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Abstract. We extend Markov’s, Bernsteins’s, and Videnskii’s inequalities to arbi-
trary subsets of [−1, 1] and [−π,π], respectively.

The primary purpose of this note is to extend Markov’s and Bernsteins’s inequal-
ities to arbitrary subsets of [−1, 1] and [−π, π], respectively.

We denote by Pn the set of all real algebraic polynomials of degree at most n
and let m(·) denote the Lebesque measure of a subset of R. We were led to the
results of this paper by the following problem. Can one give polynomials pn ∈ Pn

and numbers an ∈ (0, 1), n = 1, 2, · · · , such that

(i) m({x ∈ [0, 1] : |pn(x)| ≤ 1}) ≥ 1− an,

(ii) max
0≤x≤an

|pn(x)| ≤ 1

and

(iii) lim
n→∞

n−2|p′n(0)| = ∞

are satisfied? This question was asked by Vilmos Totik, and a positive answer would
have been used in proving a conjecture in the theory of orthogonal polynomials.
However, Theorem 2 of this note shows that the answer to the above question is
negative, in fact, it gives slightly more. In addition, our Theorem 1 answers the
corresponding question for trigonometric polynomials. Though our results cannot
be used for Totik’s original purpose, our proofs illustrate well, how Remez-type
inequalities can be used in proving various other polynomial inequalities.

In this note we prove the following pair of theorems.

Theorem 1. Let 0 < a ≤ 2π, 0 < L ≤ 1, let A be a closed subset of [0, 2π] with
Lebesque measure m(A) ≥ 2π − a. There is an absolute constant c1 > 0 such that

max
t∈I

|p′(t)| ≤ c1L
−1(n+ n2a)max

t∈A
|p(t)|(1)

for every real trigonometric polynomial p of degree at most n and for every subin-

terval I of A with length at least La.
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Theorem 2. Let 0 < a ≤ 1, 0 < M ≤ 1, let A be a closed subset of [0, 1] with
Lebesque measure m(A) ≥ 1− a. There is an absolute constant c2 > 0 such that

max
x∈I

|p′(x)| ≤ c2M
−1n2 max

x∈A
|p(x)|(2)

for every real algebraic polynomial p of degree at most n and for every subinterval

I of A with length at least Ma.

Up to the constant c1, Theorem 1 is an extension of both Bernstein’s [5, pp. 39-
41] and Videnskii’s [6] inequalities, while up to the constant c2, Theorem 2 contains
Markov’s inequality [5, pp. 39-41] as a special case.

The key to the proof of Theorem 1 is a Remez-type inequality [2] proved recently
for trigonometric polynomials, while the proof of Theorem 2 relies on Theorem 1.

Proof of Theorem 1. Denote by Tn the set of all trigonometric polynomials of degree
at most n with real coefficients. If π/2 ≤ a ≤ 2π, then the theorem follows from an
extension [1, Theorem 5] of an inequality of Videnskii [6]. Therefore, in the sequel
we assume that 0 < a < π/2. Let I be a subinterval of A such that m(I) ≥ La and
π ∈ I. It is sufficient to prove that there is an absolute constant c1 > 0 such that

|p′(π)| ≤ c1L
−1(n+ n2a)max

t∈A
|p(t)|(3)

for every p ∈ Tn. Let Tn be the Chebyshev polynomial of degree n given by

Tn(x) = cos(n arccosx), −1 ≤ x ≤ 1,(4)

and let

Qn,La(t) := T2n(sin(t/2)(cos(La/4))
−1)(T2n((cos(La/4))

−1))−1.(5)

A simple calculation shows that

Qn,La(π) = 1, Q′
n,La(π) = 0, max

t∈R

|Qn,La(t)| = 1,(6)

and there is an absolute constant c3 > 0 such that

|Qn,La(t)| ≤ exp(−c3nLa), t ∈ [0, π − La/2] ∪ [π + La/2, 2π].(7)

Let p ∈ Tn be such that

max
t∈A

|p(t)| = 1.(8)

The Remez-type inequality for trigonometric polynomials [2, Theorem 2], m(A) ≥
2π − a, 0 < a ≤ π/2, and (8) yield that there is an absolute constant c4 > 0 such
that

max
≤ ≤

|p(t)| ≤ exp(c4na).(9)
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Denote the endpoints of the interval I by α < β. Since β − α = m(I) ≥ La and
π ∈ I, we have either α ≤ π − La/2 or β ≥ π + La/2. We may assume that

β ≥ π + La/2,(10)

otherwise we consider the trigonometric polynomial p̃ ∈ Tn defined by p̃(t) :=
p(π − t). Now let

m := [c4c
−1

3
L−1n] + 1 and Q := Qm,La.(11)

Observe that (6) - (11) imply

|(pQ)(t)| ≤ 1, t ∈ E,(12)

where

E := [0, π − La/2] ∪ [π, 2π].(13)

Note that E is an interval of the period with length 2π−La/2, and π ∈ E. Therefore
an extension [1, Theorem 5] of an inequality of Videnskii [6], 0 < L ≤ 1 and (8)
yield that there are absolute constants c5 > 0 and c1 > 0 such that

|(pQ)′(π)| ≤ ((n+m) + c5(n+m)2La/2)(14)

≤ c1L
−1(n+ n2a)max

t∈A
|p(t)|.

