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Abstract. Let Pc
n denote the set of all algebraic polynomials of degree at most n with

complex coefficients. Let

D+ := {z ∈ C : |z| ≤ 1, Im(z) ≥ 0} .

For integers 0 ≤ k ≤ n let Fc
n,k be the set of all polynomials P ∈ Pc

n having at least n − k

zeros in D+. Let

‖f‖A := sup
z∈A

|f(z)|

for complex-valued functions defined on A ⊂ C. We prove that there are absolute constants

c1 > 0 and c2 > 0 such that

c1

(

n

k + 1

)1/2

≤ inf
P

‖P ′‖[−1,1]

‖P‖[−1,1]

≤ c2

(

n

k + 1

)1/2

for all integers 0 ≤ k ≤ n, where the infimum is taken for all 0 6≡ P ∈ Fc
n,k having at least one

zero in [−1, 1]. This is an essentially sharp reverse Markov-type inequality for the classes Fc
n,k

extending earlier results of Turán and Komarov from the case k = 0 to the cases 0 ≤ k ≤ n.

1. Introduction and Notation

Let Pn denote the set of all algebraic polynomials of degree at most n with real coeffi-
cients Let Pc

n denote the set of all algebraic polynomials of degree at most n with complex
coefficients. Let

‖f‖A := sup
z∈A

|f(z)|

for complex-valued functions defined on A ⊂ C. Turán [32] proved that

(1.1) ‖P ′‖[−1,1] ≥
√
n

6
‖P‖[−1,1]
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for all P ∈ Pc
n of degree n having all their zeros in the interval [−1, 1]. The examples

P (x) = (x2 − 1)m and P (x) = (x2 − 1)m(x + 1) show that Turán’s reverse Markov-type
inequality (1.1) is essentially sharp, even though the multiplicative constant 1/6 in (1.1) is
not the best possible. Note that the best possible multiplicative constant c = cn in (1.1)
had been found by Erőd [10], see also [11]. Another simple observation of Turán [32] is the
inequality

(1.2) ‖P ′‖D ≥ n

2
‖P‖D

for all P ∈ Pc
n of degree n having all their zeros in the closed unit disk D ⊂ C. Malik [23]

established an extension of (1.2) proving that

‖P ′‖D ≥ n

1 +R
‖P‖D

for all P ∈ Pc
n of degree n having all their zeros in the disk D(0, R) ⊂ C of radius R ≤ 1

centered at 0, while Govil [16] showed that

‖P ′‖D ≥ n

1 +Rn
‖P‖D

for all P ∈ Pc
n of degree n having all its zeros in the disk D(0, R) ⊂ C of radius R ≥ 1

centered at 0. See also [18, Section 4].
Let ε ∈ [0, 1] and let Dε be the ellipse of the complex plane with large axis [−1, 1] and

small axis [−iε, iε]. Let Pc
n(Dε) denote the collection of all P ∈ Pc

n of degree n having all
their zeros in Dε. Extending Turán’s reverse Markov-type inequality (1.1), Erőd [10, III.
tétel] proved that there are absolute constants c1 > 0 and c2 > 0 such that

c1(nε+
√
n) ≤ inf

P

‖P ′‖Dε

‖P‖Dε

≤ c2(nε+
√
n) ,

where the infimum is taken for all P ∈ Pc
n(Dε). Levenberg and Poletsky [21] proved that

√
n

20 diamK
≤ inf

P

‖P ′‖K
‖P‖K

for all compact convex set K ⊂ C, where the infimum is taken for all P ∈ Pc
n of degree n

having all their zeros in K.
Let ε ∈ [0, 1] and let Sε be the diamond of the complex plane with diagonals [−1, 1] and

[−iε, iε]. Let Pc
n(Sε) denote the collection of all P ∈ Pc

n of degree n having all their zeros
in Sε. It has been proved in [5] that there are absolute constants c1 > 0 and c2 > 0 such
that

c1(nε+
√
n) ≤ inf

P

‖P ′‖Sε

‖P‖Sε

≤ c2(nε+
√
n) ,

where the infimum is taken for all P ∈ Pc
n(Sε) with the property

|P (z)| = |P (−z)| , z ∈ C ,
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or where the infimum is taken for all P ∈ Pc
n(Sε) with real coefficients. It is an interesting

question whether or not the lower bound in the above inequality holds for all P ∈ Pc
n(Sε).

