THE NORM OF THE POLYNOMIAL TRUNCATION OPERATOR ON THE UNIT DISK AND ON $[-1,1]$

TAMÁs ERdÉLYi

Abstract

Let D and ∂D denote the open unit disk and the unit circle of the complex plane, respectively. We denote the set of all polynomials of degree at most n with real coefficients by \mathcal{P}_{n}. We denote the set of all polynomials of degree at most n with complex coefficients by \mathcal{P}_{n}^{c}. We define the truncation operator S_{n} for polynomials $P_{n} \in \mathcal{P}_{n}^{c}$ of the form

$$
P_{n}(z):=\sum_{j=0}^{n} a_{j} z^{j}, \quad a_{j} \in \mathbb{C}
$$

by

$$
\begin{equation*}
S_{n}\left(P_{n}\right)(z):=\sum_{j=0}^{n} \widetilde{a}_{j} z^{j}, \quad \widetilde{a}_{j}:=\left(a_{j} /\left|a_{j}\right|\right) \min \left\{\left|a_{j}\right|, 1\right\} \tag{1.1}
\end{equation*}
$$

(here $0 / 0$ is interpreted as 1). We define the norms of the truncation operators by

$$
\left\|S_{n}\right\|_{\infty, \partial D}^{\text {real }}:=\sup _{P_{n} \in \mathcal{P}_{n}} \frac{\max _{z \in \partial D}\left|S_{n}\left(P_{n}\right)(z)\right|}{\max _{z \in \partial D}\left|P_{n}(z)\right|}
$$

and

$$
\left\|S_{n}\right\|_{\infty, \partial D}^{\text {comp }}:=\sup _{P_{n} \in \mathcal{P}_{n}^{c}} \frac{\max _{z \in \partial D}\left|S_{n}\left(P_{n}\right)(z)\right|}{\max _{z \in \partial D}\left|P_{n}(z)\right|}
$$

Our main theorem in this paper establishes the right order of magnitude of the norms of the operators S_{n}. This settles a question asked by S . Kwapien.

Theorem. With the notation introduced above there is an absolute constant $c_{1}>0$ such that

$$
c_{1} \sqrt{2 n+1} \leq\left\|S_{n}\right\|_{\infty, \partial D}^{r e a l} \leq\left\|S_{n}\right\|_{\infty, \partial D}^{c o m p} \leq \sqrt{2 n+1}
$$

Moreover, an analogous result in $L_{p}(\partial D)$ for $p \in[2, \infty]$ is also established and the case when the unit circle ∂D is replaced by the interval $[-1,1]$ is also studied.

[^0]
1. New Result

Let D and ∂D denote the open unit disk and the unit circle of the complex plane, respectively. We denote the set of all polynomials of degree at most n with real coefficients by \mathcal{P}_{n}. We denote the set of all polynomials of degree at most n with complex coefficients by \mathcal{P}_{n}^{c}. We define the truncation operator S_{n} for polynomials $P_{n} \in \mathcal{P}_{n}^{c}$ of the form

$$
P_{n}(z):=\sum_{j=0}^{n} a_{j} z^{j}, \quad a_{j} \in \mathbb{C}
$$

by

$$
\begin{equation*}
S_{n}\left(P_{n}\right)(z):=\sum_{j=0}^{n} \widetilde{a}_{j} z^{j}, \quad \widetilde{a}_{j}:=\left(a_{j} /\left|a_{j}\right|\right) \min \left\{\left|a_{j}\right|, 1\right\} \tag{1.1}
\end{equation*}
$$

(here $0 / 0$ is interpreted as 1). In other words, we take the coefficients $a_{j} \in \mathbb{C}$ of a polynomial P_{n} of degree at most n, and we truncate them. That is, we leave a coefficient a_{j} unchanged if $\left|a_{j}\right|<1$, while we replace it by $a_{j} /\left|a_{j}\right|$ if $\left|a_{j}\right| \geq 1$. We form the new polynomial with the new coefficients \widetilde{a}_{j} defined by (1.1), and we denote this new polynomial by $S_{n}\left(P_{n}\right)$. We define the norms of the truncation operators by

$$
\left\|S_{n}\right\|_{\infty, \partial D}^{\text {real }}:=\sup _{P_{n} \in \mathcal{P}_{n}} \frac{\max _{z \in \partial D}\left|S_{n}\left(P_{n}\right)(z)\right|}{\max _{z \in \partial D}\left|P_{n}(z)\right|}
$$

and

$$
\left\|S_{n}\right\|_{\infty, \partial D}^{c o m p}:=\sup _{P_{n} \in \mathcal{P}_{n}^{c}} \frac{\max _{z \in \partial D}\left|S_{n}\left(P_{n}\right)(z)\right|}{\max _{z \in \partial D}\left|P_{n}(z)\right|}
$$

Our main theorem in this paper establishes the right order of magnitude of the norms of the operators S_{n}. This settles a question asked by S. Kwapien.

