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Abstract. The results of this paper show that many types of polynomials cannot
be small on subarcs of the unit circle in the complex plane. A typical result of the
paper is the following. Let Fn denote the set of polynomials of degree at most n
with coefficients from {−1, 0, 1}. There are absolute constants c1 > 0, c2 > 0, and
c3 > 0 such that

exp (−c1/a) ≤ inf
06=p∈Fn

‖p‖L1(A) , inf
06=p∈Fn

‖p‖A ≤ exp (−c2/a)

for every subarc A of the unit circle ∂D := {z ∈ C : |z| = 1} with length 0 < a < c3.

The lower bound results extend to the class of f of the form

f(z) =
n

X

j=m

ajzj , aj ∈ C , |aj | ≤ M , |am| = 1

with varying nonnegative integers m ≤ n. It is shown that functions f of the above
form cannot be arbitrarily small uniformly on subarcs of the circle. However, this
does not extend to sets of positive measure. It shown that it is possible to find a
polynomial of the above form that is arbitrarily small on as much of the boundary
(in the sense of linear Lebesgue measure) as one likes.

An easy to formulate corollary of the results of this paper is the following.

Corollary. Let A be a subarc of the unit circle with length ℓ(A) = a. If (pk) is a
sequence of monic polynomials that tends to 0 in L1(A), then the sequence H(pk) of
heights tends to ∞.

The results of this paper are dealing with (extensions of) classes much studied
by Littlewood and many others in regards to the various conjectures of Littlewood
concerning growth and flatness of unimodular polynomials on the unit circle ∂D.
Hence the title of the paper.
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1. Introduction

Littlewood’s well-known and now resolved conjecture of around 1948 concerns
polynomials of the form

p(z) :=
n∑

j=1

ajz
kj ,

where the coefficients aj are complex numbers of modulus at least 1 and the ex-
ponents kj are distinct non-negative integers. It states that such polynomials have
L1 norms on the unit circle

∂D := {z ∈ C : |z| = 1}

that grow at least like c log n with an absolute constant c > 0. This was proved by
Konjagin [Ko-81] and independently by McGehee, Pigno, and Smith [MPS-81].

Pichorides, who contributed essentially to the proof of the Littlewood conjecture,
observed in [Pi-83] that the original Littlewood conjecture (when all the coefficients
are from {0, 1} would follow from a result on the L1 norm of such polynomials on
sets E ⊂ ∂D of measure π. Namely if

∫

E

∣∣∣
n∑

j=0

zkj

∣∣∣ |dz| ≥ c

for any subset E ⊂ ∂D of measure π with an absolute constant c > 0, then the
original Littlewood conjecture holds. Throughout the paper the measure of a set
E ⊂ ∂D is the linear Lebesgue measure of the set

{t ∈ [−π, π) : eit ∈ E} .

Konjagin [Ko-96] gives a lovely probabilistic proof that this hypothesis fails. He
does however conjecture the following: for any fixed set E ⊂ ∂D of positive measure
there exists a constant c = c(E) > 0 depending only on E such that

∫

E

∣∣∣
n∑

j=0

zkj

∣∣∣ |dz| ≥ c(E) .

In other words the sets Eǫ ⊂ ∂D of measure π in his example where

∫

Eǫ

∣∣∣
n∑

j=0

zkj

∣∣∣ |dz| < ǫ

must vary with ǫ > 0.

We show, among other things, that Konjagin’s conjecture holds on subarcs of
the unit circle ∂D.

Additional material on Littlewood’s conjecture and related problems concerning
the growth of polynomials with unimodular coefficients in various norms on the
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unit disk is to be found, for example, in [Bou-86], [Be-95], [Ka-85], [Li-86], [Ma-63],
[Ne-90], [Od-93], and [So-95].

All the results of this paper concern how small polynomials of the above and
related forms can be in the Lp norms on subarcs of the unit disk. For 1 ≤ p ≤ ∞
the results are sharp, at least up to a constant in the exponent.

An interesting related result is due to Nazarov [Na-93]. One of its simpler ver-
sions states that there is an absolute constant c > 0 such that

max
z∈I

|p(z)| ≤
(

c m(I)

m(A)

)n

max
z∈A

|p(z)|

for every polynomial p of the form p(z) =
∑n

j=0 ajz
kj with kj ∈ N and aj ∈ C and

for every A ⊂ I, where I is a subarc of ∂D with length m(I) and A is measurable
with Lebesgue measure m(A). This extends a result of Turán [Tu-84] called Turán’s
Lemma, where I = ∂D and A is a subarc.

2. Notation

For M > 0 and µ ≥ 0, let Sµ
M denote the collection of all analytic functions f

on the open unit disk D := {z ∈ C : |z| < 1} that satisfy

|f(z)| ≤ M

(1 − |z|)µ , z ∈ D .

We define the following subsets of S1
1 . Let

Fn :=



f : f(x) =

n∑

j=0

ajx
j , aj ∈ {−1, 0, 1}





and denote the set of all polynomials with coefficients from the set {−1, 0, 1} by

F :=
∞⋃

n=0

Fn .

