NIKOLSKII-TYPE INEQUALITIES FOR SHIFT INVARIANT FUNCTION SPACES

Peter Borwein and Tamás Erdélyi

Abstract

Let V_{n} be a vectorspace of complex-valued functions defined on \mathbb{R} of dimension $n+1$ over \mathbb{C}. We say that V_{n} is shift invariant (on \mathbb{R}) if $f \in V_{n}$ implies that $f_{a} \in V_{n}$ for every $a \in \mathbb{R}$, where $f_{a}(x):=f(x-a)$ on \mathbb{R}. In this note we prove the following.

Theorem. Let $V_{n} \subset C[a, b]$ be a shift invariant vectorspace of complex-valued functions defined on \mathbb{R} of dimension $n+1$ over \mathbb{C}. Let $p \in(0,2]$. Then

$$
\|f\|_{L_{\infty}[a+\delta, b-\delta]} \leq 2^{2 / p^{2}}\left(\frac{n+1}{\delta}\right)^{1 / p}\|f\|_{L_{p}[a, b]}
$$

for every $f \in V_{n}$ and $\delta \in\left(0, \frac{1}{2}(b-a)\right)$.

1. Introduction

The well known results of Nikolskii assert that the essentially sharp inequality

$$
\left\|h_{n}\right\|_{L_{q}[-1,1]} \leq c(p, q) n^{2 / p-2 / q}\left\|h_{n}\right\|_{L_{p}[-1,1]}
$$

holds for all algebraic polynomials h_{n} of degree at most n with complex coefficients and for all $0<p<q \leq \infty$, while the essentially sharp inequality

$$
\left\|t_{n}\right\|_{L_{q}[-\pi, \pi]} \leq c(p, q) n^{1 / p-1 / q}\left\|t_{n}\right\|_{L_{p}[-\pi, \pi]}
$$

holds for all trigonometric polynomials t_{n} of degree at most n with complex coefficients and for all $0<p<q \leq \infty$. The subject started with two famous papers [5] and [6]. There are quite a few related papers in the literature. A recent one, for example, is [3].

Let V_{n} be a vectorspace of complex-valued functions defined on \mathbb{R} of dimension $n+1$ over \mathbb{C}. We say that V_{n} is shift invariant (on \mathbb{R}) if $f \in V_{n}$ implies that $f_{a} \in V_{n}$ for every $a \in \mathbb{R}$, where $f_{a}(x):=f(x-a)$ on \mathbb{R}. Let $\Lambda_{n}:=\left\{\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}\right\}$ be a set of distinct COMPLEX numbers. The collection of all linear combinations of $e^{\lambda_{0} t}, e^{\lambda_{1} t}, \ldots, e^{\lambda_{n} t}$ over \mathbb{C} will be denoted by

$$
E\left(\Lambda_{n}\right):=\operatorname{span}\left\{e^{\lambda_{0} t}, e^{\lambda_{1} t}, \ldots, e^{\lambda_{n} t}\right\} .
$$

Elements of $E\left(\Lambda_{n}\right)$ are called exponential sums of $n+1$ terms. Examples of shift invariant spaces of dimension $n+1$ include $E\left(\Lambda_{n}\right)$. In a recent paper [4] the following essentially sharp Nikolskii-type inequality is proved.

[^0]Theorem A. Suppose $\Lambda_{n}:=\left\{\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}\right\}$ is a set of distinct real numbers, $a, b \in \mathbb{R}$, $a<b$, and $0<p \leq q \leq \infty$. There are constants $c_{1}=c_{1}(p, q, a, b)>0$ and $c_{2}=$ $c_{2}(p, q, a, b)>0$ depending only on p, q, a, and b such that

$$
c_{1}\left(n^{2}+\sum_{j=0}^{n}\left|\lambda_{j}\right|\right)^{\frac{1}{p}-\frac{1}{q}} \leq \sup _{0 \neq P \in E\left(\Lambda_{n}\right)} \frac{\|P\|_{L_{q}[a, b]}}{\|P\|_{L_{p}[a, b]}} \leq c_{2}\left(n^{2}+\sum_{j=0}^{n}\left|\lambda_{j}\right|\right)^{\frac{1}{p}-\frac{1}{q}}
$$

