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0. Notation

Let Pn be the set of all algebraic polynomials of degree at most n with real coefficients.
Let Pc

n be the set of all algebraic polynomials of degree at most n with complex coefficients.
Let

Kn :=

{
Qn : Qn(z) =

n∑

k=0

akz
k, ak ∈ C , |ak| = 1

}
.

The class Kn is often called the collection of all (complex) unimodular polynomials of
degree n. Let

Ln :=

{
Qn : Qn(z) =

n∑

k=0

akz
k, ak ∈ {−1, 1}

}
.

The class Ln is often called the collection of all (real) unimodular polynomials of degree
n. Let D denote the open unit disk of the complex plane. We will denote the unit circle
of the complex plane by ∂D. We define the Mahler measure of Q (geometric mean of Q
on ∂D) by

M0(Q) := exp

(
1

2π

∫ 2π

0

log |Q(eit)| dt
)

for bounded measurable functions Q on ∂D. It is well known, see [HL-52], for instance,
that

M0(Q) = lim
q→0+

Mq(Q) ,

where

Mq(Q) :=

(
1

2π

∫ 2π

0

∣∣Q(eit)
∣∣q dt

)1/q

, q > 0 .
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It is also well known that for a function Q continuous on ∂D we have

M∞(Q) := max
t∈[0,2π]

|Q(eit)| = max
t∈R

|Q(eit)| = lim
q→∞

Mq(Q) .

It is a simple consequence of the Jensen formula that

M0(Q) = |c|
n∏

k=1

max{1, |zk|}

for every polynomial of the form

Q(z) = c
n∏

k=1

(z − zk) , c, zk ∈ C .

We define the Mahler measure (geometric mean of Q on [α, β])

M0(Q, [α, β]) := exp

(
1

β − α

∫ β

α

log |Q(eit)| dt
)

for [α, β] ⊂ R and bounded measurable functions Q(eit) on [α, β]. It is well known, see
[HL-52], for instance, that

M0(Q, [α, β]) = lim
q→0+

Mq(Q, [α, β]) ,

where, for q > 0,

Mq(Q, [α, β]) :=

(
1

β − α

∫ β

α

∣∣Q(eit)
∣∣q dt

)1/q

.

If Q ∈ Pc
n is of the form

Q(z) =
n∑

j=0

ajz
j , aj ∈ C ,

then its conjugate polynomial is defined by

Q∗(z) := znQ(1/z) :=

n∑

j=0

an−jz
j .

A polynomial Q ∈ Pc
n is called conjugate-reciprocal if Q = Q∗.

The Lebesgue measure of a measurable set A ⊂ R will be denoted by m(A) throughout
the paper.
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1. Ultraflat sequences of unimodular polynomials

By Parseval’s formula, ∫ 2π

0

∣∣Pn(e
it)
∣∣2 dt = 2π(n+ 1)

for all Pn ∈ Kn. Therefore

min
t∈R

|Pn(e
it)| ≤

√
n+ 1 ≤ max

t∈R

|Pn(e
it)| .

An old problem (or rather an old theme) is the following.

Problem 1.1 (Littlewood’s Flatness Problem). How close can a polynomial Pn ∈ Kn

or Pn ∈ Ln come to satisfying

(1.1) |Pn(e
it)| =

√
n+ 1 , t ∈ R?

Obviously (1.1) is impossible if n ≥ 1. So one must look for less than (1.1), but then there
are various ways of seeking such an “approximate situation”. One way is the following. In
his paper [L-66b] Littlewood had suggested that, conceivably, there might exist a sequence
(Pn) of polynomials Pn ∈ Kn (possibly even Pn ∈ Ln) such that (n + 1)−1/2|Pn(e

it)|
converge to 1 uniformly in t ∈ R. We shall call such sequences of unimodular polynomials
“ultraflat”. More precisely, we give the following definition.

Definition 1.2. Given a positive number ε, we say that a polynomial Pn ∈ Kn is ε-flat if

(1− ε)
√
n+ 1 ≤ |Pn(e

it)| ≤ (1 + ε)
√
n+ 1 , t ∈ R .

Definition 1.3. Let (nk) be an increasing sequence of positive integers. Given a sequence
(εnk

) of positive numbers tending to 0, we say that a sequence (Pnk
) of polynomials Pnk

∈
Knk

is (εnk
)-ultraflat if each Pnk

is (εnk
)-flat. We simply say that a sequence (Pnk

) of
polynomials Pnk

∈ Knk
is ultraflat if it is (εnk

)-ultraflat with a suitable sequence (εnk
) of

positive numbers tending to 0.

The existence of an ultraflat sequence of unimodular polynomials seemed very unlikely,
in view of a 1957 conjecture of P. Erdős (Problem 22 in [E-57]) asserting that, for all
Pn ∈ Kn with n ≥ 1,

(1.2) max
t∈R

|Pn(e
it)| ≥ (1 + ε)

√
n+ 1 ,

where ε > 0 is an absolute constant (independent of n). Yet, refining a method of Körner
[K-80b], Kahane [K-80a] proved that there exists a sequence (Pn) with Pn ∈ Kn which is
(εn)-ultraflat, where εn = O

(
n−1/17

√
log n

)
. (Kahane’s paper contained though a slight

error which was corrected in [QS-95].) Thus the Erdős conjecture (2.2) was disproved for
the classes Kn. For the more restricted class Ln the analogous Erdős conjecture is unsettled
to this date. It is a common belief that the analogous Erdős conjecture for Ln is true, and
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consequently there is no ultraflat sequence of polynomials Pn ∈ Ln. An interesting result
related to Kahane’s breakthrough is given in [B-91]. For an account of some of the work
done till the mid 1960’s, see Littlewood’s book [L-68] and [QS-96].

Let (εn) be a sequence of positive numbers tending to 0. Let the sequence (Pn) of
polynomials Pn ∈ Kn be (εn)-ultraflat. We write

(1.3) Pn(e
it) = Rn(t)e

iαn(t) , Rn(t) = |Pn(e
it)| , t ∈ R .

It is simple to show that αn can be chosen to be in C∞(R). This is going to be our
understanding throughout the paper. It is easy to find a formula for αn(t) in terms of Pn.
We have

(1.4) α′
n(t) = Re

(
eitP ′

n(e
it)

Pn(eit)

)
,

see formulas (7.1) and (7.2) on p. 564 and (8.2) on p. 565 in [S-92]. The angular function
α∗
n and modulus function R∗

n = Rn associated with the polynomial P ∗
n are defined by

P ∗
n(e

it) = R∗
n(t)e

iα∗

n(t) , R∗
n(t) = |P ∗

n(e
it)| .

Similarly to αn, the angular function α∗
n can also be chosen to be in C∞(R) on R. By

applying formula (1.4) to P ∗
n , it is easy to see that

(1.5) α′
n(t) + α∗

n
′(t) = n , t ∈ R .

The structure of ultraflat sequences of unimodular polynomials is studied in [E-00a],
[E-00b], [E-01a], and [E-01b], where several conjectures of Saffari are proved. These are
closely related to each other.

Conjecture 1.4 (Uniform Distribution Conjecture for the Angular Speed).
Let (Pn) be a fixed ultraflat sequence of polynomials Pn ∈ Kn. With the notation (1.3), in
the interval [0, 2π], the distribution of the normalized angular speed α′

n(t)/n converges to
the uniform distribution as n → ∞. More precisely, we have

(1.6) m({t ∈ [0, 2π] : 0 ≤ α′
n(t) ≤ nx}) = 2πx+ on(x)

for every x ∈ [0, 1], where on(x) converges to 0 uniformly on [0, 1]. As a consequence,
|P ′

n(e
it)|/n3/2 also converges to the uniform distribution as n → ∞. More precisely, we

have
m({t ∈ [0, 2π] : 0 ≤ |P ′

n(e
it)| ≤ n3/2x}) = 2πx+ on(x)

for every x ∈ [0, 1], where on(x) converges to 0 uniformly on [0, 1].

The basis of this conjecture was that for the special ultraflat sequences of unimodular
polynomials produced by Kahane [K-80a], (1.6) is indeed true.

In Section 4 of [E-00a] we prove this conjecture in general.
In the general case (1.6) can, by integration, be reformulated (equivalently) in terms of

the moments of the angular speed α′
n(t). This was observed and recorded by Saffari [S-92].

For completeness the proof of this equivalence is presented in Section 4 of [E-00a] and we
settle Conjecture 1.4 by proving the following result.
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Theorem 1.5 (Reformulation of the Uniform Distribution Conjecture). Let (Pn)
be a fixed ultraflat sequence of polynomials Pn ∈ Kn. For any q > 0 we have

(1.7)
1

2π

∫ 2π

0

|α′
n(t)|

q
dt =

nq

q + 1
+ on,qn

q .

with suitable constants on,q converging to 0 for every fixed q > 0.