More generally we define the following classes of polynomials. For M > 0 and µ ≥ 0
let

Kµ
M :=



f : f(x) =

n∑

j=0

ajx
j , aj ∈ C , |aj | ≤ Mjµ , |a0| = 1 , n ∈ N



 .

On occasion we let S := S1
1 , SM := S1

M , and KM := K0
M .

We also employ the following standard notations. We denote by Pn the set of
all polynomials of degree at most n with real coefficients. We denote by Pc

n the set
of all polynomials of degree at most n with complex coefficients. The height of a
polynomial

pn(z) :=

n∑

j=0

ajz
j , aj ∈ C , an 6= 0 ,
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is defined by

H(pn) := max

{ |aj |
|an|

: j = 0, 1, . . . , n

}
.

Also,

‖p‖A := sup
z∈A

|p(z)|

and

‖p‖Lq(A) :=

(∫

A

|p(z)|q |dz|
)1/q

are used throughout this paper for measurable functions (in this paper usually
polynomials) p defined on a measurable subset of the unit circle or the real line,
and for q ∈ (0,∞).

3. New Results

The first two results concern lower bounds on subarcs in the supremum norm.

Theorem 3.1. Let 0 < a < 2π and M ≥ 1. Let A be a subarc of the unit circle
with length ℓ(A) = a. Then there is an absolute constant c1 > 0 such that

‖f‖A ≥ exp

(−c1(1 + log M)

a

)

for every f ∈ SM (:= S1
M ) that is continuous on the closed unit disk and satisfies

|f(z0)| ≥ 1
2 for every z0 ∈ C with |z0| = 1

4M .

Corollary 3.2. Let 0 < a < 2π and M ≥ 1. Let A be a subarc of the unit circle
with length ℓ(A) = a. Then there is an absolute constant c1 > 0 such that

‖f‖A ≥ exp

(−c1(1 + log M)

a

)

for every f ∈ KM (:= K1
M ).

The next two results show that the previous results are, up to constants, sharp.

Theorem 3.3. Let 0 < a < 2π. Let A be the subarc of the unit circle with length
ℓ(A) = a. Then there are absolute constants c1 > 0 and c2 > 0 such that

inf
06=f∈F

‖f‖A ≤ exp

(−c1

a

)

whenever ℓ(A) = a ≤ c2.
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Theorem 3.4. Let 0 < a < 2π and M ≥ 1. Let A be the subarc of the unit circle
with length ℓ(A) = a. Then there are absolute constants c1 > 0 and c2 > 0 such
that

inf
06=f∈KM

‖f‖A ≤ exp

(−c1(1 + log M)

a

)

whenever ℓ(A) = a ≤ c2.

The next two results extend the first two results to the L1 norm (and hence to
all Lp norms with p ≥ 1).

Theorem 3.5. Let 0 < a < 2π, M ≥ 1, and µ = 1, 2, . . . . Let A be a subarc of the
unit circle with length ℓ(A) = a. Then there is an absolute constant c1 > 0 such
that

‖f‖L1(A) ≥ exp

(−c1(µ + log M)

a

)

for every f ∈ Sµ
M that is continuous on the closed unit disk and satisfies |f(z0)| ≥ 1

2

for every z0 ∈ C with |z0| ≤ 1
4M2µ .

Corollary 3.6. Let 0 < a < 2π, M ≥ 1, and µ = 1, 2, . . . . Let A be a subarc of
the unit circle with length ℓ(A) = a. Then there is an absolute constant c1 > 0 such
that

‖f‖L1(A) ≥ exp

(−c1(1 + µ log µ + log M)

a

)

for every f ∈ Kµ
M .

The following is an interesting consequence of the preceding results.

Corollary 3.7. Let A be a subarc of the unit circle with length ℓ(A) = a. If (pk) is
a sequence of monic polynomials that tends to 0 in L1(A), then the sequence H(pk)
of heights tends to ∞.

The final result shows that the theory does not extend to arbitrary sets of positive
measure.

Theorem 3.8. For every ǫ > 0 there is a polynomial p ∈ K1 such that |p(z)| < ǫ
everywhere on the unit circle except possibly in a set of linear measure at most ǫ.

The above results should be compared with earlier result of the authors [Bor-
96] on approximation on the interval [0, 1]. These state that there are absolute
constants c1 > 0 and c2 > 0 such that

exp
(
−c1

√
n
)
≤ inf

06=p∈Fn

‖p‖[0,1] ≤ exp
(
−c2

√
n
)

for every n ≥ 2.
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4. Lemmas

Lemma 4.1. Let 0 < a < π and M ≥ 1. Let ΓM be the circle with diameter[
−1 + 1

2M , 1
]
. Let J be the subarc of ΓM with length ℓ(J) = a which is symmetric

with respect to the real line and contains 1. Then there is an absolute constant
c3 > 0 such that

‖g‖J ≥ exp

(−c3(1 + log M)

a

)

for all g ∈ S4M that is continuous on the closed unit disk and satisfies
∣∣g

(
1

4M

)∣∣ ≥ 1
4 .

Our next lemma is known as (a version) of the three-line-theorem. It may be
found, for example, in [Zy-59, p. 93]. Its proof is so short and simple that we
present it for the sake of completeness.

