a recent paper [4] the following essentially
sharp Nikolskii-type inequality is proved.
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Theorem A. Suppose Λn := {λ0, λ1, . . . , λn} is a set of distinct real numbers, a, b ∈ R,

a < b, and 0 < p ≤ q ≤ ∞. There are constants c1 = c1(p, q, a, b) > 0 and c2 =
c2(p, q, a, b) > 0 depending only on p, q, a, and b such that

c1


n2 +

n∑

j=0

|λj |




1

p
− 1

q

≤ sup
0 6=P∈E(Λn)

‖P‖Lq[a,b]

‖P‖Lp[a,b]
≤ c2


n2 +

n∑

j=0

|λj |




1

p
− 1

q

.

Using the L∞ norm on a fixed subinterval [a+ δ, b− δ] ⊂ [a, b] in the numerator in the
above theorem, we proved the following essentially sharp result in [2].

Theorem B. If Λn := {λ0, λ1, . . . , λn} is a set of distinct real numbers, then the inequality

‖f‖L∞[a+δ,b−δ] ≤ e81/p
(
n+ 1

δ

)1/p

‖f‖Lp[a,b]

holds for every f ∈ E(Λn), p > 0, and δ ∈
(
0, 1

2
(b− a)

)
.

Having real exponents λj in the above theorems is essential in the proof using some
Descartes system methods. In this note we prove an analogous result for complex exponents
λj , in which case Descartes system methods cannot help us in the proof.

2. New Result

Theorem. Let Vn ⊂ C[a, b] be a shift invariant vectorspace of complex-valued functions

defined on R of dimension n+ 1 over C. Let p ∈ (0, 2]. Then

‖f‖L∞[a+δ,b−δ] ≤ 22/p
2

(
n+ 1

δ

)1/p

‖f‖Lp[a,b]

for every f ∈ Vn and δ ∈
(
0, 12 (b− a)

)
.

Problem. Is it possible to extend a version of the theorem for ALL p > 0?

Proof. Since Vn is shift invariant, it is sufficient to prove only that

|f(0)| ≤ 22/p
2−1/p(n+ 1)1/p‖f‖Lp[−2,2]

for every f ∈ Vn. Take an orthonormal basis (Lk)
n
k=0 on [−1

2 ,
1
2 ] so that

(1) Lk ∈ Vn , k = 0, 1, . . . , n ,

and

(2)

∫ 1/2

−1/2

Lj(x)Lk(x) dx = δj,k , 0 ≤ j ≤ k ≤ n ,
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where δj.k is the Kronecker symbol. On writing f ∈ Vn as a linear combination of
L0, L1, . . . Ln, and using the Cauchy-Schwarz inequality and the orthonormality of (Lk)

n
k=0

on [−1
2 ,

1
2 ], we obtain in a standard fashion that

max
0 6=f∈Vn

|f(t0)|
‖f‖L2[−1/2,1/2]

=

(
n∑

k=0

|Lk(t0)|2
)1/2

, t0 ∈ R .

Since ∫ 1/2

−1/2

n∑

k=0

|Lk(x)|2 dx = n+ 1 ,

there exists a t0 ∈ [−1
2 ,

1
2 ] such that

max
0 6=f∈Vn

|f(t0)|
‖f‖L2[−1/2,1/2]

=

(
n∑

k=0

|Lk(t0)|2
)1/2

≤
√
n+ 1 .

Observe that if f ∈ Vn, then g defined by g(t) := f(t− t0) is also in Vn, so

(3) max
0 6=f∈Vn

|f(0)|
‖f‖L2[−1,1]

≤
√
n+ 1 .

We introduce
Ṽn := {g : g(t) = f(λt) , f ∈ Vn , λ ∈ [−2, 2]} .

It follows from (3) that

max
0 6=f∈Ṽn

|f(0)|
‖f‖L2[−1,1]

≤
√
n+ 1 .

Let

C := max
0 6=f∈Ṽn

|f(0)|
‖f‖Lp[−2,2]

.

Let 0 6= f ∈ Ṽn. We define g ∈ Ṽn by g(t) = f(t/2 + y). Then

|f(y)|
‖f‖Lp[−2,2]

≤ |f(y)|
‖f‖Lp[y−1,y+1]

≤ |g(0)|
‖g‖Lp[−2,2]

21/p ≤ 21/pC , y ∈ [−1, 1] .

Hence

max
0 6=f∈Ṽn

|f(y)|
‖f‖Lp[−2,2]

≤ 21/pC , y ∈ [−1, 1] .

Therefore, for every f ∈ Ṽn,

|f(0)| ≤
√
n+ 1 ‖f‖L2[−1,1]

≤
√
n+ 1

(
‖f‖pLp[−1,1]‖f‖

2−p
L∞[−1,1]

)1/2

≤
√
n+ 1

(
‖f‖pLp[−1,1]

(
21/pC

)2−p

‖f‖2−p
Lp[−2,2]

)1/2

≤
√
n+ 1

(
21/pC

)1−p/2

‖f‖Lp[−2,2]

≤ 21/p−1/2
√
n+ 1C1−p/2‖f‖Lp[−2,2] .
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Hence

C = max
0 6=f∈Ṽn

|f(0)|
‖f‖Lp[−2,2]

≤ 21/p−1/2
√
n+ 1C1−p/2

and we conclude that
C ≤ 22/p

2−1/p(n+ 1)1/p .

So
|f(0)| ≤ 22/p

2−1/p(n+ 1)1/p‖f‖Lp[−2,2]

for every f ∈ Ṽn, and the result follows. �
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