An immediate consequence of (1.7) is the remarkable fact that for large values of n ∈ N,
the Lq(∂D) Bernstein factors ∫ 2π

0

∣∣P ′
n(e

it)
∣∣q dt

∫ 2π

0
|Pn(eit)|q dt

of the elements of ultraflat sequences (Pn) of unimodular polynomials are essentially inde-
pendent of the polynomials. More precisely Theorem 1.5 implies the following result.

Theorem 1.6 (The Bernstein Factors). Let q be an arbitrary positive real number.
Let (Pn) be a fixed ultraflat sequence of polynomials Pn ∈ Kn. We have

∫ 2π

0

∣∣P ′
n(e

it)
∣∣q , dt

∫ 2π

0
|Pn(eit)|q dt

=
nq+1

q + 1
+ on,qn

q+1 ,

and as a limit case,
max0≤t≤2π |P ′

n(e
it)|

max0≤t≤2π |Pn(eit)|
= n+ onn .

with suitable constants on,q and on converging to 0 for every fixed q.

In Section 3 of [E-00a] we prove the following result which turns out to be stronger than
Theorem 1.5.

Theorem 1.7 (Negligibility Theorem for Higher Derivatives). Let (Pn) be a fixed
ultraflat sequence of polynomials Pn ∈ Kn. For every integer r ≥ 2, we have

max
0≤t≤2π

|α(r)
n (t)| = on,rn

r

with suitable constants on,r converging to 0 for every fixed r = 2, 3, . . . .

We show in Section 4 of [E-00a] how Theorem 1.4 follows from Theorem 1.7.
In Section 4 of [E-00a] we also prove an an extension of Saffari’s Uniform Distribution

Conjecture 1.4 to higher derivatives.

Theorem 1.8 (Distribution of the Modulus of Higher Derivatives of Ultraflat
Sequences of Unimodular Polynomials). Let (Pn) be a fixed ultraflat sequence of
polynomials Pn ∈ Kn. The distribution of

(
|P (r)

n (eit)|
nr+1/2

)1/r
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converges to the uniform distribution as n → ∞. More precisely, we have

m
({

t ∈ [0, 2π] : 0 ≤ |P (r)
n (eit)| ≤ nr+1/2xr

})
= 2πx+ or,n(x)

for every x ∈ [0, 1], where or,n(x) converges to 0 unifirmly for every fixed r = 1, 2, . . . .

In [E-03], based on the results in [E-00a], we proved yet another conjecture of Queffelec
and Saffari, see (1.30) in [QS-96]. Namely we proved asymptotic formulas for the Lq norms
of the real part and the derivative of the real part of ultraflat unimodular polynomials
on the unit circle. A recent paper of Bombieri and Bourgain [BB-09] is devoted to the
construction of ultraflat sequences of unimodular polynomials. In particular, they obtained
a much improved estimate for the error term. A major part of their paper deals also with
the long-standing problem of the effective construction of ultraflat sequences of unimodular
polynomials.

For λ ≥ 0, let

Kλ
n :=

{
Pn : Pn(z) =

n∑

k=0

akk
λzk, ak ∈ C , |ak| = 1

}
.

Ultraflat sequences (Pn) of polynomials Pn ∈ Kλ
n are defined and studied thoroughly in

[EN-16] where various extensions of Saffari’s conjectures have been proved. Note that it is
not yet known whether or not ultraflat sequences (Pn) of polynomials Pn ∈ Kλ

n exist for
any λ > 0, in particular, it is not yet known for λ = 1.

In [E-01a] we examined how far an ultraflat unimodular polynomial is from being
conjugate-reciprocal, and we proved the following three theorems.

Theorem 1.9. Let (Pn) be a fixed ultraflat sequence of polynomials Pn ∈ Kn. We have

1

2π

∫ 2π

0

(
|P ′

n(e
it)| − |P ∗′

n (eit)|
)2

dt =

(
1

3
+ γn

)
n3 ,

with some constants γn converging to 0.

Theorem 1.10. Let (Pn) be a fixed ultraflat sequence of polynomials Pn ∈ Kn. If

Pn(z) =

n∑

k=0

ak,nz
k , k = 0, 1, . . . , n, n = 1, 2, . . . ,

then
n∑

k=0

k2 |ak,n − an−k,n|2 =
1

2π

∫ 2π

0

∣∣(P ′
n − P ∗′

n )(eit)
∣∣2 dt ≥

(
1

3
+ hn

)
n3 ,

with some constants hn converging to 0.
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Theorem 1.11. Let (Pn) be a fixed ultraflat sequence of polynomials Pn ∈ Kn. Using the
notation of Theorem 1.10 we have

n∑

k=0

|ak,n − an−k,n|2 =
1

2π

∫ 2π

0

∣∣(Pn − P ∗
n)(e

it)
∣∣2 dt ≥

(
1

3
+ hn

)
n ,

with some constants hn (the same as in Theorem 1.10) converging to 0.

There are quite a few recent publications on or related to ultraflat sequences of unimod-
ular polynomials. Some of them (not mentioned before) are [B-02], [S-01], [QS-95], [O-18],
and [M-17].

2. More recent results on ultraflat sequences of unimodular polynomials

In a recent paper [E-19d] we revisited the topic. Theorems 2.1–2.4 and 2.6 are new in
[E-19d], and Theorems 2.5 and 2.7 recapture old results.

In our results below Γ denotes the usual gamma function, and the ∼ symbol means that
the ratio of the left and right hand sides converges to 1 as n → ∞.

Theorem 2.1. If (Pn) is an ultraflat sequence of polynomials Pn ∈ Kn and q ∈ (0,∞),
then

1

2π

∫ 2π

0

∣∣(Pn − P ∗
n)(e

it)
∣∣q dt ∼ 2qΓ

(
q+1
2

)

Γ
(
q
2 + 1

)√
π

nq/2 .

Our next theorem is a special case (q = 2) of Theorem 2.1. Compare it with Theorem
1.11.

Theorem 2.2. Let (Pn) be an ultraflat sequence of polynomials Pn ∈ Kn. If

Pn(z) =

n∑

k=0

ak,nz
k , k = 0, 1, . . . , n, n = 1, 2, . . . ,

then
n∑

k=0

|ak,n − an−k,n|2 =
1

2π

∫ 2π

0

∣∣(Pn − P ∗
n)(e

it)
∣∣2 dt ∼ 2n .

Our next theorem should be compared with Theorem 1.10.

Theorem 2.3. Let (Pn) be an ultraflat sequence of polynomials Pn ∈ Kn. Using the
notation in Theorem 2.2 we have

n∑

k=0

k2 |ak,n − an−k,n|2 =
1

2π

∫ 2π

0

∣∣(P ′
n − P ∗′

n )(eit)
∣∣2 dt ∼ 2n3

3
.

We also proved the following result.
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Theorem 2.4. If (Pn) is an ultraflat sequence of polynomials Pn ∈ Kn and q ∈ (0,∞),
then

1

2π

∫ 2π

0

∣∣∣∣
d

dt
|(Pn − P ∗

n)(e
it)|
∣∣∣∣
q

dt ∼ Γ
(
q+1
2

)

(q + 1)Γ
(
q
2 + 1

)√
π
n3q/2 .

As a Corollary of Theorem 2.2 we have recaptured Saffari’s “near orthogonality conjec-
ture” raised in [S-92] and proved first in [E-01b].

Theorem 2.5. Let (Pn) be a fixed ultraflat sequence of polynomials Pn ∈ Kn. Using the
notation in Theorem 2.2 we have

n∑

k=0

ak,nan−k,n = o(n) .

As a Corollary of Theorem 2.3 we have proved a new “near orthogonality” formula.

Theorem 2.6. Let (Pn) be a fixed ultraflat sequence of polynomials Pn ∈ Kn. Using the
notation in Theorem 2.2 we have

n∑

k=0

k2ak,nan−k,n = o(n3) .

Finally we have recaptured the asymptotic formulas for the real part and the derivative
of the real part of ultraflat unimodular polynomials proved in [E-03] first.

Theorem 2.7. If (Pn) is an ultraflat sequence of unimodular polynomials Pn ∈ Kn, and
q ∈ (0,∞), then for fn(t) := Re(Pn(e

it)) we have

1

2π

∫ 2π

0

|fn(t)|q dt ∼ Γ
(
q+1
2

)

Γ
(
q
2 + 1

)√
π

nq/2

and
1

2π

∫ 2π

0

|f ′
n(t)|

q
dt ∼ Γ

(
q+1
2

)

(q + 1)Γ
(
q
2
+ 1
)√

π
n3q/2 .