Using the L_{∞} norm on a fixed subinterval $[a+\delta, b-\delta] \subset[a, b]$ in the numerator in the above theorem, we proved the following essentially sharp result in [2].
Theorem B. If $\Lambda_{n}:=\left\{\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}\right\}$ is a set of distinct real numbers, then the inequality

$$
\|f\|_{L_{\infty}[a+\delta, b-\delta]} \leq e 8^{1 / p}\left(\frac{n+1}{\delta}\right)^{1 / p}\|f\|_{L_{p}[a, b]}
$$

holds for every $f \in E\left(\Lambda_{n}\right), p>0$, and $\delta \in\left(0, \frac{1}{2}(b-a)\right)$.
Having real exponents λ_{j} in the above theorems is essential in the proof using some Descartes system methods. In this note we prove an analogous result for complex exponents λ_{j}, in which case Descartes system methods cannot help us in the proof.

2. New Result

Theorem. Let $V_{n} \subset C[a, b]$ be a shift invariant vectorspace of complex-valued functions defined on \mathbb{R} of dimension $n+1$ over \mathbb{C}. Let $p \in(0,2]$. Then

$$
\|f\|_{L_{\infty}[a+\delta, b-\delta]} \leq 2^{2 / p^{2}}\left(\frac{n+1}{\delta}\right)^{1 / p}\|f\|_{L_{p}[a, b]}
$$

for every $f \in V_{n}$ and $\delta \in\left(0, \frac{1}{2}(b-a)\right)$.
Problem. Is it possible to extend a version of the theorem for ALL $p>0$?
Proof. Since V_{n} is shift invariant, it is sufficient to prove only that

$$
|f(0)| \leq 2^{2 / p^{2}-1 / p}(n+1)^{1 / p}\|f\|_{L_{p}[-2,2]}
$$

for every $f \in V_{n}$. Take an orthonormal basis $\left(L_{k}\right)_{k=0}^{n}$ on $\left[-\frac{1}{2}, \frac{1}{2}\right]$ so that

$$
\begin{equation*}
L_{k} \in V_{n}, \quad k=0,1, \ldots, n \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{-1 / 2}^{1 / 2} L_{j}(x) \overline{L_{k}(x)} d x=\delta_{j, k}, \quad 0 \leq j \leq k \leq n \tag{2}
\end{equation*}
$$

where $\delta_{j . k}$ is the Kronecker symbol. On writing $f \in V_{n}$ as a linear combination of $L_{0}, L_{1}, \ldots L_{n}$, and using the Cauchy-Schwarz inequality and the orthonormality of $\left(L_{k}\right)_{k=0}^{n}$ on $\left[-\frac{1}{2}, \frac{1}{2}\right]$, we obtain in a standard fashion that

$$
\max _{0 \neq f \in V_{n}} \frac{\left|f\left(t_{0}\right)\right|}{\|f\|_{L_{2}[-1 / 2,1 / 2]}}=\left(\sum_{k=0}^{n}\left|L_{k}\left(t_{0}\right)\right|^{2}\right)^{1 / 2}, \quad t_{0} \in \mathbb{R}
$$

Since

$$
\int_{-1 / 2}^{1 / 2} \sum_{k=0}^{n}\left|L_{k}(x)\right|^{2} d x=n+1
$$

there exists a $t_{0} \in\left[-\frac{1}{2}, \frac{1}{2}\right]$ such that

$$
\max _{0 \neq f \in V_{n}} \frac{\left|f\left(t_{0}\right)\right|}{\|f\|_{L_{2}[-1 / 2,1 / 2]}}=\left(\sum_{k=0}^{n}\left|L_{k}\left(t_{0}\right)\right|^{2}\right)^{1 / 2} \leq \sqrt{n+1}
$$

Observe that if $f \in V_{n}$, then g defined by $g(t):=f\left(t-t_{0}\right)$ is also in V_{n}, so

$$
\begin{equation*}
\max _{0 \neq f \in V_{n}} \frac{|f(0)|}{\|f\|_{L_{2}[-1,1]}} \leq \sqrt{n+1} \tag{3}
\end{equation*}
$$

We introduce

$$
\tilde{V}_{n}:=\left\{g: g(t)=f(\lambda t), \quad f \in V_{n}, \lambda \in[-2,2]\right\} .
$$