Another result in [5] shows that this is the case at least when ε = 1, that is, there are
absolute constants c1 > 0 and c2 > 0 such that

c1n ≤ inf
P

‖P ′‖S1

‖P‖S1

≤ c2n ,

where the infimum is taken for all (complex) P ∈ Pc
n(S1). Motivated by the above results

Révész [28] established the right order Turán-type reverse Markov inequalities on convex
domains of the complex plane. His main theorem contains the above mentioned results in
[5] as special cases. It states that

‖P ′‖K
‖P‖K

≥ c(K)n with c(K) = 0.0003
w(K)

d(K)2
,

for all P ∈ Pc
n of degree n having all their zeros in a bounded convex set K ⊂ C, where

d(K) is the diameter of K and

w(K) := min
γ∈[−π,π]

(

max
z∈K

Re(ze−iγ)−min
z∈K

Re(ze−iγ)

)

is the minimal width of K. The proof given by Révész is elementary, but rather subtle.
Results on Turán and Erőd type reverses of Markov- and Bernstein-type inequalities include
[25], [34], [9], [33], [21], [19], and [27]. The research on Turán and Erőd type reverses of
Markov- and Bernstein-type inequalities got a new impulse suddenly in 2006 in large part
by the work of Sz. Révész [28], see [5], [6], [8], [14], [15], and [29], for example.

G.G. Lorentz, M. von Golitschek, and Y. Makovoz devotes Chapter 3 of their book [22]
to incomplete polynomials. E.B. Saff and R.S. Varga were among the researchers having
contributed significantly to this topic. See [1], [30], and [31], for instance.

Let Pn,k be the set of all algebraic polynomials, with real coefficients, of degree at most
n+ k having at least n+ 1 zeros at 0. That is, every P ∈ Pn,k is of the form

P (x) = xn+1R(x) , R ∈ Pk−1 .

Let

V b
a (f) :=

∫ b

a

|f ′(x)| dx

denote the total variation of a continuously differentiable function f on an interval [a, b].
In [7] a question [12] asked by A. Eskenazis and P. Ivanisvili related to their paper [13] as
well as to [26] is answered by proving that there are absolute constants c3 > 0 and c4 > 0
such that

c3
n

k
≤ min

0 6≡P∈Pn,k

‖P ′‖[0,1]
V 1
0 (P )

≤ min
0 6≡P∈Pn,k

‖P ′‖[0,1]
|P (1)| ≤ c4

(n

k
+ 1

)

for all integers n ≥ 1 and k ≥ 1. Here c3 = 1/12 is a suitable choice.
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In [7] we also proved that there are absolute constants c3 > 0 and c4 > 0 such that

c3

(n

k

)1/2

≤ min
0 6≡P∈Pn,k

‖P ′(x)
√
1− x2‖[0,1]

V 1
0 (P )

≤ min
0 6≡P∈Pn,k

‖P ′(x)
√
1− x2‖[0,1]

|P (1)| ≤ c4

(n

k
+ 1

)1/2

for all integers n ≥ 1 and k ≥ 1. Here c3 = 1/8 is a suitable choice.
Let

D+ := {z ∈ C : |z| ≤ 1, Im(z) ≥ 0} .

In [20] Komarov proved that

‖P ′‖[−1,1] ≥ A
√
n ‖P‖[−1,1] , A =

2

3
√
210e

= 0.0279 . . . ,

for all polynomials P of degree n having all their zeros in the closed upper half-disk D+.
For integers 0 ≤ k ≤ n let Fc

n,k be the set of all polynomials P ∈ Pc
n having at least n−k

zeros in D+. In this paper we prove an essentially sharp reverse Markov-type inequality
for the classes Fc

n,k extending the above mentioned results of Turán and Komarov from
the case k = 0 to the cases 0 ≤ k ≤ n.

2. New Results

The lower bound of Theorem 2.1 below is quite a new result even in the case when the
infimum is taken for polynomials P ∈ Pc

n having at least n− k zeros only in [−1, 1] rather
than D+.