We remark that trivial modifications of the proof of Theorem 2.1–2.7 yield that the
statement of the above theorem remains true if the ultraflat sequence (Pn) of polynomials
Pn ∈ Kn is replaced by an ultraflat sequence (Pnk

) of polynomials Pnk
∈ Knk

, where (nk)
is an increasing sequence of positive integers.

3. Flatness of conjugate-reciprocal unimodular polynomials

There is a beautiful short argument to see that

(3.1) M∞(P ) ≥
√

4/3n1/2
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for every conjugate-reciprocal unimodular polynomial P ∈ Kn. Namely, Parseval’s formula
gives

M∞(P ′) ≥ M2(P
′) =

(
n(n+ 1)(2n+ 1)

6

)1/2

, P ∈ Kn .

Combining this with Malik’s extension of Lax’s Bernstein-type inequality

M∞(P ′) ≤ n

2
M∞(P )

valid for all conjugate reciprocal algebraic polynomials P ∈ Pc
n (see p. 438 in [BE-95], for

instance), we obtain

M∞(P ) ≥ 2

n

(
n(n+ 1)(2n+ 1)

6

)1/2

≥
√
4/3n1/2

for all conjugate-reciprocal unimodular polynomials P ∈ Kn. In [E-15] we prove the
following results.

Theorem 3.1. There is an absolute constant ε > 0 such that

M1(P
′) ≤ (1− ε)

√
1/3n3/2

for every conjugate-reciprocal unimodular polynomial P ∈ Kn and for all sufficiently large
n.

Theorem 3.2. There is an absolute constant ε > 0 such that

M∞(P ′) ≥ (1 + ε)
√

1/3n3/2

for every conjugate-reciprocal unimodular polynomial P ∈ Kn and for all sufficiently large
n.

Theorem 3.3. There is an absolute constant ε > 0 such that

M∞(P ) ≥ (1 + ε)
√

4/3n1/2

for every conjugate-reciprocal unimodular polynomial P ∈ Kn and for all sufficiently large
n.

Theorem 3.4. There is an absolute constant ε > 0 such that

Mq(P
′) ≤ exp(ε(q − 2)/q)

√
1/3

(
n(n+ 1)(2n+ 1)

6

)1/2

, 1 ≤ q < 2 ,

and

Mq(P
′) ≥ exp(ε(q − 2)/q)

√
1/3

(
n(n+ 1)(2n+ 1)

6

)1/2

, 2 < q ,

for every conjugate-reciprocal unimodular polynomial P ∈ Kn and for all sufficiently large
n.

A polynomial P ∈ Pc
n is called skew-reciprocal if P (−z) = P ∗(z) for all z ∈ C. A

polynomial P ∈ Pc
n is called self-reciprocal if P ∗ = P , that is, P (z) = znP (1/z) for all

z ∈ C \ {0}.
9



Problem 3.5. Is there an absolute constant ε > 0 such that

M∞(P ′) ≥ (1 + ε)
√

1/3n3/2

holds for all self-reciprocal and skew-reciprocal unimodular polynomials P ∈ Kn and for all
sufficiently large n?

Problem 3.6. Is there an absolute constant ε > 0 such that

M∞(P ′) ≥ (1 + ε)
√

1/3n3/2

or at least

max
z∈∂D

|P ′(z)| − min
z∈∂D

|P ′(z)| ≥ εn3/2

holds for all unimodular polynomials P ∈ Kn and for all sufficiently large n?

Our method to prove Theorem 3.2 does not seem to work for all unimodular polynomials
P ∈ Kn. In an e-mail communication several years ago Saffari speculated that the answer
to Problem 3.6 is no. However, we know the answer to neither Problem 3.6 nor Problem
3.5.

Let Ln be the collection of all polynomials of degree n with each of their coefficients in
{−1, 1}.

Problem 3.7. Is there an absolute constant ε > 0 such that

M∞(P ′) ≥ (1 + ε)
√

1/3n3/2

or at least

max
z∈∂D

|P ′(z)| − min
z∈∂D

|P ′(z)| ≥ εn3/2

holds for all Littlewood polynomials P ∈ Ln and for all sufficiently large n?

The following problem due to Erdős [E-57] is open for a long time.

Problem 3.8. Is there an absolute constant ε > 0 such that

M∞(P ) ≥ (1 + ε)n1/2

or at least

max
z∈∂D

|P (z)| − min
z∈∂D

|P (z)| ≥ εn1/2

holds for all Littlewood polynomials P ∈ Ln and for all sufficiently large n?

The same problem may be raised only for all skew-reciprocal Littlewood polynomials
P ∈ Ln, and as far as we know, it is also open.
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4. Average Lq norm of Littlewood polynomials on the unit circle

P. Borwein and Lockhart [BL-01] investigated the asymptotic behavior of the mean
value of normalized Mq norms of Littlewood polynomials for arbitrary q > 0. They proved
the following result.

Theorem 4.1.

lim
n→∞

1

2n+1

∑

f∈Ln

(Mq(f))
q

nq/2
= Γ

(
1 +

q

2

)
.

In [C-15a] we showed the following.

Theorem 4.2.

lim
n→∞

1

2n+1

∑

f∈Ln

Mq(f)

n1/2
=
(
Γ
(
1 +

q

2

))1/q

for every q > 0.

In [CE-15] we also proved the following result on the average Mahler measure of Little-
wood polynomials.

Theorem 4.3. We have

lim
n→∞

1

2n+1

∑

f∈Ln

M0(f)

n1/2
= e−γ/2 = 0.749306 · · · ,

where

γ := lim
n→∞

(
n∑

k=1

1

k
− log n

)
= 0.577215 · · ·

is the Euler constant.

These last two results are analogues of the results proved earlier by Choi and Mossinghoff
[CM-11] for polynomials in Kn.

5. Rudin-Shapiro Polynomials

Finding polynomials with suitably restricted coefficients and maximal Mahler measure
has interested many authors. The classes Ln and Kn are two of the most important classes
considered. Observe that Ln ⊂ Kn and

M0(Q) ≤ M2(Q) =
√
n+ 1

for every Q ∈ Kn.
It is open whether or not for every ε > 0 there is a sequence (Qn) of polynomials

Qn ∈ Ln such that

M0(Qn) ≥ (1− ε)
√
n .
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Beller and Newman [B-73] constructed a sequence (Qn) of unimodular polynomials Qn ∈
Kn such that

M0(Qn) ≥
√
n− c

logn
.

Littlewood asked if there were Qnk
∈ Lnk

satisfying

c1
√
nk + 1 ≤ |Qnk

(z)| ≤ c2
√
nk + 1 , z ∈ ∂D ,

with some absolute constants c1 > 0 and c2 > 0, see [B-02, p. 27] for a reference to this
problem of Littlewood. No sequence (Qnk

) of Littlewood polynomials Qnk
∈ Lnk

is known
that satisfies the lower bound. A sequence of Littlewood polynomials that satisfies just the
upper bound is given by the Rudin-Shapiro polynomials. The Rudin-Shapiro polynomials
appear in Harold Shapiro’s 1951 thesis [S-51] at MIT and are sometimes called just Shapiro
polynomials. They also arise independently in Golay’s paper [G-51]. They are remarkably
simple to construct and are a rich source of counterexamples to possible conjectures. The
Rudin-Shapiro polynomials are defined recursively as follows:

P0(z) := 1 , Q0(z) := 1 ,

Pk+1(z) := Pk(z) + z2
k

Qk(z) ,

Qk+1(z) := Pk(z)− z2
k

Qk(z) , k = 0, 1, 2, . . . .

Note that both Pk and Qk are polynomials of degree n − 1 with n := 2k having each of
their coefficients in {−1, 1}. In signal processing, the Rudin-Shapiro polynomials have good
autocorrelation properties and their values on the unit circle are small. Binary sequences
with low autocorrelation coefficients are of interest in radar, sonar, and communication
systems. It is well known and easy to check by using the parallelogram law that

|Pk+1(z)|2 + |Qk+1(z)|2 = 2(|Pk(z)|2 + |Qk(z)|2) , z ∈ ∂D .

Hence
|Pk(z)|2 + |Qk(z)|2 = 2k+1 = 2n , z ∈ ∂D .

It is also well known (see Section 4 of [B-02], for instance), that

Qk(−z) = P ∗
k (z) = zn−1Pk(1/z) , z ∈ ∂D ,

and hence
|Qk(−z)| = |Pk(z)| , z ∈ ∂D .

P. Borwein’s book [B-02] presents a few more basic results on the Rudin-Shapiro poly-
nomials. Various properties of the Rudin-Shapiro polynomials are discussed in [B-73] by
Brillhart and in [BL-76] by Brillhart, Lemont, and Morton.