Lemma 4.2. Let a > 0 and

Ea := {z ∈ C : 0 ≤ Im(z) ≤ a} .

Suppose g is an analytic function in the interior of Ea, and suppose g is continuous
on Ea ∪∞. Then

max
{z: Im(z)=a/2}

|g(z)| ≤
(

max
{z: Im(z)=0}

|g(z)|
)1/2 (

max
{z: Im(z)=a}

|g(z)|
)1/2

.

The next lemma, that plays a crucial role in the proof of Theorem 3.1, can be
easily derived from Lemma 4.2.

Lemma 4.3. Let 0 < a < π, α := cos(a/2)+ i sin(a/2), β := cos(a/2)− i sin(a/2).
Let

It :=

{
z ∈ C : arg

(
α − z

z − β

)
= t

}
.

Note that Ia is the smaller arc on the unit circle with endpoints α and β, and
I0 is the line segment between α and β. Suppose g is an analytic function in the
open region bounded by I0 and Ia, and suppose g is continuous on the closed region
between I0 and Ia. Then

max
z∈Ia/2

|g(z)| ≤
(

max
z∈I0

|g(z)|
)1/2 (

max
z∈Ia

|g(z)|
)1/2

.

To prove Theorem 3.3, we need some corollaries of the

Hadamard Three Circles Theorem. Suppose f is regular inside and on

{z ∈ C : r1 ≤ |z| ≤ r2} .

For r ∈ [r1, r2], let
M(r) := max

|z|=r
|f(z)| .

Then
M(r)log(r2/r1) ≤ M(r1)

log(r2/r)M(r2)
log(r/r1) .
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Corollary 4.4. Let a ∈ (0, 1/8]. Suppose f is regular inside and on the ellipse Ea

with foci at 1 − 8a and 1 and with major axis

[(1 − 4a) − 17a , (1 − 4a) + 17a] .

Let Ẽa be the ellipse with foci at 1 − a and 1 and with major axis

[(1 − 4a) − 10a , (1 − 4a) + 10a] .

Then

max
z∈ eEa

|f(z)| ≤
(

max
z∈[1−8a,1]

|f(z)|
)1/2 (

max
z∈Ea

|f(z)|
)1/2

.

Corollary 4.5. We have

max
z∈ eEa

|f(z)| ≤ ((n + 1) exp(13na))1/2

(
max

z∈[1−8a,1]
|f(z)|

)1/2

for every f ∈ Fn and a ∈ (0, 1/8].

In one of our proofs of Theorem 3.3 we will need the upper bound of the result
below proved in [Bor-96]. An application of this lemma makes the proof of Theorem
3.3 shorter in the special case when the subarc A of the unit circle is symmetric with
respect to the real line and contains 1. Our second proof of Theorem 3.3 is longer.
This self-contained second proof does not use the lemma below and eliminates the
extra assumption on the subarc A.

Lemma 4.6. There are absolute constants c4 > 0 and c5 > 0 such that

exp
(
−c4

√
n
)
≤ inf

06=p∈Fn

‖p‖[0,1] ≤ exp
(
−c5

√
n
)

for every n ≥ 2.

To prove Theorem 3.4 we need two lemmas.

Lemma 4.7. Suppose

p(x) =
n∑

j=0

ajx
j , |aj | ≤ 9 , aj ∈ C ,

p(x) = (x − 1)kq(x) , q(x) =

n−k∑

j=0

bjx
j , bj ∈ C .

Then

‖q‖∂D ≤
n−k∑

j=0

|bj| ≤ 9(n + 1)e
(en

k

)k−1

≤ 9(n + 1)
(en

k

)k

(where ∂D denotes the unit circle). As a consequence, if A denotes the subarc of
the unit circle that is symmetric to the real line, contains 1, and has length 2k/(9n),
then

‖p‖A ≤ 9(n + 1)
(e

9

)k

.

To prove Theorem 3.4 our main tool is the next lemma due to Halász [Tu-84].
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Lemma 4.8. For every k ∈ N, there exists a polynomial h ∈ Pk such that

h(0) = 1 , h(1) = 0 , |h(z)| < exp

(
2

k

)
for |z| ≤ 1 .

Lemma 4.9. Let 0 < a < π and M ≥ 1. Let Γa,M,µ be the circle with diameter[
−1 + 1

2M2µ , 1 − 1−cos(a/4)
M2µ

]
. Let I be the subarc of Γa,M,µ with length ℓ(I) = a

which is symmetric with respect to the real line and contains 1 − 1−cos(a/4)
M2µ . Then

there is an absolute constant c4 > 0 such that

‖g‖I ≥ exp

(−c4(µ + log M)

a

)

for every g ∈ Sµ
M4µ that satisfies

∣∣∣g
(

1
4M2µ − 1−cos(a/4)

2M2µ

)∣∣∣ ≥ 1
4 .