It follows from (3) that

$$
\max _{0 \neq f \in \widetilde{V}_{n}} \frac{|f(0)|}{\|f\|_{L_{2}[-1,1]}} \leq \sqrt{n+1}
$$

Let

$$
C:=\max _{0 \neq f \in \widetilde{V}_{n}} \frac{|f(0)|}{\|f\|_{L_{p}[-2,2]}}
$$

Let $0 \neq f \in \widetilde{V}_{n}$. We define $g \in \widetilde{V}_{n}$ by $g(t)=f(t / 2+y)$. Then

$$
\frac{|f(y)|}{\|f\|_{L_{p}[-2,2]}} \leq \frac{|f(y)|}{\|f\|_{L_{p}[y-1, y+1]}} \leq \frac{|g(0)|}{\|g\|_{L_{p}[-2,2]}} 2^{1 / p} \leq 2^{1 / p} C, \quad y \in[-1,1]
$$

Hence

$$
\max _{0 \neq f \in \widetilde{V}_{n}} \frac{|f(y)|}{\|f\|_{L_{p}[-2,2]}} \leq 2^{1 / p} C, \quad y \in[-1,1]
$$

Therefore, for every $f \in \widetilde{V}_{n}$,

$$
\begin{aligned}
|f(0)| & \leq \sqrt{n+1}\|f\|_{L_{2}[-1,1]} \\
& \leq \sqrt{n+1}\left(\|f\|_{L_{p}[-1,1]}^{p}\|f\|_{L_{\infty}[-1,1]}^{2-p}\right)^{1 / 2} \\
& \leq \sqrt{n+1}\left(\|f\|_{L_{p}[-1,1]}^{p}\left(2^{1 / p} C\right)^{2-p}\|f\|_{L_{p}[-2,2]}^{2-p}\right)^{1 / 2} \\
& \leq \sqrt{n+1}\left(2^{1 / p} C\right)^{1-p / 2}\|f\|_{L_{p}[-2,2]} \\
& \leq 2^{1 / p-1 / 2} \sqrt{n+1} C^{1-p / 2}\|f\|_{L_{p}[-2,2]} .
\end{aligned}
$$

Hence

$$
C=\max _{0 \neq f \in \widetilde{V}_{n}} \frac{|f(0)|}{\|f\|_{L_{p}[-2,2]}} \leq 2^{1 / p-1 / 2} \sqrt{n+1} C^{1-p / 2}
$$

and we conclude that

$$
C \leq 2^{2 / p^{2}-1 / p}(n+1)^{1 / p} .
$$

So

$$
|f(0)| \leq 2^{2 / p^{2}-1 / p}(n+1)^{1 / p}\|f\|_{L_{p}[-2,2]}
$$

for every $f \in \widetilde{V}_{n}$, and the result follows.

References

1. P.B. Borwein and T. Erdélyi, Polynomials and Polynomials Inequalities, Springer-Verlag, New York, 1995.
2. P.B. Borwein and T. Erdélyi, Pointwise Remez- and Nikolskii-type inequalities for exponential sums, Math. Ann. 316 (2000), 39-60.
3. D. Dryanov and Q.I. Rahman, On certain meanvalues of polynomials on the unit interval, J. Approx. Theory 101 (1999 pages $92-120$).
4. T. Erdélyi, Markov-Nikolskii-type inequalities for exponential sums on a finite interval, Adv. in Math. (to appear).
5. S.M. Nikolskii, Inequalities for entire functions of finite degree and their application in the theory of differentiable functions of several variables, Trudy Mat. Inst. Steklov 38 (1951), $244-278$.
6. G. Szegő and A. Zygmund, On certain meanvalues of polynomials, J. Anal. Math. 3 (1954), $225-244$.

Department of Mathematics and Statistics, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6 (P. Borwein)

E-mail address: pborwein@cecm.sfu.ca (Peter Borwein)

Department of Mathematics, Texas A\&M University, College Station, Texas 77843 (T. Erdélyi)

E-mail address: terdelyi@math.tamu.edu (Tamás Erdélyi)

[^0]: 1991 Mathematics Subject Classification. 41A17.
 Key words and phrases. Nikolskii-type inequalities, shift invariant function spaces, exponential sums.