As for k ≥ 1 both Pk and Qk have odd degree, both Pk and Qk have at least one real
zero. The fact that for k ≥ 1 both Pk and Qk have exactly one real zero was proved by

12



Brillhart in [B-73]. Another interesting observation made in [BL-76] is the fact that Pk

and Qk cannot vanish at root of unity different from −1 and 1.
Obviously

M2(Pk) = 2k/2

by the Parseval formula. In 1968 Littlewood [L-68] evaluated M4(Pk) and found that

(5.1) M4(Pk) ∼
(
4k+1

3

)1/4

=

(
4n2

3

)1/4

.

The M4 norm of Rudin-Shapiro like polynomials on ∂D are studied in [BM-00].
The merit factor of a Littlewood polynomial f ∈ Ln−1 is defined by

MF(f) =
M2(f)

4

M4(f)4 −M2(f)4
=

n2

M4(f)4 − n2
.

Observe that (5.1) implies that MF(Pk) ∼ 3 .

6. Mahler measure and moments of the Rudin-Shapiro polynomials

Despite the simplicity of their definition not much is known about the Rudin-Shapiro
polynomials. It has been shown in [E-16c] fairly recently that the Mahler measure (M0

norm) and the M∞ norm of the Rudin-Shapiro polynomials Pk and Qk of degree n − 1
with n := 2k on the unit circle of the complex plane have the same size, that is, the Mahler
measure of the Rudin-Shapiro polynomials of degree n − 1 with n := 2k is bounded from
below by cn1/2, where c > 0 is an absolute constant.

Theorem 6.1. Let Pk and Qk be the k-th Rudin-Shapiro polynomials of degree n−1 with
n = 2k. There is an absolute constant c1 > 0 such that

M0(Pk) = M0(Qk) ≥ c1
√
n , . . . k = 1, 2, . . . .

The following asymptotic formula, conjectured by Saffari in 1985, for the Mahler mea-
sure of the Rudin-Shapiro polynomials has been proved recently in [E-19a].

Theorem 6.2. We have

lim
n→∞

M0(Pk)

n1/2
= lim

n→∞

M0(Qk)

n1/2
=

(
2

e

)1/2

= 0.857763 · · · .

To formulate our next theorem we define

P̃k := 2−(k+1)/2Pk and Q̃k := 2−(k+1)/2Qk .

By using the above normalization, we have

|P̃k(z)|2 + |Q̃k(z)|2 = 1 , z ∈ ∂D .

For q > 0 let

Iq(P̃k) :=
(
Mq(P̃k)

)q
:=

1

2π

∫ 2π

0

|P̃k(e
it)|q dt .

The following result is a simple consequence of Theorem 6.1.
13



Theorem 6.3. There exists a constant L < ∞ independent of k such that

∞∑

m=1

Im(P̃k)

m
< L , k = 0, 1, . . . .

Consequently

Im(P̃k) ≤
L

log(m+ 1)
, k = 1, 2, . . . , m = 1, 2, . . . .

In [E-16c] we also proved the following result.

Theorem 6.4. There exists an absolute constant c2 > 0 such that

M0(Pk, [α, β]) ≥ c2
√
n , k = 1, 2, . . . ,

with n := 2k for all α, β ∈ R such that

12π

n
≤ (logn)3/2

n1/2
≤ β − α ≤ 2π .

7. Lemmas for Theorem 6.1

As the proof of Theorem 6.1 is based on interesting new properties of the Rudin-Shapiro
polynomials which have been observed only recently in [E-16c], we list them in this section.

Lemma 7.1. Let k ≥ 2 be an integer, n := 2k, and let

zj := eitj , tj :=
2πj

n
, j ∈ Z .

We have
Pk(zj) = 2Pk−2(zj)

whenever j is even, and
Pk(zj) = (−1)(j−1)/22iQk−2(zj)

whenever j is odd, where i is the imaginary unit.

Lemma 7.2. If Pk and Qk are the k-th Rudin-Shapiro polynomials of degree n − 1 with
n := 2k,

ω := sin2(π/8) = 0.146446 · · · ,
and

zj := eitj , tj :=
2πj

n
, j ∈ Z ,

then
max{|Pk(zj)|2, |Pk(zj+1)|2} ≥ ω2k+1 = 2ωn , j ∈ Z .
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Lemma 7.3. Let n,m ≥ 1,

0 < τ1 ≤ τ2 ≤ · · · ≤ τm ≤ 2π , τ0 := τm − 2π , τm+1 := τ1 + 2π ,

δ := max{τ1 − τ0, τ2 − τ1, . . . , τm − τm−1} .
For every A > 0 there is a B > 0 depending only on A such that

m∑

j=1

τj+1 − τj−1

2
log |P (eiτj )| ≤

∫ 2π

0

log |P (eiτ )| dτ +B

for all P ∈ Pc
n and δ ≤ An−1.

8. Saffari’s Conjecture on the Shapiro Polynomials

In 1980 Saffari conjectured the following.

Conjecture 8.1. Let Pk and Qk be the Rudin-Shapiro polynomials of degree n − 1 with
n := 2k. We have

Mq(Pk) = Mq(Qk) ∼
(2n)1/2

(q/2 + 1)1/q

for all real exponents q > 0.

Conjecture 8.1*. Equivalently to Conjecture 8.1, we have

lim
k→∞

m

({
t ∈ [0, 2π) :

∣∣∣∣
Pk(e

it)√
2k+1

∣∣∣∣
2

∈ [α, β]

})

= lim
k→∞

m

({
t ∈ [0, 2π) :

∣∣∣∣
Qk(e

it)√
2k+1

∣∣∣∣
2

∈ [α, β]

})
= 2π(β − α)

whenever 0 ≤ α < β ≤ 1.

This conjecture was proved for all even values of q ≤ 52 by Doche [D-05] and Doche
and Habsieger [DH-04]. Recently B. Rodgers [R-16] proved Saffari’s Conjecture 8.1 for all
q > 0. See also [EZ-17].

An extension of Saffari’s conjecture is Montgomery’s conjecture below.

Conjecture 8.2. Let Pk and Qk be the Rudin-Shapiro polynomials of degree n − 1 with
n := 2k. We have

lim
k→∞

m

({
t ∈ [0, 2π) :

Pk(e
it)√

2k+1
∈ E

})

= lim
k→∞

m

({
t ∈ [0, 2π) :

Qk(e
it)√

2k+1
∈ E

})
= 2µ(E) ,

where µ(E) denotes the Jordan measure of a Jordan measurable set E ⊂ D.

B. Rodgers [R-16] proved Montgomery’s Conjecture 8.2 as well.
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9. Consequences of Saffari’s Conjecture

Let Pk and Qk be the Rudin-Shapiro polynomials of degree n− 1 with n := 2k,

Rk(t) := |Pk(e
it)|2 or Rk(t) := |Qk(e

it)|2 ,

ω := sin2(π/8) = 0.146446 · · · .
In [E-19b] we proved Theorems 9.1–9.5 below.

Theorem 9.1. Pk and Qk have o(n) zeros on the unit circle.

The proof of Theorem 9.1 follows by combining the recently proved Saffari’s conjecture
stated as Conjecture 8.1* and the theorem below.

Theorem 9.2. If the real trigonometric polynomial R of degree n is of the form

R(t) = |P (eit)|2 ,

where P ∈ Pc
n, and P has at least k zeros in K (counting multiplicities), then

m({t ∈ [0, 2π) : |R(t)| ≤ α‖R‖K}) ≥
√
α

e

k

n

for every α ∈ (0, 1).

Theorem 9.3. There exists an absolute constant c > 0 such that each of the functions
Re(Pk), Re(Qk), Im(Pk), and Im(Qk) has at least cn zeros on the unit circle.

Theorem 9.4. There exists an absolute constant c > 0 such that the equation Rk(t) = ηn
has at most cη1/2 solutions in [0, 2π) for every η ∈ (0, 1] and sufficiently large k ≥ kη, while

the equation Rk(t) = ηn has at most c(2 − η)1/2n solutions in [0, 2π) for every η ∈ [1, 2)
and sufficiently large k ≥ kη.

Theorem 9.5. The equation Rk(t) = ηn has at least (1− ε)ηn/2 solutions in [0, 2π) for
every η ∈ (0, 2ω), ε > 0, and sufficiently large k ≥ kη,ε. The equation Rk(t) = ηn has at
least (1− ε)(2− η)n/2 solutions in [0, 2π) for every η ∈ (2− 2ω, 2), ε > 0, and sufficiently
large k ≥ kη,ε.

Theorem 9.6. There exists an absolute constant c > 0 such that the equation Rk(t) =
(1+η)n has at least cn0.5394282 distinct solutions in [0, 2π) whenever η ∈ R with |η| < 2−8.