Lemma 4.10. Let w1 6= w2 ∈ C and let z0 := 1
2 (w1 + w2). Assume that J1 is an

arc that connects w1 and w2. Let J2 be the arc that is the symmetric image of J1

with respect to the z0. Let J := J1 ∪ J2 be positively oriented. Suppose that g is an
analytic function inside and on J . Suppose that the region inside J contains the
disk centered at z0 with radius δ > 0. Let |g(z)| ≤ K for z ∈ J2. Then

|g(z0)|2 ≤ (πδ)−1K

∫

J1

|g(z)| |dz| .

5. Proofs of Theorems 3.1 – 3.6

Proof of Lemma 4.1. Suppose g ∈ S4M is continuous on the closed unit disk and∣∣g
(

1
4M

)∣∣ ≥ 1
4 . Let 2m ≥ 4 be the smallest even integer not less than 4π/a. Let

ξ := exp

(
2πi

2m

)

be the first (2m)th root of unity. We define 2m equally spaced points on ΓM by

ηk := 1
4M +

(
1 − 1

4M

)
ξk , k = 0, 1, . . . , 2m − 1 .

Then there is an absolute constant c5 > 0 such that

1 − |z| ≥ c5M
−1(ka)2 , k = 1, 2, . . .m − 1 ,

whenever z is on the smaller subarc of the circle ΓM with endpoints ηk and ηk+1

or with endpoints η2m−k and η2m−k−1, respectively. We define the function

h(z) :=

2m−1∏

j=0

g
(

1
4M +

(
1 − 1

4M

)
ξj

(
z − 1

4M

))
.
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Since g ∈ S4M , we obtain

max
z∈ΓM

|h(z)| ≤ ‖g‖2
J

m−1∏

k=1

(
4M

(
c4M

−1(ka)2
)−1

)2

≤
(

2

c5a

)4m−4
M4m−4

((m − 1)!)4
‖g‖2

J

≤
(

m

πc5

)4m−4 (
Me

m − 1

)4m−4

‖g‖2
J ≤ e4

(
eM

πc5

)4m−4

‖g‖2
J

≤ exp

(
c6(1 + log M)

a

)
‖g‖2

J

with an absolute constant c6 > 0. Now the Maximum Principle yields that

∣∣g
(

1
4M

)∣∣2m
=

∣∣h
(

1
4M

)∣∣ ≤ max
z∈ΓM

|h(z)| ≤ exp

(
c6(1 + log M)

a

)
‖g‖2

J .

Since 2m ≤ 2 + 4π/a and
∣∣g

(
1

4M

)∣∣ ≥ 1
4 , we obtain

‖g‖2
J ≥ exp

(−c6(1 + log M)

a

) ∣∣g
(

1
4M

)∣∣2m ≥ exp

(−c6(1 + log M)

a

) (
1

4

)2m

≥ exp

(−c7(1 + log M)

a

)

with an absolute constant c7 > 0. This finishes the proof. �

Proof of Lemma 4.2. Let z0 be a complex number with Im(z) = a/2. We want to
show that

|g(z0)|2 ≤
(

max
{z: Im(z)=0}

|g(z)|
) (

max
{z: Im(z)=a}

|g(z)|
)

.

Without loss of generality we may assume that Re(z0) = 0; the general case follows
by a linear transformation. So let z0 := ia/2. Applying the Maximum Principle to
h(z) := g(z)g(ia − z) on Ea ∪∞, we obtain

|g(ia/2)|2 = |g(ia/2)g(ia− ia/2)| = |h(ia/2)| ≤ max
z∈∂Ea

|h(z)|

= max
z∈∂Ea

|g(z)g(ia− z)| ≤
(

max
{z: Im(z)=0}

|g(z)|
) (

max
{z: Im(z)=a}

|g(z)|
)

.

and the proof is finished. �

Proof of Lemma 4.3. This follows from Lemma 4.2 by the substitution

w := log

(
α − z

z − β

)
.

�

Proof of Theorem 3.1. Without loss of generality we may assume that the arc A
is the subarc of the unit circle with length ℓ(A) = a < π which is symmetric with
respect to the real line and contains 1. Suppose f ∈ SM is continuous on the
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open unit disk, and suppose
∣∣f

(
1

4M

)∣∣ ≥ 1
2 . Using the notation of Lemma 4.3, let

g(z) := (z −α)(z −β)f(z). Then a straightforward geometric argument yields that

|g(z)| ≤ M |(z − α)(z − β)|
1 − |z| ≤ 2M

sin(a/2)
, z ∈ I0

(note that I0 is the line segment between α and β). Hence, with L := ‖g‖A (note
that A = Ia), we conclude by Lemma 4.3 that

max
z∈Ia/2

|g(z)| ≤
(

2ML

sin(a/2)

)1/2

.

Denote by Ga the open region bounded by Ia/2 and Ia. By the Maximum Principle

max
z∈Ga

|g(z)| ≤ max

{
L,

(
2L

sin(a/2)

)1/2
}

.

It is a simple elementary geometry to show that the arc K := ΓM ∩ Ga has
length at least a/2. Here, as in Lemma 4.1, ΓM denotes the circle with diame-
ter

[
−1 + 1

2M , 1
]
. Observe that f ∈ SM implies g ∈ S4M . Also, since M ≥ 1,

∣∣g
(

1
4M

)∣∣ ≥
(

3
4

)2 ∣∣f
(

1
4M

)∣∣ ≥
(

3
4

)2 1
2 ≥ 1

4 .