Theorem 1.1. With the notation introduced above there is an absolute constant $c_{1}>0$ such that

$$
c_{1} \sqrt{2 n+1} \leq\left\|S_{n}\right\|_{\infty, \partial D}^{\text {real }} \leq\left\|S_{n}\right\|_{\infty, \partial D}^{c o m p} \leq \sqrt{2 n+1}
$$

In fact we are able to establish an $L_{p}(\partial D)$ analogue of this as follows. For $p \in(0, \infty)$, let

$$
\left\|S_{n}\right\|_{p, \partial D}^{\text {real }}:=\sup _{P_{n} \in \mathcal{P}_{n}} \frac{\left\|S_{n}\left(P_{n}\right)\right\|_{L_{p}(\partial D)}}{\left\|P_{n}\right\|_{L_{p}(\partial D)}}
$$

and

$$
\left\|S_{n}\right\|_{p, \partial D}^{c o m p}:=\sup _{S_{n} \in \mathcal{P}_{n}^{c}} \frac{\left\|S_{n}\left(P_{n}\right)\right\|_{L_{p}(\partial D)}}{\left\|P_{n}\right\|_{L_{p}(\partial D)}}
$$

Theorem 1.2. With the notation introduced above there is an absolute constant $c_{1}>0$ such that

$$
c_{1}(2 n+1)^{1 / 2-1 / p} \leq\left\|S_{n}\right\|_{p, \partial D}^{r e a l} \leq\left\|S_{n}\right\|_{p, \partial D}^{\operatorname{comp}} \leq(2 n+1)^{1 / 2-1 / p}
$$

for every $p \in[2, \infty)$.
Note that it remains open what is the right order of magnitude of $\left\|S_{n}\right\|_{p, \partial D}^{r e a l}$ and $\left\|S_{n}\right\|_{p, \partial D}^{c o m p}$, respectively when $0<p<2$. In particular it would be interesting to see if $\left\|S_{n}\right\|_{p, \partial D}^{c o m p} \leq c$ is possible for any $0<p<2$ with an absolute constant c. We record the following observation, due to S . Kwapien, in this direction.

Theorem 1.3. There is an absolute constant $c>0$ such that

$$
\left\|S_{n}\right\|_{1, \partial D}^{\text {real }} \geq c \sqrt{\log n}
$$

If the unit circle ∂D is replaced by the interval $[-1,1]$, we get a completely different order of magnitude of the polynomial truncation projector. In this case the norms of the truncation operators S_{n} are defined in the usual way. That is, let

$$
\left\|S_{n}\right\|_{\infty,[-1,1]}^{\text {real }}:=\sup _{P_{n} \in \mathcal{P}_{n}} \frac{\max _{x \in[-1,1]}\left|S_{n}\left(P_{n}\right)(x)\right|}{\max _{x \in[-1,1]}\left|P_{n}(x)\right|}
$$

and

$$
\left\|S_{n}\right\|_{\infty,[-1,1]}^{\text {comp }}:=\sup _{P_{n} \in \mathcal{P}_{n}^{c}} \frac{\max _{x \in[-1,1]}\left|S_{n}\left(P_{n}\right)(x)\right|}{\max _{x \in[-1,1]}\left|P_{n}(x)\right|}
$$

Theorem 1.4. With the notation introduced above we have

$$
2^{n / 2-1} \leq\left\|S_{n}\right\|_{\infty,[-1,1]}^{\text {real }} \leq\left\|S_{n}\right\|_{\infty,[-1,1]}^{c o m p} \leq \sqrt{2 n+1} \cdot 8^{n / 2}
$$

2. Lemmas

To prove the lower bound of Theorem 1.1 and 1.2, we need two lemmas. Our first one is from [LSV].

Lemma 2.1 (Lovász, Spencer, Vesztergombi). Let $a_{j, k}, j=1,2, \ldots, n_{1}, k=$ $1,2, \ldots, n_{2}$ be such that $\left|a_{j, k}\right| \leq 1$. Let also $p_{1}, p_{2}, \ldots, p_{n_{2}} \in[0,1]$. Then there are choices

$$
\varepsilon_{k} \in\left\{-p_{k}, 1-p_{k}\right\}, \quad k=1,2, \ldots, n_{2}
$$

such that for all j,

$$
\left|\sum_{k=1}^{n_{2}} \varepsilon_{k} a_{j, k}\right| \leq C \sqrt{n_{1}}
$$

with an absolute constant C.