In [A-19] we combined close to sharp upper bounds for the modulus of the autocorrela-
tion coefficients of the Rudin-Shapiro polynomials with a deep theorem of Littlewood (see
Theorem 1 in [L-66a]) to prove the above Theorem 9.6.

Theorem 9.7. If

|Pk(z)|2 = Pk(z)Pk(1/z) =

n−1∑

j=−n+1

ajz
j , z ∈ ∂D ,
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then
c1n

0.7302852··· ≤ max
1≤j≤n−1

|aj| ≤ c2n
0.7302859···

with an absolute constants c1 > 0 and c2 > 0.

Theorem 9.7 has been recently improved by Choi in [C-19] by showing that

(0.27771487 · · · )(1 + o(1)) |λ|k ≤ max
1≤j≤n−1

|aj | ≤ (3.78207844 · · · ) |λ|k ,

where

λ := −
(
44 + 3

√
177
)1/3

+
(
44− 3

√
177
)1/3 − 1

3
= −1.658967081916 · · ·

is the real root ot the equation x3 − x2 − 2x+4 = 0 and |λ|k = n07302852598···. This settles
a conjecture expected earlier by Saffari.

Theorem 9.8 (Littlewood). If the real trigonometric polynomial of degree at most n is
of the form

f(t) =

n∑

m=0

am cos(mt+ αm) , am, αm ∈ R ,

satisfies M1(f) ≥ cµ, µ := M2(f), where c > 0 is a constant, a0 = 0,

s⌊n/h⌋ =

⌊n/h⌋∑

m=1

a2m
µ2

≤ 2−9c6

for some constant h > 0, and v ∈ R satisfies

|v| ≤ V = 2−5c3 ,

then
N (f, v) > Ah−1c5n ,

where N (f, v) denotes the number of real zeros of f − vµ in (−π, π), and A > 0 is an
absolute constant.

In [E-19c] we improved Theorem 9.6 by showing the following two results.

Theorem 9.9. The equation Rk(t) = n has at least n/4+1 distinct zeros in [0, 2π). More-
over, with the notation tj := 2πj/n, there are at least n/2+2 values of j ∈ {0, 1 . . . , n−1}
for which the interval [tj , tj+1] has at least one zero of the equation Rk(t) = n.

Theorem 9.10. The equation Rk(t) = (1 + η)n has at least (1/2 − |η| − ε)n/2 distinct
zeros in [0, 2π) for every η ∈ (−1/2, 1/2), ε > 0, and sufficiently large k ≥ kη,ε.

In [E-19b] we proved the theorem below.
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Theorem 9.11. There exist absolute constants c1 > 0 and c2 > 0 such that both Pk and
Qk have at least c2n zeros in the annulus

{
z ∈ C : 1− c1

n
< |z| < 1 +

c1
n

}
.

A key to the proof of Theorem 9.11 is the result below.

Theorem 9.12. Let t0 ∈ K. There is an absolute constant c3 > 0 depending only on
c > 0 such that Pk has at least one zero in the disk

{
z ∈ C : |z − eit0 | < c3

n

}
,

whenever
T ′
k(t0) ≥ cn2 , Tk(t) = Pk(e

it)Pk(e
−it) .

We note that for every c ∈ (0, 1) there is an absolute constant c4 > 0 depending only
on c such that every Un ∈ Pc

n of the form

Un(z) =

n∑

j=0

ajz
j , |a0| = |an| = 1 , aj ∈ C , |aj| ≤ 1 ,

has at least cn zeros in the annulus
{
z ∈ C : 1− c4 log n

n
< |z| < 1 +

c4 logn

n

}
.

See Theorem 2.1 in [E-01c].
On the other hand, there is an absolute constant c4 > 0 such that for every n ∈ N

there is a polynomial Un ∈ Kn having no zeros in the above annulus. See Theorem 2.3 in
[E-01c].

So in Theorem 9.11 some special properties, in addition to being Littlewood polynomials,
of the Rudin-Shapiro polynomials must be exploited.

10. Open Problems related to the Rudin-Shapiro Polynomials

Problem 10.1. Is there an absolute constant c > 0 such that the equation Rk(t) = ηn
has at least cηn distinct solutions in K for every η ∈ (0, 1) and sufficiently large k ≥ kη?
In other words, can Theorem 9.5 be extended to all η ∈ (0, 1)?

Problem 10.2. Is there an absolute constant c > 0 such that Pk has at least cn zeros in
the open unit disk?

Problem 10.3. Is there an absolute constant c > 0 such that Qk has at least cn zeros in
the open unit disk?

Recall that
Qk(−z) = P ∗

k (z) = zn−1Pk(1/z) , z ∈ ∂D .
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Problem 10.4. Is it true that both Pk and Qk have asymptotically half of their zeros in
the open unit disk?

Observe that Pk(−1) = Qk(1) = 0 if k is odd.

Problem 10.5. Is it true that if k is odd then Pk has a zero on the unit circle ∂D only
at −1 and Qk has a zero on the unit circle ∂D only at 1, while if k is even then neither
Pk nor Qk has a zero on the unit circle?

11. On the size of the Fekete polynomials on the unit circle

For a prime p the p-th Fekete polynomial is defined as

fp(z) :=

p−1∑

k=1

(
k

p

)
zk ,

where
(
k

p

)
=





1, if x2 ≡ k (mod p) for an x 6= 0 ,

0, if p divides k ,

−1, otherwise

is the usual Legendre symbol. Note that gp(z) := fp(z)/z is a Littlewood polynomial of
degree p− 2, and has the same Mahler measure as fp.

In 1980 Montgomery [M-80] proved the following fundamental result.

Theorem 11.1. There are absolute constants c1 > 0 and c2 > 0 such that

c1
√
p log log p ≤ max

z∈∂D
|fp(z)| ≤ c2

√
p log p .

It was observed in [E-12] that Montgomery’s approach can be used to prove that for
every sufficiently large prime p and for every 8πp−1/8 ≤ s ≤ 2π there is a closed subset
E := Ep,s of the unit circle with linear measure |E| = s such that

1

|E|

∫

E

|fp(z)| |dz| ≥ c1 p
1/2 log log(1/s)

with an absolute constant c1 > 0.
In [BC-02] the L4 norm of the Fekete polynomials are computed.

Theorem 11.2. We have

M4(fp) =

(
5p2

3
− 3p+

4

3
− 12(h(−p))2

)1/4

,

where h(−q) is the class number of Q(
√−q).

In [E-07] we proved the following result.
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Theorem 11.3. For every ε > 0 there is a constant cε such that

M0(fp) ≥
(
1

2
− ε

)√
p

for all primes p ≥ cε.

From Jensen’s inequality,

M0(fp) ≤ M2(fp) =
√
p− 1 .

However, as it was observed in [E-07] and [E-18], a result of Littlewood [L-66a] implies
that 1

2
− ε in Theorem 11.2 cannot be replaced by 1− ε.

To prove Theorem 11.3 in [E-07] we needed to combine Theorems 11.4, 11.5 and one of
Theorems 11.6 and 11.7 below. For a prime number p let

ζp := exp

(
2πi

p

)

the first p-th root of unity. Our first lemma formulates a characteristic property of the
Fekete polynomials. A simple proof is given in [B-02, pp. 37-38].

Theorem 11.4 (Gauss). We have

fp(ζ
j
p) =

√(−1

p

)
p , j = 1, 2, . . . , p− 1 ,

and fp(1) = 0.

Theorem 11.5. We have




p−1∏

j=0

|Q(ζjp)|




1/p

≤ 2M0(Q)

for all polynomials Q of degree at most p with complex coefficients.

Theorem 11.6. There is an absolute constant c > 0 such that every Q ∈ Kn has at most
c
√
n real zeros.

Theorem 11.7. There is an absolute constant c > 0 such that every Q ∈ Ln has at most
c log2 n

log log n
zeros at 1.

For a proof of Theorem 11.6 see [BE-97]. For a proof of Theorem 11.7 see [B-97].
In [E-11] Theorem 11.3 was extended to subarcs of the unit circle.
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Theorem 11.8. There exists an absolute constant c1 > 0 such that

M0(fp, [α, β]) ≥ c1p
1/2

for all primes p and for all α, β ∈ R such that (log p)3/2p−1/2 ≤ β − α ≤ 2π.

In [E-12] we gave an upper bound for the average value of |fp(z)|q over any subarc I of
the unit circle, valid for all sufficiently large primes p and all exponents q > 0.

Theorem 11.9. There exists a constant c2(q, ε) depending only on q > 0 and ε > 0 such
that

Mq(fp, [α, β]) ≤ c2(q, ε)p
1/2 ,

for all primes p and for all α, β ∈ R such that 2p−1/2+ε ≤ β − α ≤ 2π.