Hence Lemma 4.1 can be applied with g ∈ S4M . We conclude that

max

{
L ,

(
2ML

sin(a/2)

)1/2
}

≥ ‖g‖K ≥ exp

(−c4(1 + log M)

2a

)
,

from which

‖f‖A ≥ 1

4
‖g‖A =

L

4
≥ exp

(−c1(1 + log M)

a

)

with an absolute constant c1 > 0. �

Proof of Corollary 3.2. Note that if f ∈ KM , then f ∈ SM and f is continuous on
the closed unit disk. Also, if |z0| = 1

4M , then

|f(z0| ≥ 1 − M
|z0|

1 − |z0|
≥ 1 − 2M

4M
=

1

2
.

So the assumptions of Theorem 3.1 are satisfied and the corollary follows from
Theorem 3.1. �

Proof of Corollary 4.4. This follows from the Hadamard Three Circles Theorem
with the substitution

w = (1 − 4a) + 4a

(
z + z−1

2

)
.
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The Hadamard Three Circles Theorem is applied with r1 := 1, r := 2, and r2 :=
4. �

Proof of Corollary 4.5. This follows from Corollary 4.4 and the Maximum Princi-
ple. �

We present two proofs of Theorem 3.3. The first one is under the additional
assumption that the subarc A is symmetric with respect to the real line and contains
1.

Proof of Theorem 3.3 in the above special case. By Lemma 4.6, for every integer
n ≥ 2, there is a Qn ∈ Fn such that

‖Qn‖[0,1] ≤ exp
(
−c5

√
n
)

.

Let n be chosen so that n := ⌊N⌋, where N is defined by

a =
c5

26
√

N
.

Then, by Corollary 4.5,

max
z∈ eEa

|Qn(z)| ≤ (n + 1)1/2
(
exp

(
(c5/2)

√
n
))1/2

(
max

z∈[1−8a,1]
|f(z)|

)1/2

≤ (n + 1)1/2
(
exp

(
(c5/2)

√
n
))1/2 (

exp
(
−c5

√
n
))1/2

≤ (n + 1)1/2 exp
(
−(c5/4)

√
n
)

≤ exp

(−c6

a

)

whenever a ≤ c7, where c6 > 0 and c7 > 0 are absolute constants. Now observe that

the unit circle intersects the ellipse Ẽa in an arc of length at least c8a, where c8 > 0
is an absolute constant. Therefore the Maximum Principle finishes the proof. �

Our second proof of Theorem 3.3 is in the general case. In addition, it is self-
contained.

Proof of Theorem 3.3. Let A := {eit : t ∈ [t1, t2]}, where 0 ≤ t1 < t2 ≤ 2π and
t1 − t2 = a. Let t0 := (t1 + t2)/2, and w := eit0 . We prove the following extension
of Lemma 4.6. For every sufficiently large n ∈ N, there is a Qn ∈ Fn such that

‖Qn‖[0,w] ≤ exp
(
−c5

√
n
)

.

To see this we define k := ⌊ 1
2

√
n⌋. Let

1 − k/(2n) =: y0 < y1 < · · · < yk := 1

be k + 1 equidistant points.
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We use a counting argument to find a polynomial f ∈ Fn−1 with the property

(5.1) |f(yjw)| ≤ 21−√
n , j = 0, 1, . . . , k ,

for sufficiently large n. Indeed, we can divide the 2(k + 1)–dimensional real cube

Q := {(z0, . . . , zk) ∈ C
k : Re(zj), Im(zj) ∈ [−n − 1, n + 1)}

into (2m(n + 1))2(k+1) subcubes by defining

Qi0,i1,... ,i2k+1

:=

{
(z0, . . . , zk) ∈ C

k : Re(zj) ∈
[
i2j

m
,
i2j + 1

m

)
, Im(zj) ∈

[
i2j+1

m
,
i2j+1 + 1

m

)}
,

where (i0, i1, . . . , i2k+1) are 2(k + 1)–tuples of integers with −(n + 1)m ≤ ij ≤
(n + 1)m − 1 for each j = 0, 1, . . . , 2k + 1. Let

An−1 :=



f : f(x) =

n−1∑

j=0

ajx
j , aj ∈ {0, 1}





denote the set of polynomials of degree at most n− 1 with coefficients from {0, 1}.
Note that if P ∈ An−1, then

M(P ) := (Re(P (y0w)), Im(P (y0w)), . . . , Re(P (ykw)), Im(P (ykw))) ∈ Q .

Also, there are exactly 2n elements of An−1. Therefore, if

(2m(n + 1))2(k+1) < 2n

holds, then there exist two different P1 ∈ An−1 and P2 ∈ An−1, and a subcube
Qi0,i1,... ,i2k+1

such that both

M(P1) = (Re(P1(y0w)), Im(P1(y0w)), . . . , Re(P1(ykw)), Im(P1(ykw)))

and

M(P2) = (Re(P2(y0w)), Im(P2(y0w)), . . . , Re(P2(ykw)), Im(P2(ykw)))

are in Qi0,i1,... ,i2k+1
, and hence for 0 6= f := P1 − P2 ∈ Fn−1, we have

|f(yjw)| ≤
√

2m−1 , j = 0, 1, . . . , k .