Recalling (6), we have

p′(π) = (pQ)′(π),(15)

which, together with (14) gives the theorem. �

Proof of Theorem 2. If 1/4 ≤ a ≤ 1, then the theorem follows from the Markov
inequality [5, pp. 39-41]. Therefore, in what follows we may assume that 0 < a ≤
1/4. Without loss of generality we may assume that I = [0, b], where Ma ≤ b ≤ 1,
the general case can be deduced from this easily by a linear transformation. Let
p ∈ Pn,

y(t) := 1/2 + (1/2 + a) cos t,(16)

p̃(t) := p(y(t)) ∈ Tn(17)

Ã := {t ∈ [0, 2π] : y(t) ∈ A},(18)

Ĩ := {t ∈ [0, π] : y(t) ∈ I}(19)

and

ã := 2π −m(Ã), i.e. m(Ã) = 2π − ã.(20)

It is easy to see that 0 < a ≤ 1/4, A ⊂ [0, 1], m(A) ≥ 1 − a, m(I) ≥ Ma, (16),
(18), (19), and (20) imply that

ã ≤ c6
√
a(21)
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and

m(Ĩ) ≥ c7M
√
a ≥ c7c

−1

6
Mã(22)

with suitable absolute constants c6 > 0 and c7 > 0. If L := c7c
−1

6
M ≤ 1 and

a ≥ n−2, then Theorem 1, (20), (21) and (22) yield

max
t∈Ĩ

|p̃′(t)| ≤ c1c
−1

7
c6M

−1(n+ n2ã)max
t∈Ã

|p̃(t)|(23)

≤ c8M
−1n2

√
amax

x∈A
|p(x)|

with a suitable absolute constant c8 > 0. Also, (16) - (19) and I ⊂ [0, 1] imply that

|p̃′(t)| = |p′(y(t))y′(t)| = |p′(y(t))|(1/2 + a) sin t ≥ c9|p′(y(t))|
√
a

for every t ∈ Ĩ with a suitable absolute constant c9 > 0. Since every x ∈ I is of the
form x = y(t) with some t ∈ Ĩ, (23) and (24) imply that

max
x∈I

|p′(x)| ≤ c8c
−1

9
M−1n2 max

x∈A
|p(x)|,(25)

whenever c7c
−1

6
M ≤ 1 and a ≥ n−2. If c7c

−1

6
M ≥ 1, i.e. M ≥ c6c

−1

7
, and a ≥ n−2,

then I can be divided into subintervals of length k−1m(I), where k := [c6c
−1

7
] + 1,

and the already proved part gives the theorem. If 0 < a < n−2, A ⊂ [0, 1] and
m(A) ≥ 1− a, then the Remez inequality [4, p. 119-121] or [3] yields that

max
0≤x≤1

|p(x)| ≤ c10 max
x∈A

|p(x)|(26)

for every p ∈ Pn, where c10 > 0 is a suitable absolute constant. Combining this
with the Markov inequality [5, p. 39-41], we obtain

max
x∈I

|p′(x)| ≤ max
0≤x≤1

|p′(x)| ≤ 2n2 max
0≤x≤1

|p(x)|(27)

≤ 2c10n
2 max

x∈A
|p(x)|,

and the theorem is completely proved. �

It may be interesting to compare Theorem 2 with the following

Example 3. Let 0 < a ≤ 1/2, A = [0, 1− a] ∪ {1} and

Pn(x) = (x− 1)Tn(2(1− a)−1x− 1), n = 1, 2, · · · ,

where Tn is the Chebyshev polynomial of degree n defined by Tn(x) = cos(n arccosx),
−1 ≤ x ≤ 1. Then

max
x∈A

|P ′
n(x)| ≥ |P ′

n(1)| = Tn(2(1− a)−1 − 1) ≥ Tn(1 + 2a)

≥ 2−1(1 + 2
√
a)n ≥ 2−1(1 + 2

√
a)nmax

x∈A
|Pn(x)|.

A similar example can be given in the trigonometric case.
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