We remark that a combination of Theorems 11.8 and 11.9 shows that there is an absolute
constant c1 > 0 and a constant c2(q, ε) > 0 depending only on q > 0 and ε > 0 such that

c1p
1/2 ≤ Mq(fp, [α, β]) ≤ c2(q, ε)p

1/2

for all primes p and for all α, β ∈ R such that (log p)3/2p−1/2 ≤ 2p−1/2+ε ≤ β − α ≤ 2π.
The Lq norm of polynomials related to Fekete polynomials were studied in several recent

papers. See [B-01a], [B-02], [BC-02], [BC-04], [G-16], [J-13a], and [J-13b], for example. An
interesting extremal property of the Fekete polynomials is proved in [BC-01b].

Fekete might have been the first one to study analytic properties of the Fekete polynomi-
als. He had an idea of proving non-existence of Siegel zeros (that is, real zeros “especially
close to 1”) of Dirichlet L-functions from the positivity of Fekete polynomials on the in-
terval (0, 1), where the positivity of Fekete polynomials is often referred to as the Fekete
Hypothesis.

There were many mathematicians trying to understand the zeros of Fekete polynomials
including Fekete and Pólya [F-12], Pólya [P-19], Chowla [C-35], Bateman, Purdy, and
Wagstaff [B-75], Heilbronn [H-37], Montgomery [M-80], Baker and Montgomery [B-90],
and Jung and Shen [J-16].

Baker and Montgomery [B-90] proved that fp has a large number of zeros in (0, 1) for
almost all primes p, that is, the number of zeros of fp in (0, 1) tends to ∞ as p tends to
∞, and it seems likely that there are, in fact, about log log p such zeros.

Conrey, Granville, Poonen, and Soundararajan [C-00] showed that fp has asymptotically
κ0p zeros on the unit circle, where

0.500668 < κ0 < 0.500813 .

An interesting recent paper [B-17] studies power series approximations to Fekete polyno-
mials. In [E-18] we improved Theorem 11.2 by showing the following result.

Theorem 11.10. There is an absolute constant c > 1/2 such that

M0(fp) ≥ c
√
p

for all sufficiently large primes.

However, there is not even a conjecture in the literature about what the asymptotically
sharp constant c in Theorem 11.10 could be.
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12. Unimodular zeros of self-reciprocal

polynomials with coefficients in a finite set

Research on the distribution of the zeros of algebraic polynomials has a long and rich
history. A few papers closely related this section include [BC-15], [BP-32], [BE-01], [BE-
99], [BE-13], [BE-08a], [BE-08b], [D-99], [D-14], [E-08a], [E-08b], [E-16a], [E-02], [E-50],
[L-61], [L-64], [N-16], [O-93], [P-99], [P-14], [S-19b], [Sch-32], [Sch-33], [Sz-34], [T-15], [T-
07], and [T-93]. The number of real zeros trigonometric polynomials and the number of
unimodular zeros (that is, zeros lying on the unit circle of the complex plane) of algebraic
polynomials with various constraints on their coefficients are the subject of quite a few of
these. We do not try to survey these in this section.

Let S ⊂ C. Let Pn(S) be the set of all algebraic polynomials of degree at most n with
each of their coefficients in S. An algebraic polynomial P of the form

(12.1) P (z) =

n∑

j=0

ajz
j , aj ∈ C ,

is called conjugate-reciprocal if

(12.2) aj = an−j , j = 0, 1, . . . , n .

Functions T of the form

T (t) = α0 +
n∑

j=1

(αj cos(jt) + βj sin(jt)) , αj, βj ∈ R ,

are called real trigonometric polynomials of degree at most n. It is easy to see that any
real trigonometric polynomial T of degree at most n can be written as T (t) = P (eit)e−int ,
where P is a conjugate-reciprocal algebraic polynomial of the form

(12.3) P (z) =
2n∑

j=0

ajz
j , aj ∈ C .

Conversely, if P is conjugate-reciprocal algebraic polynomial of the form (12.3), then there
are θj ∈ R, j = 1, 2, . . . n, such that

T (t) := P (eit)e−int = an +

n∑

j=1

2|aj+n| cos(jt+ θj)

is a real trigonometric polynomial of degree at most n. A polynomial P of the form (12.1)
is called self-reciprocal if

(12.4) aj = an−j , j = 0, 1, . . . , n .
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If a conjugate-reciprocal algebraic polynomial P has only real coefficients, then it is ob-
viously self-reciprocal. If the algebraic polynomial P of the form (12.3) is self-reciprocal,
then

T (t) := P (eit)e−int = an +
n∑

j=1

2aj+n cos(jt) .

In this section, whenever we write “P ∈ Pn(S) is conjugate-reciprocal” we mean that P
is of the form (12.1) with each aj ∈ S satisfying (12.2). Similarly, whenever we write
“P ∈ Pn(S) is self-reciprocal” we mean that P is of the form (12.1) with each aj ∈ S
satisfying (12.4). This is going to be our understanding even if the degree of P ∈ Pn(S) is
less than n. It is easy to see that P ∈ Pn(S) is self-reciprocal and n is odd, then P (−1) = 0.
We call any subinterval [a, a+2π) of the real number line R a period. Associated with an
algebraic polynomial P of the form (12.1) we introduce the number

NC(P ) := |{j ∈ {0, 1, . . . , n} : aj 6= 0}| .

Here, and in what follows |A| denotes the number of elements of a finite set A. Let NZ(P )
denote the number of real zeros (by counting multiplicities) of an algebraic polynomial P
on the unit circle. Associated with an even trigonometric polynomial (cosine polynomial)
of the form

T (t) =
n∑

j=0

aj cos(jt)

we introduce the number

NC(T ) := |{j ∈ {0, 1, . . . , n} : aj 6= 0}| .

Let NZ(T ) denote the number of real zeros (by counting multiplicities) of a trigonometric
polynomial T in a period. Let NZ∗(T ) denote the number of sign changes of a trigonometric
polynomial T in a period. The quotation below is from [BE-08a].

“Let 0 ≤ n1 < n2 < · · · < nN be integers. A cosine polynomial of the form T (θ) =∑N
j=1 cos(njθ) must have at least one real zero in a period. This is obvious if n1 6= 0,

since then the integral of the sum on a period is 0. The above statement is less obvious if
n1 = 0, but for sufficiently large N it follows from Littlewood’s Conjecture simply. Here
we mean the Littlewood’s Conjecture proved by S. Konyagin [K-81] and independently by
McGehee, Pigno, and Smith [Mc-81] in 1981. See also [D-93, pages 285–288] for a book
proof. It is not difficult to prove the statement in general even in the case n1 = 0 without
using Littlewood’s Conjecture. One possible way is to use the identity

nN∑

j=1

T

(
(2j − 1)π

nN

)
= 0 .

See [K-04], for example. Another way is to use Theorem 2 of [M-06a]. So there is certainly
no shortage of possible approaches to prove the starting observation of this section even
in the case n1 = 0.
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It seems likely that the number of zeros of the above sums in a period must tend to ∞
with N . In a private communication B. Conrey asked how fast the number of real zeros
of the above sums in a period tends to ∞ as a function N . In [C-00] the authors observed
that for an odd prime p the Fekete polynomial

fp(z) =

p−1∑

k=0

(
k

p

)
zk

(the coefficients are Legendre symbols) has ∼ κ0p zeros on the unit circle, where 0.500813 >
κ0 > 0.500668. Conrey’s question in general does not appear to be easy. Littlewood in his
1968 monograph ‘Some Problems in Real and Complex Analysis’ [L-68, problem 22] poses
the following research problem, which appears to still be open: ‘If the nm are integral

and all different, what is the lower bound on the number of real zeros of
∑N

m=1 cos(nmθ)?
Possibly N − 1, or not much less.’ Here real zeros are counted in a period. In fact no
progress appears to have been made on this in the last half century. In a recent paper

[BE-08a] we showed that this is false. There exist cosine polynomials
∑N

m=1 cos(nmθ)
with the nm integral and all different so that the number of its real zeros in a period is
O(N9/10(logN)1/5) (here the frequencies nm = nm(N) may vary with N). However, there

are reasons to believe that a cosine polynomial
∑N

m=1 cos(nmθ) always has many zeros in
a period.”

Let, as before,

Ln :=



P : P (z) =

n∑

j=0

ajz
j , aj ∈ {−1, 1}



 .

Elements of Ln are often called Littlewood polynomials of degree n. Let

Hn :=



P : P (z) =

n∑

j=0

ajz
j , aj ∈ C, |a0| = |an| = 1, |aj| ≤ 1



 .