Our second lemma is a direct consequence of the well-known Bernstein inequality (see Theorem 1.1 on page 97 of [DL]) and the Mean Value Theorem.

Lemma 2.2. Suppose Q_{n} is a polynomial of degree n (with complex coefficients),

$$
\begin{gathered}
\theta_{n}:=\exp \left(\frac{2 \pi}{14 n}\right) \\
z_{j}:=\exp \left(i j \theta_{n}\right), \quad j=1,2, \ldots, 14 n
\end{gathered}
$$

and

$$
\left|Q_{n}\left(z_{j}\right)\right| \leq M, \quad j=1,2, \ldots, 14 n
$$

Then

$$
\max _{z \in \partial D}\left|Q_{n}(z)\right| \leq 2 M
$$

The inequalities below (see Theorem 2.6 on page 102 of [DL]) will be needed to prove the upper bound of the Theorem.

Lemma 2.3 (Nikolskii Inequality). Let $0<q \leq p \leq \infty$. If P_{n} is a polynomial of degree at most n with complex coefficients then

$$
\left\|P_{n}\right\|_{L_{p}(\partial D)} \leq\left(\frac{2 n r+1}{2 \pi}\right)^{1 / q-1 / p}\left\|P_{n}\right\|_{L_{q}(\partial D)}
$$

where $r=r(q)$ is the smallest integer not less than $q / 4$.

The next lemma may be found in [Ri].
Lemma 2.4 (Erdős). Suppose that $z_{0} \in \mathbb{C}$ and $\left|z_{0}\right| \geq 1$. Then

$$
\left|P_{n}\left(z_{0}\right)\right| \leq\left|T_{2 n}\left(z_{0}\right)\right|^{1 / 2} \cdot \max _{x \in[-1,1]}\left|P_{n}(x)\right|, \quad P_{n} \in \mathcal{P}_{n}^{c}
$$

where $T_{2 n} \in \mathcal{P}_{2 n}$ defined by

$$
T_{n}(x):=\cos (n \arccos x), \quad x \in[-1,1]
$$

is the Chebyshev polynomial of degree $2 n$. As a consequence, writing

$$
T_{2 n}(z)=2^{2 n-1} \prod_{j=1}^{n}\left(z^{2}-x_{j}^{2}\right), \quad x_{j} \in(0,1)
$$

we have

$$
\max _{z \in \partial D}\left|P_{n}(z)\right| \leq 8^{n / 2} \max _{x \in[-1,1]}\left|P_{n}(x)\right|
$$

3. Proof of the theorem

Proof of Theorem 1.1. We apply Lemma 2.1 with $n_{1}=14 n, n_{2}=n$,

$$
\theta_{n}:=\exp (2 \pi /(14 n)), \quad a_{j, k}:=\exp \left(i j k \theta_{n}\right)
$$

and $p_{1}=p_{2}=\cdots=p_{n}=1 / 3$, and with the choices

$$
\varepsilon_{k} \in\left\{-\frac{1}{3}, \frac{2}{3}\right\}, \quad k=1,2, \ldots, n
$$

coming from Lemma 2.1, we define

$$
Q_{n}(z)=3 \sum_{j=1}^{n} \varepsilon_{k} z^{k}
$$

Then Q_{n} is a polynomial of degree n with each coefficient in $\{-1,2\}$, and with the notation

$$
z_{j}:=\exp \left(i j \theta_{n}\right), \quad j=1,2, \ldots, 14 n
$$

we have

$$
\left|Q_{n}\left(z_{j}\right)\right| \leq 3 C \sqrt{14 n}, \quad j=1,2, \ldots, 14 n
$$

Hence Lemma 2.2 yields

$$
\begin{equation*}
\max _{z \in \partial D}\left|Q_{n}(z)\right| \leq 24 C \sqrt{n} \tag{3.1}
\end{equation*}
$$

In particular, if we denote by m the number of indices k for which $\varepsilon_{k}=2 / 3$, then

$$
|3 m-n|=|2 m-(n-m)|=\left|Q_{n}(1)\right| \leq 24 C \sqrt{n}
$$

hence

$$
\begin{equation*}
\left|S_{n}\left(Q_{n}\right)(1)\right|=|m-(n-m)|=|2 m-n| \geq \frac{n}{3}-32 C \sqrt{n} \tag{3.2}
\end{equation*}
$$