Theorem 2.1. There are absolute constants c1 > 0 and c2 > 0 such that

c1

(

n

k + 1

)1/2

≤ inf
P

‖P ′‖[−1,1]

‖P‖[−1,1]
≤ c2

(

n

k + 1

)1/2

for all integers 0 ≤ k ≤ n, where the infimum is taken for all 0 6≡ P ∈ Fc
n,k having at least

one zero in [−1, 1]. Here c1 = 1/636 is a suitable choice. When 0 ≤ k ≤ n/100000 the

lower bound remains valid even if the infimum is taken for all 0 6≡ P ∈ Fc
n,k.

Theorem 2.1 follows from the results below.

Theorem 2.2. Let 1 ≤ k ≤ n/100000. We have

‖P ′‖[−1,1] ≥
1

144e

(

n− k

2k

)1/2

‖P‖[−1,1]

for all P ∈ Fc
n,k.
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Corollary 2.3. Let 1 ≤ k ≤ n. We have

‖P ′‖[−1,1] ≥ max

{

1

2
,

1

448

(

n− k

2k

)1/2
}

‖P‖[−1,1]

for all P ∈ Fc
n,k with at least one zero in [−1, 1].

Theorem 2.4. There is an absolute constant c2 > 0 and there are polynomials 0 6≡ P =
Pn,k ∈ Fc

2n,2k of the form

P (x) = (x2 − 1)n−kR(x) , R ∈ P2k ,

such that
‖P ′‖[−1,1]

‖P‖[−1,1]
≤ c2

(n

k

)1/2

for every 1 ≤ k ≤ n.

We remark that the upper bound of Theorem 2.1 remains valid if we replace the closed
upper half-disk D+ with the closed unit disk D in the definition of Fc

n,k, as then the
infimum is taken for a larger class of polynomials. However, the lower bound of Theorem
2.1 does not remain valid if we replace the closed upper half-disk D+ with the closed unit
disk D in the definition of Fc

n,k, not even in the case that k = 0. This can be seen by

the example given in [20] (see also [21], where the case of star-shaped compact sets was
considered). For completeness we present here a slight modification of the calculation made
in [20] in a few lines. Given ε > 0, let m be the even integer for which 1/ε < m ≤ 1/ε+2.
We claim that for every ε > 0 and for every integer n ≥ 1 there is a Pn ∈ Pc

mn of degree
mn having all its zeros on the unit circle ∂D such that

‖P ′
n‖[−1,1] ≤ (1/ε+ 2)1−ε(mn)ε‖Pn‖[−1,1] .

To see this let Pn ∈ Pc
mn be defined by Pn(z) := (zm − 1)n. Observe that ‖Pn‖[−1,1] = 1

(as m is even), and the function

|P ′
n(x)| = mn(1− xm)n−1|x|m−1

achieves its maximum on [−1, 1] at the point a ∈ (0, 1), where

am =
m− 1

mn− 1
≤ 1

n
.

Hence

|P ′
n(a)| ≤ mnam−1 ≤ mnn1/m−1 ≤ mnε ≤ m1−ε(mn)ε ≤ (1/ε+ 2)1−ε(mn)ε .
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3. Lemmas

Our proof of Theorem 2.2 is based on the following two non-trivial results. Lemma 3.1
below is proved in [17].

Lemma 3.1. If Q ∈ Fc
n,0 and

Eδ :=

{

x ∈ [−1, 1] :

∣

∣

∣

∣

Q′(x)

Q(x)

∣

∣

∣

∣

≤ nδ

}

, δ > 0 ,

then

m(Eδ) < Aδ , δ > 0 ,

where A := 70e is a suitable choice.

Lemma 3.2 below was first proved in [24]. Its proof may also be found in [4, Section

7.2] with the larger constant B = 8
√
2.

Lemma 3.2. If R ∈ Pc
k and

Fα :=

{

x ∈ R :

∣

∣

∣

∣

R′(x)

R(x)

∣

∣

∣

∣

≥ α

}

, α > 0 ,

then

m(Fα) ≤
Bk

α
, α > 0 ,

where B := 2e is a suitable choice.

To prove Theorem 2.4 we need the following two lemmas. Lemma 3.3 below is stated
and proved as Theorem 2.1 in [7] by using deep results from [2] and [3]. Recall that Pn−k,k,
0 ≤ k ≤ n, denotes the set of all algebraic polynomials with real coefficients, of degree at
most n having at least n− k + 1 zeros at 0.