Observe that Ln ⊂ Hn. In [BE-08b] we proved that any polynomial P ∈ Kn has at
least 8n1/2 logn zeros in any open disk centered at a point on the unit circle with radius
33n−1/2 logn. Thus polynomials in Hn have quite a few zeros near the unit circle. One
may naturally ask how many unimodular roots a polynomial in Hn can have. Mercer [M-
06a] proved that if a Littlewood polynomial P ∈ Ln of the form (12.1) is skew-reciprocal,
that is, aj = (−1)jan−j for each j = 0, 1, . . . , n, then it has no zeros on the unit circle.
However, by using different elementary methods it was observed in both [E-02] and [M-
06a] that if a Littlewood polynomial P of the form (12.1) is self-reciprocal, then it has at
least one zero on the unit circle. Mukunda [M-06b] improved this result by showing that
every self-reciprocal Littlewood polynomial of odd degree has at least 3 zeros on the unit
circle. Drungilas [D-08] proved that every self-reciprocal Littlewood polynomial of odd
degree n ≥ 7 has at least 5 zeros on the unit circle and every self-reciprocal Littlewood
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polynomial of even degree n ≥ 14 has at least 4 zeros on the unit circle. In [BE-08a]
we proved that the average number of zeros of self-reciprocal Littlewood polynomials of
degree n is at least n/4. However, it is much harder to give decent lower bounds for the
quantities NZn := minP NZ(P ) , where NZ(P ) denotes the number of zeros of a polynomial
P lying on the unit circle and the minimum is taken for all self-reciprocal Littlewood
polynomials P ∈ Ln. It has been conjectured for a long time that limn→∞ NZn = ∞.
In [E-16b] we showed that limn→∞ NZ(Pn) = ∞ whenever Pn ∈ Ln is self-reciprocal and
limn→∞ |Pn(1)| = ∞. This follows as a consequence of a more general result, see Corollary
2.3 in [E-16b], stated as Corollary 12.5 here, in which the coefficients of the self-reciprocal
polynomials Pn of degree at most n belong to a fixed finite set of real numbers. In [BE-07]
we proved the following result.

Theorem 12.1. If the set {aj : j ∈ N} ⊂ R is finite, the set {j ∈ N : aj 6= 0} is infinite,
the sequence (aj) is not eventually periodic, and

Tn(t) =

n∑

j=0

aj cos(jt) ,

then limn→∞ NZ(Tn) = ∞ .

In [BE-07] Theorem 12.1 is stated without the assumption that the sequence (aj) is
not eventually periodic. However, as the following example shows, Lemma 3.4 in [BE-07],
dealing with the case of eventually periodic sequences (aj), is incorrect. Let

Tn(t) := cos t+ cos((4n+ 1)t) +

n−1∑

k=0

(cos((4k + 1)t)− cos((4k + 3)t))

=
1 + cos((4n+ 2)t)

2 cos t
+ cos t .

It is easy to see that Tn(t) 6= 0 on [−π, π] \ {−π/2, π/2} and the zeros of Tn at −π/2 and
π/2 are simple. Hence Tn has only two (simple) zeros in a period. So the conclusion of
Theorem 12.1 above is false for the sequence (aj) with a0 := 0, a1 := 2, a3 := −1, a2k := 0,
a4k+1 := 1, a4k+3 := −1 for every k = 1, 2, . . . . Nevertheless, Theorem 12.1 can be saved
even in the case of eventually periodic sequences (aj) if we assume that aj 6= 0 for all
sufficiently large j. See Lemma 3.11 in [E-16b] where Theorem 1 in [BE-07] is corrected as

Theorem 12.2. If the set {aj : j ∈ N} ⊂ R is finite, aj 6= 0 for all sufficiently large j,
and

Tn(t) =
n∑

j=0

aj cos(jt) ,

then limn→∞ NZ(Tn) = ∞ .

It was expected that the conclusion of the above theorem remains true even if the
coefficients of Tn do not come from the same sequence, that is,

Tn(t) =

n∑

j=0

aj,n cos(jt) ,
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where the set
S := {aj,n : j ∈ {0, 1, . . . , n}, n ∈ N} ⊂ R

is finite and
lim

n→∞
|{j ∈ {0, 1, . . . , n}, aj,n 6= 0}| = ∞ .

Associated with an algebraic polynomial

P (z) =

n∑

j=0

ajz
j , aj ∈ C ,

let
NCk(P ) := |{u : 0 ≤ u ≤ n− k + 1, au + au+1 + · · ·+ au+k−1 6= 0}| .

In [E-16b] we proved the following results.

Theorem 12.3. If S ⊂ R is a finite set, P2n ∈ P2n(S) are self-reciprocal polynomials,

Tn(t) := P2n(e
it)e−int ,

and
lim

n→∞
NCk(P2n) = ∞

for every k = 1, 2, . . . , then

lim
n→∞

NZ(P2n) = lim
n→∞

NZ(Tn) = ∞ .

Some of the most important consequences of the above theorem obtained in [E-16b] are
stated below.

Corollary 12.4. If S ⊂ R is a finite set, Pn ∈ Pn(S) are self-reciprocal polynomials, and

lim
n→∞

|Pn(1)| = ∞ ,

then
lim
n→∞

NZ(Pn) = ∞ .

Corollary 12.5. Suppose the finite set S ⊂ R has the property that

s1 + s2 + · · ·+ sk = 0 , s1, s2, . . . , sk ∈ S , implies s1 = s2 = · · · = sk = 0 ,

that is, any sum of nonzero elements of S is different from 0. If Pn ∈ Pn(S) are self-
reciprocal polynomials and

lim
n→∞

NC(Pn) = ∞ ,
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then
lim
n→∞

NZ(Pn) = ∞ .

J. Sahasrabudhe [S-19a] examined the case when S ⊂ Z is finite. Exploiting the assump-
tion that the coefficients are integer he proved that for any finite set S ⊂ Z a self-reciprocal
polynomial P ∈ P2n(S) has at least

c (log log log |P (1)|)1/2−ε − 1

zeros on the unit circle of C with a constant c > 0 depending only on M = M(S) :=
max{|z| : z ∈ S} and ε > 0.

Let ϕ(n) denote the Euler’s totient function defined as the number of integers 1 ≤ k ≤ n
that are relative prime to n. In an earlier version of his paper Sahasrabudhe [S-19a] used
the trivial estimate ϕ(n) 6= √

n for n ≥ 3 and he proved his result with the exponent
1/4− ε rather than 1/2− ε. Using the nontrivial estimate ϕ(n) ≥ n/8(log log n) [R-62] for
all n > 3 allowed him to prove his result with 1/2− ε.

In the papers [BE-07], [E-16b], and [S-19a] the already mentioned Littlewood Conjec-
ture, proved by Konyagin [K-81] and independently by McGehee, Pigno, and B. Smith
[Mc-81], plays a key role, and we rely on it heavily in the proof of the main results of this
paper as well. This states the following.

Theorem 12.6. There is an absolute constant c > 0 such that

∫ 2π

0

∣∣∣
m∑

j=1

aje
iλjt
∣∣∣ dt ≥ cδ logm

whenever λ1, λ2, . . . , λn are distinct integers and a1, a2, . . . , am are complex numbers of
modulus at least δ > 0. Here c = 1/30 is a suitable choice.

This is an obvious consequence of the following result a book proof of which has been
worked out by DeVore and Lorentz in [D-93, pages 285-288].

Theorem 12.7. If λ1 < λ2 < · · · < λm are integers and a1, a2, . . . , am are complex
numbers, then ∫ 2π

0

∣∣∣
m∑

j=1

aje
iλjt
∣∣∣ dt ≥ 1

30

m∑

j=1

|aj|
j

.

In [E-19e] we proved the following results.

Theorem 12.8. If S ⊂ Z is a finite set, M = M(S) := max{|z| : z ∈ S}, P ∈ P2n(S) is
a self-reciprocal polynomial,

T (t) := P (eit)e−int ,

then

NZ∗(Tn) ≥
(

c

1 + logM

)
log log log |P (1)|

log log log log |P (1)| − 1

with an absolute constant c > 0, whenever |P (1)| ≥ 16.
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Corollary 12.9. If S ⊂ Z is a finite set, M = M(S) := max{|z| : z ∈ S}, P ∈ Pn(S) is
a self-reciprocal polynomial, then

NZ(P ) ≥
(

c

1 + logM

)
log log log |P (1)|

log log log log |P (1)| − 1

with an absolute constant c > 0, whenever |P (1)| ≥ 16.

This improves the exponent 1/2− ε to 1− ε in a recent breakthrough result [S-19a] by
Sahasrabudhe. We note that in both Sahasrabudhe’s paper and this paper the assumption
that the finite set S contains only integers is deeply exploited. Our next result is an obvious
consequence of Corollary 12.9.