Now (3.1) and (3.2) give the lower bound of the theorem.
To see the upper bound of the theorem, observe that Lemma 2.3 implies

$$
\begin{aligned}
\max _{z \in \partial D}\left|S_{n}\left(P_{n}\right)(z)\right| & \leq \frac{\sqrt{2 n+1}}{\sqrt{2 \pi}}\left\|S_{n}\left(P_{n}\right)\right\|_{L_{2}(\partial D)} \leq \frac{\sqrt{2 n+1}}{\sqrt{2 \pi}}\left\|P_{n}\right\|_{L_{2}(\partial D)} \\
& \leq \sqrt{2 n+1} \max _{z \in \partial D}\left|P_{n}(z)\right|
\end{aligned}
$$

for all polynomials P_{n} of degree at most n with complex coefficients. This proves the upper bound of the theorem.

Proof of Theorem 1.2. Let $p \in[2, \infty)$. Using (3.2) and the Nikolskii-type inequality of Lemma 3.4, we obtain that

$$
\begin{equation*}
\left\|S_{n}\left(Q_{n}\right)\right\|_{L_{p}(\partial D)} \geq c_{1} n^{1-1 / p} \tag{3.3}
\end{equation*}
$$

with an absolute constant $c_{1}>0$. On the other hand (3.1) implies

$$
\begin{equation*}
\left\|Q_{n}\right\|_{L_{p}(\partial D)} \leq c_{2} n^{1 / 2} \tag{3.4}
\end{equation*}
$$

with an absolute constant $c_{2}>0$, and the lower bound of the theorem follows.
To see the upper bound of the theorem, observe that Lemma 2.3 implies

$$
\begin{aligned}
\left\|S_{n}\left(P_{n}\right)\right\|_{L_{p}(\partial D)} & \leq\left(\frac{2 n+1}{2 \pi}\right)^{1 / 2-1 / p}\left\|S_{n}\left(P_{n}\right)\right\|_{L_{2}(\partial D)} \\
& \leq\left(\frac{2 n+1}{2 \pi}\right)^{1 / 2-1 / p}\left\|P_{n}\right\|_{L_{2}(\partial D)} \\
& \leq(2 n+1)^{1 / 2-1 / p}\left\|P_{n}\right\|_{L_{p}(\partial D)}
\end{aligned}
$$

for all polynomials P_{n} of degree at most n with complex coefficients. This proves the upper bound of the theorem.

Proof of Theorem 1.3. Let $n=2^{m+2}-2$. Consider the polynomial

$$
P_{n}(z)=4 z^{2^{m+1}-1} \prod_{k=0}^{m}\left(1+\frac{z^{2^{k}}+z^{-2^{k}}}{2}\right)
$$

Then

$$
\left|P_{n}(z)\right|=4 \prod_{k=0}^{m}\left(1+\frac{z^{2^{k}}+z^{-2^{k}}}{2}\right)
$$

and hence $\left\|P_{n}\right\|_{L_{1}(\partial D)}=4$. Also

$$
P_{n}(z)-S_{n}\left(P_{n}\right)(z)=z^{2^{m+1}-1}\left(3+\sum_{k=0}^{m}\left(z^{2^{k}}+z^{-2^{k}}\right)\right)
$$

Let

$$
R_{n}(z):=3+\sum_{k=0}^{m}\left(z^{2^{k}}+z^{-2^{k}}\right)
$$

Then

$$
\left\|S_{n}\left(P_{n}\right)\right\|_{L_{1}(\partial D)} \geq\left\|S_{n}\left(P_{n}\right)-P_{n}\right\|_{L_{1}(\partial D)}-\left\|P_{n}\right\|_{L_{1}(\partial D)}=\left\|R_{n}\right\|_{L_{1}(\partial D)}-4
$$

We will prove that $\left\|R_{n}\right\|_{L_{1}(\partial D)} \geq c \sqrt{m}$ for some absolute constant $c>0$. It is easy to see that if $b, a_{0}, a_{1}, \ldots, a_{m}$ are complex numbers and

$$
F(z)=b+\sum_{k=0}^{m} a_{k}\left(z^{2^{k}}+z^{-2^{k}}\right)
$$

then we have

$$
\|F\|_{L_{4}(\partial D)} \leq \sqrt[4]{3}\left(|b|^{2}+\sum_{k=0}^{m}\left|2 a_{k}\right|^{2}\right)^{1 / 2}
$$

Therefore

$$
\left\|R_{n}\right\|_{L_{4}(\partial D)} \leq \sqrt[4]{3} \sqrt{9+4(m+1)}
$$

Moreover

$$
\left\|R_{n}\right\|_{L_{2}(\partial D)}=\sqrt{9+2(m+1)}
$$

By Hölder's Inquality

$$
\left\|R_{n}\right\|_{L_{4}(\partial D}^{2 / 3}\left\|R_{n}\right\|_{L_{1}(\partial D)}^{1 / 3} \geq\left\|R_{n}\right\|_{L_{2}(\partial D)}
$$