Lemma 3.3. There are absolute constants c3 > 0 and c4 > 0 such that

c3
n− k

k
≤ min

0 6≡P∈Pn−k,k

‖P ′‖[0,1]
V 1
0 (P )

≤ min
0 6≡P∈Pn−k,k

‖P ′‖[0,1]
|P (1)| ≤ c4

n

k

for all integers 1 ≤ k ≤ n− 1. Here c3 = 1/12 is a suitable choice.

Lemma 3.4 below follows directly from Lemma 3.2 in [7].

Lemma 3.4. Let 1 ≤ k ≤ n/11 and let S(x) := xn−kR(x) with R ∈ Pk. We have

|S(x)| < ‖S‖[0,1] , x ∈
[

0, 1− 10k

n− k

]

.

Lemma 3.5 below follows simply from Lemma 3.4.
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Lemma 3.5. Let 1 ≤ k ≤ (n− 10)/20 and let W (x) := (1− x)n−kV (x) with 0 6≡ V ∈ Pk.

We have

|y1/2W (y)| < ‖u1/2W (u)‖[0,1] , y ∈
[

10(2k + 1)

n
, 1

]

.

Proof of Lemma 3.5. Replacing n by 2n+1 and k by 2k+1 in Lemma 3.4 we obtain that

(3.1) |S(x)| < ‖S‖[0,1] , x ∈
[

0, 1− 10(2k + 1)

n

]

⊂
[

0, 1− 10(2k + 1)

2n− 2k

]

,

whenever 1 ≤ k ≤ (n− 10)/20 ≤ n/2 and S(x) := x2n−2kR(x) with R ∈ P2k+1. Replacing
the variable x by 1− x in (3.1) yields that

(3.2) |S(x)| < ‖S‖[0,1] , x ∈
[

10(2k + 1)

n
, 1

]

,

whenever 1 ≤ k ≤ (n − 10)/20 and S(x) := (1 − x)2n−2kR(x) with R ∈ P2k+1. Now let
1 ≤ k ≤ (n− 10)/20 and let W (x) := (1− x)n−kV (x) with 0 6≡ V ∈ Pk. Applying (3.2) to
S defined by

S(x) = xW (x)2 = (1− x)2n−2k(xV (x)2) , V ∈ Pk ,

we get the conclusion of the lemma. �

4. Proof of the Theorems

Proof of Theorem 2.2. Let 0 6≡ P ∈ Fc
n,k, that is, P = QR, where Q ∈ Fc

n−k,0 and R ∈ Pc
k.

We have

(4.1)
P ′

P
=

Q′

Q
+

R′

R
.

By Lemma 3.1 we have

(4.2) m(Eδ) < Aδ, δ > 0, A := 70e ,

where

(4.3) Eδ :=

{

x ∈ [−1, 1] :

∣

∣

∣

∣

Q′(x)

Q(x)

∣

∣

∣

∣

≤ (n− k)δ

}

, δ > 0 .

By Lemma 3.2 we have

(4.4) m(Fδ) ≤ Bδ, δ > 0, B := 2e ,

where

(4.5) Fδ :=

{

x ∈ [−1, 1] :

∣

∣

∣

∣

R′(x)

R(x)

∣

∣

∣

∣

≥ k

δ

}

, δ > 0 .
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Now we choose δ > 0 such that

(4.6)
k

δ
=

1

2
(n− k)δ ,

that is,

(4.7) δ :=

(

2k

n− k

)1/2

.

Then, combining (4.1)–(4.7), we can deduce that

(4.8)

∣

∣

∣

∣

P ′(x)

P (x)

∣

∣

∣

∣

≥
∣

∣

∣

∣

Q′(x)

Q(x)

∣

∣

∣

∣

−
∣

∣

∣

∣

R′(x)

R(x)

∣

∣

∣

∣

≥ (n− k)δ− k

δ
=

(

(n− k)k

2

)1/2

, x ∈ [−1, 1] \Hδ ,

where Hδ := Eδ ∪ Fδ with

(4.9) m(Hδ) < (A+B)δ = 72eδ .

Note that
1 ≤ k ≤ n

100000

implies that

(4.10) 72eδ = 72e

(

2k

n− k

)1/2

≤ 72e

(

2

99999

)1/2

< 1 .