Now choose m := ⌊2−
√

n⌋. This, together with k := ⌊ 1
2

√
n⌋, yields that the in-

equality (2mn)2(k+1) < 2n holds provided n is sufficiently large. This proves (5.1).

In the rest of the proof let n be sufficiently large to satisfy (5.1). Associated
with f ∈ Fn satisfying (5.1), we define

u(x) := Re(f(xw)) , x ∈ R ,
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and
v(x) := Im(f(xw)) , x ∈ R .

Obviously

‖u(k+1)‖[0,1] ≤ nk+2 and ‖v(k+1)‖[0,1] ≤ nk+2 .

Let y ∈ [y0, 1] be an arbitrary point different from each yj . By a well-known
formula for divided differences,

u(y)
∏k

j=0 (y − yj)
+

k∑

i=0

u(yi)

(yi − y)
∏k

j=0,j 6=i (yi − yj)
=

1

(k + 1)!
u(k+1)(ξ)

for some ξ ∈ [y0, 1].

Combining (5.1) and the two observations above, we obtain

|u(y)| ≤ 1

(k + 1)!
|u(k+1)(ξ)|

∣∣∣
k∏

j=0

(y − yj)
∣∣∣

+

k∑

i=0

|u(yi)|
∣∣∣∣∣

∏k
j=0 (y − yj)

(yi − y)
∏k

j=0,j 6=i (yi − yj)

∣∣∣∣∣

≤ 1

(k + 1)!
nk+2 (k + 1)!

(2n)k+1
+ 21−√

n
k∑

i=0

k!

i!(k − i)!

≤ 2−(k+1)n + 21−√
n 2k ≤ 2−(1/2)

√
nn + 21−√

n 2(1/2)
√

n

≤ exp
(
−c4

√
n
)

with an absolute constant c4 > 0. Similarly

|v(y)| ≤ exp
(
−c4

√
n
)

.

Hence
|f(yw)| ≤

√
2 exp

(
−c4

√
n
)

with an absolute constant c4 > 0. Since y ∈ [y0, 1] is arbitrary, we have proved that

‖f‖[y0w,w] ≤
√

2 exp
(
−c4

√
n
)

,

where y0 = 1 − k/(2n) ≤ 1 − 1
4n−1/2 for sufficiently large n.

We conclude that the polynomial g(x) := xnf(x) satisfies g ∈ F2n and

‖g‖[0,w] ≤ exp
(
−c5

√
n
)

with an absolute constant c5 > 0.

Now the proof can be finished by a trivial modification of the proof given in the
special case when subarc A of the unit circle is symmetric with respect to the real
line and contains 1. �
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Proof Lemma 4.7. We have

|bj| =

∣∣∣∣
1

j!

dj

dxj
(p(x)(x − 1)−k)

∣∣∣
x=0

∣∣∣∣

=

∣∣∣∣∣
1

j!

j∑

m=0

(
j

m

)
(−1)k (k + m − 1)!

(k − 1)!
p(j−m)(0)

∣∣∣∣∣

=

∣∣∣∣∣

j∑

m=0

(k + m − 1)!

(k − 1)!m!

1

(j − m)!
p(j−m)(0)

∣∣∣∣∣ =

∣∣∣∣∣

j∑

m=0

(k + m − 1)!

(k − 1)!m!
aj−m

∣∣∣∣∣

=

∣∣∣∣∣

j∑

m=0

(
k + m − 1

m

)
aj−m

∣∣∣∣∣ ≤ 9

(
k + j

k

)
≤ 9

(
e(k + j)

k

)k

≤ 9
(en

k

)k

which proves the lemma. �

Proof of Theorem 3.4. Without loss of generality we may assume that A is the
subarc of the unit circle with length ℓ(A) = a which is symmetric with respect to
the real line and contains 1. Let k :=

⌊
2
9a

⌋
+ 1. Let h ∈ Pk be the polynomial with

the properties of Lemma 4.8. Let u := k2. Let

Qu(x) := hk(x) =:

u∑

j=0

bjx
j .

Since

|h(z)| < exp

(
2

k

)
, |z| ≤ 1 ,

u∑

j=0

|bj |2 = ‖Qu‖2
L2(∂D) ≤ exp

(
4k

k

)
= e4 .

So
|b0| = 1 , |bj | ≤ e2 ≤ 9 , j = 0, 1, . . . , u .

Now let A denote the subarc of the unit circle which is symmetric to the real line,
contains 1, and has length a ∈

(
0, 1

9

)
. Since 2k/(9u) = 2/(9k) ≥ a, Lemma 4.7

implies that

‖Qu‖A ≤ exp(−c4k) ≤ exp

(−c5

a

)

with some absolute constants c4 > 0 and c5 > 0. Now let M ≥ 1. Without loss
of generality we may assume that M = 9m with a nonnegative integer m. When
m = 0 the theorem follows from Theorem 3.3. So let m ≥ 1. Let n := um and let

Pn(x) := Qm
u (x) := hkm(x) =:

n∑

j=0

ajx
j .