Corollary 12.10. If the set S ⊂ Z is finite, M = M(S) := max{|z| : z ∈ S},

T (t) =

n∑

j=0

aj cos(jt) , aj ∈ S ,

then

NZ∗(T ) ≥
(

c

1 + logM

)
log log log |T (0)|

log log log log |T (0)| − 1

with an absolute constant c > 0, whenever |T (0)| ≥ 16.

13. Bourgain’s L1 problem and related results

For n ≥ 1 let

An :=

{
P : P (z) =

n∑

j=1

zkj : 0 ≤ k1 < k2 < · · · < kn , kj ∈ Z

}
,

that is, An is the collection of all sums of n distinct monomials. For p ≥ 0 we define

Sn,p := sup
Q∈An

Mp(Q)√
n

and Sp := lim inf
n→∞

Sn,p ≤ Σp := lim sup
n→∞

Sn,p .

We also define

In,p := inf
Q∈An

Mp(Q)√
n

and Ip := lim sup
n→∞

In,p ≥ Ωp := lim inf
n∈→∞

In,p .

Observe that Parseval’s formula gives Ω2 = Σ2 = 1. The problem of calculating Σ1 appears
in a paper of Bourgain [B-93]. Deciding whether Σ1 < 1 or Σ1 = 1 would be a major step
toward confirming or disproving other important conjectures. Karatsuba [K-98] observed

that Σ1 ≥ 1/
√
2 ≥ 0.707. Indeed, taking, for instance,

Pn(z) =
n−1∑

k=0

z2
k

, n = 1, 2, . . . ,
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it is easy to see that

(13.1) M4(Pn)
4 = 2n(n− 1) + n ,

and as Hölder’s inequality implies

n = M2(Pn)
2 ≤ M1(Pn)

2/3M4(Pn)
4/3 ,

we conclude

(13.2) M1(Pn) ≥
n3/2

(2n(n− 1) + n)
1/2

=
n

(2n− 1)
1/2

≥
√
n√
2
.

Similarly, if Sn := {a1 < a2 < · · · < an} is a Sidon set (that is, Sn is a subset of integers
such that no integer has two essentially distinct representations as the sum of two elements
of Sn), then the polynomials

Pn(z) =
∑

a∈Sn

za , n = 1, 2, . . . ,

satisfy (13.1) and (13.2). In fact, it was observed in [BC-08] that

min
P∈An

M4(P )4 = 2n(n− 1) + n ,

and such minimal polynomials in An are precisely constructed by Sidon sets as above.
Improving Karatsuba’s result, by using a probabilistic method Aistleitner [A-13] proved

that Σ1 ≥ √
π/2 ≥ 0.886. We note that P. Borwein and Lockhart [BL-01] investigated the

asymptotic behavior of the mean value of normalized Lp norms of Littlewood polynomials
for arbitrary p > 0. Using the Lindeberg Central Limit Theorem and the Dominated
Convergence Theorem, they proved that

lim
n→∞

1

2n+1

∑

f∈Ln

(Mp(f))
p

np/2
= Γ(1 + p/2) ,

where Ln is, as before, the set of Littlewood polynomials of degree n. It follows simply
from the case p = 1 of the result in [BL-01] quoted above that Σ1 ≥

√
π/8 ≥ 0.626.

Moreover, this can be achieved by taking the sum of approximately half of the monomials
of {x0, x1, . . . , x2n} and letting n tend to ∞.

Observe that Parseval’s formula gives Ω2 = Σ2 = 1. In [C-15b] we proved the following
results.

Theorem 13.1. Let (kj) be a strictly increasing sequence of nonnegative integers satisfy-
ing

kj+1 > kj

(
1 +

cj
j1/2

)
, j = 1, 2, . . . ,
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where limj→∞ cj = ∞. Let

Pn(z) =

n∑

j=1

zkj , n = 1, 2, . . . .

We have

lim
n→∞

Mp(Pn)√
n

= Γ(1 + p/2)1/p

for every p ∈ (0, 2).

Theorem 13.2. Let (kj) be a strictly increasing sequence of nonnegative integers satisfy-
ing

kj+1 > qkj , j = 1, 2, . . . ,

where q > 1. Let

Pn(z) =
n∑

j=1

zkj , n = 1, 2, . . . .

We have

lim
n→∞

Mp(Pn)√
n

= Γ(1 + p/2)1/p

for every p ∈ [1,∞).

Corollary 13.3. We have Σp ≥ Sp ≥ Γ(1 + p/2)1/p for all p ∈ (0, 2).

The special case p = 1 recaptures a recent result of Aistleitner [A-13], the best known
lower bound for Σ1.

Corollary 13.4. We have Σ1 ≥ S1 ≥ √
π/2.

Corollary 13.5. We have Ωp ≤ Ip ≤ Γ(1 + p/2)1/p for all p ∈ (2,∞).

We remark here that the same results also hold for the polynomials
∑n

j=1 ajz
kj with

coefficients aj if a general form of the Salem-Zygmund theorem is used (e.g. see (2) in
[E-62]).

Our final result in [C-15b] shows that the upper bound Γ(1 + p/2)1/p in Corollary 13.5
is optimal at least for even integers.

Corollary 13.6. For any even integer p = 2m ≥ 2, we have

lim
n→∞

min
P∈An

Mp(P )√
n

= Γ(1 + p/2)1/p .

Observe that a standard way to prove a Nikolskii-type inequality for trigonometric
polynomials [2, p. 394] applies to the classes An. Indeed,

Mp(P )p =
1

2π

∫ 2π

0

∣∣P (eit)
∣∣p dt ≤

(
1

2π

∫ 2π

0

∣∣P (eit)
∣∣2 dt

) (
max

t∈[0,2π]

∣∣P (eit)
∣∣
)p−2

= nnp−2 = np−1
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for every P ∈ An and p ≥ 2, and the Dirichlet kernel Dn(z) := 1 + z + · · ·+ zn shows the
sharpness of this upper bound up to a multiplicative factor constant c > 0. So if we study
the original Bourgain problem in the case of p > 2, we should normalize by dividing by
n1−1/p rather than n1/2.

In [C-15c] we examined

Sn,0(I) := sup
Q∈An

M0(Q, I)√
n

and S0(I) := lim inf
n→∞

Sn,0(I)

for intervals I = [α, β] with 0 < |I| := β − α ≤ 2π and proved the following results.

Theorem 13.7. There are polynomials Qn ∈ An ∩ PN with N = 2n+ o(n) such that

M0(Qn) ≥
(

1

2
√
2
+ o(1)

) √
n , n = 1, 2, . . . ,

and hence S0 ≥ 1

2
√
2
.

Theorem 13.8. There are polynomials Qn ∈ An ∩ PN with N = 2n + o(n), an absolute
constant c1 > 0, and a constant c2(ε) > 0 depending only on ε > 0 such that

M0(Qn, I) ≥ c1
√
n , n = 1, 2, . . . ,

for every interval I := [α, β] ⊂ R such that

(13.3)
4π

n
≤ (logn)3/2

n1/2
≤ β − α ≤ 2π ,

while
M1(Qn, I) ≤ c2(ε)

√
n , n = 1, 2, . . . ,

for every interval I := [α, β] ⊂ R such that

(13.4) (n/2)
−1/2+ε ≤ β − α ≤ 2π .

Note that Theorem 13.8 implies that there is an absolute constant c1 > 0 such that
S0(I) ≥ c1 for all intervals I := [α, β] ⊂ R satisfying (13.3).

Theorem 13.9. There are polynomials Qn ∈ Ln such that

M0(Qn) ≥
(
1

2
+ o(1)

) √
n , n = 1, 2, . . . .

Theorem 13.10. There are polynomials Qn ∈ Ln, an absolute constant c1 > 0, and a
constant c2(ε) > 0 depending only on ε > 0 such that

M0(Qn, I) ≥ c1
√
n , n = 1, 2, . . . ,

for every interval I := [α, β] ⊂ R satisfying (13.3), while

M1(Qn, I) ≤ c2(ε)
√
n , n = 1, 2 . . . ,

for every interval I := [α, β] ⊂ R satisfying (13.4).

31



References

A-13. C. Aistleitner, On a problem of Bourgain concerning the L1-norm of exponential sums, Math.
Z. 275 (2013), 681–688.

A-19. J.-P. Allouche, K.-K. S. Choi, A. Denise, T. Erdélyi, and B. Saffari, Bounds on autocorrelation
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E-01a. T. Erdélyi, How far is a sequence of ultraflat unimodular polynomials from being conjugate
reciprocal, Michigan Math. J. 49 (2001), 259–264.
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