Choose an x0 ∈ [−1, 1] such that |P (x0)| := ‖P‖[−1,1]. It follows from (4.10) that the
length of the interval [x0−72eδ, x0+72eδ]∩ [−1, 1] is at least 72eδ, and hence (4.9) implies
that there is a

(4.11) y ∈ [x0 − 72eδ, x0 + 72eδ] ∩ [−1, 1]

such that

(4.12) y ∈ [−1, 1] \Hδ .

If

(4.13) |P (y)| ≥ 1

2
‖P‖[−1,1] ,

then combining (4.12), (4.8) and (4.13), we obtain

‖P ′‖[−1,1] ≥|P ′(y)| ≥
(

1

2
(n− k)k

)1/2

|P (y)|

≥
(

1

2
(n− k)k

)1/2
1

2
‖P‖[−1,1] ≥

1

144e

(

n− k

2k

)1/2

‖P‖[−1,1] ,
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and the theorem follows. If (4.13) does not hold, that is, |P (y)| < 1
2 ‖P‖[−1,1], then it

follows from the Mean Value Theorem and (4.11) that there is a value ξ in the open
interval between y and x0 such that

‖P ′‖[−1,1] ≥|P ′(ξ)| ≥
∣

∣

∣

∣

P (y)− P (x0)

y − x0

∣

∣

∣

∣

≥ 1

2
‖P‖[−1,1]|y − x0|−1

≥(144eδ)−1‖P‖[−1,1] =
1

144e

(

n− k

2k

)1/2

‖P‖[−1,1] ,

and the theorem follows. �

Proof of Corollary 2.3. Let 1 ≤ k ≤ n. Suppose 0 6≡ P ∈ Fc
n,k has at least one zero in

[−1, 1]. Choose a, b ∈ [−1, 1] such that P (a) = 0, and |P (b)| = ‖P‖[−1,1]. By the Mean
Value Theorem there is a ξ ∈ (−1, 1) between a and b such that

(4.14) ‖P ′‖[−1,1] ≥ |P ′(ξ)| ≥
∣

∣

∣

∣

P (b)− P (a)

b− a

∣

∣

∣

∣

≥ 1

2
‖P‖[−1,1] .

If 1 ≤ k ≤ n

100000
, the result follows from Theorem 2.2 and (4.14) as 1/448 ≤ (144e)−1.

If
n

100000
< k ≤ n, then

1

448

(

n− k

2k

)1/2

≤ 1

448

(

99999

2

)1/2

<
1

2
,

and the result follows simply from (4.14). �

Proof of Theorem 2.4. For k = n the polynomials P = Pn,n ∈ Fc
2n,2n defined by P (x) := x

show the theorem with c2 = 1. Let 1 ≤ k ≤ n − 1. By the upper bound of Lemma 3.3
there is an absolute constant c4 > 0 and there are polynomials

0 6≡ Q = Qn,k ∈ Pn−k,k

such that

(4.15)
‖Q′‖[0,1]
‖Q‖[0,1]

≤ c4
n

k
.

Let

(4.16) 0 6≡ R(x) = Rn,k(x) = Q(1− x) .

Obviously R is of the form

R(x) = (1− x)n−k+1U(x) , U ∈ Pk−1 ,
9



and R′ is of the form

(4.17) R′(x) = (1− x)n−kV (x) , V ∈ Pk−1 ,

Let 0 6≡ P = Pn,k be defined by P (x) := R(x2). Observe that P is of the form

P (x) = (1− x2)n−k+1U(x) , U ∈ Pc
2k−2 ,

hence P ∈ Fc
2n,2k. Observe that P (x) := R(x2) and (4.16) imply that

(4.18) ‖P‖[−1,1] = ‖R‖[0,1] = ‖Q‖[0,1]

and

(4.19) P ′(x) = 2xR′(x2) .

First assume that 1 ≤ k ≤ (n − 10)/20. Let y := x2. Using (4.19), (4.17), R′ 6≡ 0, and
Lemma 3.5, we obtain

|P ′(x)| = |2xR′(x2)| = |2y1/2R′(y)| < ‖2u1/2R′(u)‖[0,1] = ‖P ′‖[−1,1]

for every y = x2 ∈ [10(2k + 1)/n, 1], and hence there is an

(4.20) a ∈
[

0,

(

10(2k + 1)

n

)1/2
]

⊂ [0, 1]

such that

(4.21) |P ′(a)| = ‖P ′‖[0,1] .