Hence we obtain

$$
(\sqrt[4]{3} \sqrt{9+4(m+1)})^{2 / 3}\left(\left\|R_{n}\right\|_{L_{1}(\partial D)}\right)^{1 / 3} \geq \sqrt{9+2(m+1)}
$$

and thus $\left\|R_{n}\right\|_{L_{1}(\partial D)} \geq c \sqrt{m}$. This gives

$$
\frac{\left\|S_{n}\left(P_{n}\right)\right\|_{L_{1}(\partial D)}}{\left\|P_{n}\right\|_{L_{1}(\partial D)}} \geq c^{\prime} \sqrt{m} \geq c^{\prime \prime} \sqrt{\log n}
$$

with absolute constants $c^{\prime}>0$ and $c^{\prime \prime}>0$.
Proof of Theorem 1.4. Let

$$
P_{n}(z):=\sum_{j=0}^{n} a_{j} z^{j}, \quad a_{j} \in \mathbb{C}
$$

and

$$
S_{n}\left(P_{n}\right)(z):=\sum_{j=0}^{n} \widetilde{a}_{j} z^{j}, \quad \widetilde{a}_{j}:=\left(a_{j} /\left|a_{j}\right|\right) \min \left\{\left|a_{j}\right|, 1\right\}
$$

First we prove the upper bound. Using Lemma 1.4 we obtain

$$
\begin{aligned}
\max _{x \in[-1,1]}\left|S_{n}\left(P_{n}\right)(x)\right| & \leq \max _{z \in \partial D}\left|S_{n}\left(P_{n}\right)(z)\right| \\
& \leq\left(\frac{2 n+1}{2 \pi}\right)^{1 / 2}\left\|S_{n}\left(P_{n}\right)\right\|_{L_{2}(\partial D)} \\
& \leq\left(\frac{2 n+1}{2 \pi}\right)^{1 / 2}\left\|P_{n}\right\|_{L_{2}(\partial D)} \\
& \leq\left(\frac{2 n+1}{2 \pi}\right)^{1 / 2} \cdot 8^{n / 2} \sqrt{2 \pi} \max _{x \in[-1,1]}\left|P_{n}(x)\right|
\end{aligned}
$$

which proves the upper bound of the theorem.
Now we turn to the lower bound. We define $Q_{n} \in \mathcal{P}_{4 n}$ by

$$
Q_{n}(z):=z^{2 n}\left(1-z^{2}\right)^{n}=z^{2 n} \sum_{j=0}^{n}(-1)^{j}\binom{n}{j} z^{2 j}
$$

Then

$$
\begin{equation*}
\max _{x \in[-1,1]}\left|Q_{n}(x)\right|=\left(\frac{1}{4}\right)^{n} . \tag{3.5}
\end{equation*}
$$

Also

$$
S_{n}\left(Q_{n}\right)(z)=z^{2 n} \sum_{j=0}^{n}(-1)^{j} z^{2 j}
$$

hence for every positive even n

$$
\begin{equation*}
\left|S_{n}\left(Q_{n}\right)(1)\right|=1 \tag{3.6}
\end{equation*}
$$

Now we conclude the the lower bound of the theorem by combining (3.5) and (3.6).

4. Acknowledgment.

I thank Stanislaw Kwapien for raising some of the questions we settled here, and for several discussions about the topic. His method based on the Salem-Zygmund Theorem gave $c(n / \log n)^{1 / 2}$ lower bound rather than the right $c n^{1 / 2}$ one in Theorem 1.1. In addition, Theorem 1.3 is due to Kwapien.

References

[DL] R.A. DeVore and G.G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, 1993.
[LSV] L. Lovász, J. Spencer, and K. Vesztergombi, Discrepancy of set systems and matrices, European J. of Combin. 7 (1986), 151-160.
[Ri] T.J. Rivlin, Chebyshev polynomials, 2nd edition, Wiley, New York, NY,, 1990.

Department of Mathematics, Texas A\&M University, College Station, Texas 77843

E-mail address: terdelyi@math.tamu.edu

[^0]: 1991 Mathematics Subject Classification. Primary: 41A17.
 Key words and phrases. truncation of polynomials, norm of the polynomial truncation operator, Lovász-Spencer-Vesztergombi theorem, norm of the polynomial.

 Research is supported, in part, by NSF under Grant No. DMS-0070826.