Since

|h(z)| < exp

(
2

k

)
, |z| ≤ 1 ,
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n∑

j=0

|aj |2 = ‖Pn‖2
L2(∂D) ≤ exp

(
4km

k

)
= e4m .

So
|a0| = 1 , |aj | ≤ e2m ≤ M , j = 0, 1, . . . , n .

Also, using m ≥ 1, we obtain

‖Pn‖A = ‖Qu‖m
A = exp

(−c5m

a

)
≤ exp

(−c2(1 + log M

a

)

with an absolute constant c2 > 0. This finishes the proof. �

Proof of Lemma 4.9. The proof is the same as that of Lemma 4.1 with trivial
modifications. �

Proof of Lemma 4.10. Applying Cauchy’s integral formula with

G(z) := g(z0 + (z − z0))g(z0 − (z0 − z))

on J , we obtain

|g(z0)|2 = |G(z0)| =

∣∣∣∣
1

2πi

∫

J

G(z) dz

z − z0

∣∣∣∣

=
2

2π

∣∣∣∣
∫

J1

G(z) dz

z − z0

∣∣∣∣ ≤
1

π

∫

J1

|G(z)| |dz|
|z − z0|

=
1

π

∫

J1

|g(z0 + (z − z0))g(z0 − (z − z0))| |dz|
|z − z0|

≤ (πδ)−1K

∫

J1

|g(z)| |dz| .

�

Proof of Theorem 3.5. Without loss of generality we may assume that the arc A is
the subarc of the unit circle with length ℓ(A) = a < π/2 which is symmetric with
respect to the real line and contains 1. Suppose f ∈ Sµ

M and

∣∣∣f
(

1
4M2µ − 1−cos(a/4)

2M2µ

)∣∣∣ ≥ 1
2 .

Note that this is guaranteed by the assumption of the theorem since

0 ≤ 1

4M2µ
− 1 − cos(a/4)

2M2µ
≤ 1

4M2µ
,

Let the region Ha,M,µ be defined by

Ha,M,µ :=

{
z = reiθ : cos(a/4) < r < 1 − 1 − cos(a/4)

M2µ
, −a

4
< θ <

a

4

}
.
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Let Γa,M,µ be the circle as in Lemma 4.9. It is a simple geometric argument to
show that the arc I := Γa,M,µ∩Ha,M,µ has length greater than c5a with an absolute
constant c5 > 0. Let z0 ∈ I ⊂ Ha,M,µ be fixed. Then we can choose w1 ∈ A and
w2 ∈ A such that z0 = 1

2 (w1 + w2). Let J1 be the arc connecting w1 and w2 on the
unit circle. Note that J1 is a subarc of A. Let J2 be the arc which is the symmetric
image of J1 with respect to the line segment connecting w1 and w2. Let

g(z) := ((z − w1)(z − w2))
µf(z) .

Then it is elementary geometry again to show that

|g(z)| ≤ M |(z − w1)(z − w2)|µ
(1 − |z|)µ ≤ M2µ

sinµ(a/2)
, z ∈ J2 .

By Lemma 4.10 we obtain

(5.2) |g(z0)|2 ≤
(

π(1 − cos(a/4))

M2µ

)−1
M2µ

sinµ(a/2)

∫

J1

|g(z)| |dz| .

Observe that f ∈ Sµ
M implies g ∈ Sµ

M4µ . Also, since M ≥ 1,
∣∣∣g

(
1

4M2µ − 1−cos(a/4)
2M2µ

)∣∣∣ ≥
(
1 − 2−µ−2

)2µ
∣∣∣f

(
1

4M2µ − 1−cos(a/4)
2M2µ

)∣∣∣

≥
(
1 − 1

8µ

)2µ ∣∣∣f
(

1
4M2µ − 1−cos(a/4)

2M2µ

)∣∣∣

≥
(

7
8

)2 1
2 ≥ 1

4 .

Hence Lemma 4.9 can be applied with g ∈ Sµ
M4µ . We conclude that there is a point

z0 ∈ I ⊂ Ha,M,µ such that

|g(z0)| ≥ exp

(−c4(µ + log M)

a

)
.

Combining this with (5.2) and J1 ⊂ A gives

‖f‖L1(A) ≥
(

1

4

)µ

‖g‖L1(A) ≥
(

1

4

)µ

‖g‖L1(J1)

≥
(

1

4

)µ
π(1 − cos(a/4))

M2µ

sinµ(a/2)

M2µ
|g(z0)|2

≥ exp

(−c1(µ + log M)

a

)

with an absolute constant c1 > 0. �

Proof of Corollary 3.6. Let f ∈ Kµ
M . Then f ∈ Sµ

M(µ!)2 and f is continuous on the

closed unit disk. Also, if |z0| ≤ 1
4M(µ!)22µ , then

|f(z0| ≥ 1 − M(µ!)2
∞∑

j=1

jµ

(
1

4M(µ!)22µ

)j

≥ 1 − M(µ!)2

4M(µ!)2

∞∑

j=1

(
j

2j

)µ

≥ 1 − 1

4

∞∑

j=1

(
j

2j

)
≥ 1 − 2

4
≥ 1

2
.
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So the assumptions of Theorem 3.5 are satisfied with M replaced by M(µ!)2, and
the corollary follows from Theorem 3.5. �

Proof of Corollary 3.7. Let

pk(z) =

nk∑

j=0

aj,kzj, aj,k ∈ C , ank,k 6= 0 ,

and let Mk := H(pk). Applying Corollary 3.6 with

qk(z) := |ank,k|−1znkpk(z−1) ∈ KMk
(= K1

Mk
)

and the arc B := {z−1 : z ∈ A} of length a, we obtain the corollary. �

6. Proof of Theorem 3.8

Lemma 6.1. For every r ∈ (0, 1/2) there exists a trigonometric polynomial

p(z) =

n∑

j=−n

cjz
j

such that c0 = 1, |cj | < r and |p(z)| < r everywhere on the unit circle except
possibly in a set of linear measure at most r.

Proof. The finite Riesz product

p(z) =

N∏

j=1

(1 + rzmj + rz−mj )

with mj := 4j and sufficiently large N is such an example. For r ∈ (0, 1/2) and
mj = 4j the Riesz products tend to 0 almost everywhere on the unit circle as
N → ∞. See, for example, [Zy-59, p 208]. �

The next lemma follows simply from the fact that the transfinite diameter of any
closed proper subset of the unit circle is less than 1. (We remark that due to this
fact the polynomial guaranteed by Lemma 6.2 can be chosen so that its coefficients
are integers. We will not need this extra property.)

Lemma 6.2. For every η > 0 there exists a polynomial

g(z) =
L∑

k=0

bkzk

such that b0 = 1 and |g(z)| < η everywhere on the unit circle except possibly on a
set of linear measure at most η.
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Proof of Theorem 3.8. For η := ǫ/2 we choose a polynomial

g(z) =

L∑

k=0

bkzk

with the properties of Lemma 6.2, that is, b0 = 1 and

|g(z)| <
ǫ

2
everywhere on the unit circle except

possibly in a set of linear measure at most
ǫ

2
.

(6.1)

For every k with |bk| > 1 we choose a trigonometric polynomial

pk(z) =

nk∑

j=−nk

cj,kzj

so that
c0,k = 1, |cj,k| <

ǫ

2L|bk|
and

|pk(z)| <
ǫ

2L|bk|
everywhere on the unit circle except

possibly in a set of linear measure at most
ǫ

2L
.

(6.2)

This can be done by Lemma 6.2. Now let

h(z) := g
(
zA

)
=

L∑

k=0

bkzAk with A := 1 + 2 max
k:|bk|>1

nk .

Finally we define

f(z) := h(z) −
L∑

k=1

|bk|>1

bkzAkpk(z) .

It is straightforward from the construction that f ∈ K1. Also, (6.1) and the defini-
tion of h imply that

|h(z)| <
ǫ

2
everywhere on the unit circle except

possibly in a set of linear measure at most
ǫ

2
.

(6.1)

Finally (6.2) and the definition of f imply that

|f(z)| <
ǫ

2
+

L∑

k=1

|bk|>1

|bk|
ǫ

2L|bk|
≤ ǫ

2
+ L

ǫ

2L
= ǫ

everywhere on the unit circle except possibly in a set of linear measure at most
ǫ

2
+ L

ǫ

2L
= ǫ .

This finishes the proof. �
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Bor-96. P. Borwein and T. Erdélyi, Littlewood-type problems on [0, 1], manuscript.

Ka-85. J-P. Kahane, Sur les polynômes á coefficients unimodulaires, Bull. London Math. Soc
12 (1980), 321–342.

Ko-81. S. Konjagin, On a problem of Littlewood, Izv. A. N. SSSR, ser. mat. 45, 2 (1981),
243–265.

Ko-96. S. Konjagin, On a question of Pichorides (to appear).

Li-68. J.E. Littlewood, Some Problems in Real and Complex Analysis, Heath Mathematical
Monographs, Lexington, Massachusetts, 1968.

Ma-63. K. Mahler, On two extremal properties of polynomials, Illinois J. Math. 7 (1963), 681–
701.

Na-93. F.L. Nazarov, Local estimates of exponential polynomials and their applications to the
inequalities of uncertainty principle type, St. Petersburg Math. J. 5 (1994), 663–717.

Ne-90. D.J. Newman and J. S. Byrnes, The L4 norm of a polynomial with coefficients ±1,
MAA Monthly 97 (1990), 42–45.

Od-93. A. Odlyzko and B. Poonen, Zeros of polynomials with 0,1 coefficients, Ens. Math. 39

(1993), 317–348.

Pi-83. S.K. Pichorides, Notes on trigonometric polynomials., in: Conference on harmonic
analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981), 84–94, Wadsworth
Math. Ser., Wadsworth, Belmont, Calif., 1983..

MPS-81. O.C. McGehee, L. Pigno and B. Smith, Hardy’s inequality and the L1-norm of expo-
nential sums, Ann. Math. 113 (1981), 613–618..

So-95. B. Solomyak, On the random series
P
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