Note that 1 ≤ k ≤ (n − 10)/20 implies that a ∈ [0, 1]. Using (4.19), (4.21), (4.19) again,
(4.20), (4.15), and (4.18), we obtain

‖P ′‖[−1,1] = ‖P ′‖[0,1] = |P ′(a)| = |2aR′(a2)|

≤ 2

(

10(2k + 1)

n

)1/2

‖R′‖[0,1] = 2

(

10(2k + 1)

n

)1/2

‖Q′‖[0,1]

≤ 2

(

10(2k + 1)

n

)1/2

c4
n

k
‖Q‖[0,1]

≤ c2

(n

k

)1/2

‖Q‖[0,1] = c2

(n

k

)1/2

‖P‖[−1,1]

with the absolute constant c2 = 12c4 > 0.
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Now assume that in addition to 1 ≤ k ≤ n− 1 we have (n− 10)/20 ≤ k ≤ n− 1. Hence
k ≥ n/30 also holds. Choose an a ∈ [0, 1] such that (4.21) holds. Using (4.19), (4.21),
(4.19) again, (4.15), k ≥ n/30, (4.18), and 1 ≤ k ≤ n, we obtain

‖P ′‖[−1,1] = ‖P ′‖[0,1] = |P ′(a)| = |2aR′(a2)| ≤ 2‖R′‖[0,1] = 2‖Q′‖[0,1]

≤ 2c4
n

k
‖Q‖[0,1] = 60c4‖Q‖[0,1] = 60c4‖P‖[−1,1] ≤ c2

(n

k

)1/2

‖P‖[−1,1]

with the absolute constant c2 = 60c4 > 0. �

Proof of Theorem 2.1. The case that k = 0 is the result of Komarov [20] mentioned in the
Introduction, so we may assume that 1 ≤ k ≤ n, in which cases the lower bound of the
theorem follows immediately from Corollary 2.3. To see that c1 := 1/636 can be chosen in
the lower bound of the theorem we distinguish three cases. If k = 0, then Komarov’s result
mentioned in the Introduction gives the lower bound of the theorem with c1 := 1/636 as

1

636
<

2

3
√
210e

.

If 1 ≤ k ≤ n/318, then Corollary 2.3 gives the lower bound of the theorem with c1 := 1/636
as

1

636

(

n

k + 1

)1/2

≤ 1

636

(n

k

)1/2

=
1

636

(

2n

n− k

)1/2(
n− k

2k

)1/2

=

√
2

636

(

1 +
k

n− k

)1/2 (
n− k

2k

)1/2

≤ 1

449

(

1 +
1

317

)1/2 (
n− k

2k

)1/2

≤ 1

448

(

n− k

2k

)1/2

.

If n/318 ≤ k ≤ n, then n/k ≤ 318, and hence Corollary 2.3 gives the lower bound of the
theorem with c1 := 1/636 again as

1

636

(

n

k + 1

)1/2

≤ 1

636

(n

k

)1/2

≤ 1

636

√
318 ≤ 1

2
.

To see the upper bound of the theorem let f(n, k) defined by

f(n, k) := min
0 6≡P∈Fc

n,k

‖P ′‖[−1,1]

‖P‖[−1,1]
.

When k = 0 and n = 2ν is even the polynomial P defined by P (x) = (x2 − 1)ν shows
the upper bound of the theorem. Observe that for a fixed positive integer n the function
f(n, k) is decreasing on the set of integers 0 ≤ k ≤ n, and for a fixed integer 1 ≤ k ≤ n we
have f(n, k) ≤ f(n− 1, k − 1). So it is sufficient to show the upper bound of the theorem
only for even numbers n = 2ν and k = 2κ satisfying 1 ≤ κ ≤ ν in which cases the upper
bound of the theorem follows from Theorem 2.4. �
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5. T. Erdélyi, Inequalities for exponential sums via interpolation and Turán-type reverse Markov

inequalities, in: Frontiers in interpolation and approximation, Monographs and Textbooks in

Pure and Appl. Math. (Boca Raton) Vol. 282, ed. by N. Govil at al., Chapman & Hall/CRC,
Boca Raton, FL, 2007, pp. 119–144.
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