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ABSTRACT. The equality

sup
p

| p′(a) |
‖p‖[a,b]

=
2n2

b− a

is shown, where the supremum is taken for all exponential sums p of the
form

p(t) = a0 +
n
∑

j=1

aje
λjt, aj ∈ R,

with nonnegative exponents λj. The inequalities

‖p′‖[a+δ,b−δ] ≤ 4(n + 2)3δ−1‖p‖[a,b]

and
‖p′‖[a+δ,b−δ] ≤ 4

√
2(n+ 2)3δ−3/2‖p‖L2[a,b]

are also proved for all exponential sums of the above form with arbitrary
real exponents. These results improve inequalities of Lorentz and Schmidt
and partially answer a question of Lorentz.
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1. Introduction and Notation
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Let Λn := {λ1 < λ2 < · · · < λn}, λj 6= 0, j = 1, 2 . . . , n,

E(Λn) = {f : f(t) = a0 +
n
∑

j=1

aje
λjt, aj ∈ R}

and

En :=
⋃

Λn

E(Λn) = {f : f(t) = a0 +
n
∑

i=1

aje
λjt, aj, λj ∈ R}.

We will use the norms

‖f‖[a,b] := max
x∈[a,b]

|f(x)|

and

‖f‖L2[a,b] :=

(

∫ b

a
| f(x) |2 dx

)1/2

for functions f ∈ C[a, b].

Schmidt [3] proved that there is a constant c(n) depending only on n so
that

‖p′‖[a+δ,b−δ] ≤ c(n)δ−1‖p‖[a,b]
for every p ∈ En and δ ∈ (0, (b−a)/2). Lorentz [2] improved Schmidt’s result
by showing that for every α > 1

2 there is a constant c(α) depending only on
α so that c(n) in the above inequality can be replaced by c(α)nα logn, and he
speculated that there may be an absolute constant c so that Schmidt’s in-
equality holds with c(n) = cn. Theorem 2 of this paper shows that Schmidt’s
inequality holds with c(n) = 4(n + 2)3. Our first theorem establishes the
sharp inequality

| p′(a) |≤ 2n2

b− a
‖p‖[a,b]

for every p ∈ En with nonnegative exponents λj .

2. New Results

Theorem 1. We have

sup
p

| p′(a) |
‖p‖[a,b]

=
2n2

b− a

for every a < b, where the supremum is taken for all exponential sums

p ∈ En with nonnegative exponents. The equality

sup
p

| p′(a) |
‖p‖[a,b]

=
2n2

a(log b− log a)
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also holds for every 0 < a < b, where the supremum is taken for all Müntz

polynomials of the form

p(x) = a0 +
n
∑

j=1

ajx
λj , aj ∈ R, λj ≥ 0.

Theorem 2. The inequalities

‖p′‖[a+δ,b−δ] ≤ 4(n+ 2)3 δ−1‖p‖[a,b]

and

‖p′‖[a+δ,b−δ] ≤ 4
√
2(n+ 2)3 δ−3/2‖p‖L2[a,b]

hold for every p ∈ En and δ ∈ (0, (b − a)/2).

3. Proofs

To prove Theorem 1 we need some notation. If Λn := {λ1 < λ2 < · · · <
λn} is a set of positive real numbers then the real span of

{1, xλ1 , xλ2 , · · · xλn}, x ≥ 0,

will be denoted by M(Λn). It is well-known that these are Chebyshev spaces
(see [1] for instance), so M(Λn) possesses a unique Chebyshev “polynomial”
TΛn on [a, b], 0 < a < b, with the properties
(i) TΛn ∈ M(Λn),

(ii) ‖TΛn‖[a,b] = 1

and

(iii) there are a = x0 < x1 < · · · < xn = b so that

TΛn(xj) = (−1)j , j = 0, 1, · · · , n.

It is routine to prove (see [1] again) that TΛn has exactly n distinct zeros
on (a, b),

max
06≡p∈M(Λn)

| p′(a) |
‖p‖[a,b]

=
| T ′

Λn
(a) |

‖TΛn‖[a,b]
=| T ′

Λn
(a) | (1)

and

max
06≡p∈M(Λn)

| p(0) |
‖p‖[a,b]

=
| TΛn(0) |
‖TΛn‖[a,b]

=| TΛn(0) | . (2)

Lemma 3. Let

Λn := {λ1 < λ2 < · · · < λn} and Γn := {γ1 < γ2 < · · · < γn}

3



be so that 0 < λj ≤ γj for each j = 1, 2, · · · , n. Then

| T ′
Γn
(a) |≤| T ′

Λn
(a) | . (3)

Proof. Without loss of generality we may assume that there is an index
m, 1 ≤ m ≤ n, so that λm < γm and λj = γj if j 6= m, since repeated
applications of the result in this situation give the lemma in the general
case. First we show that

| TΓn(0) |<| TΛn(0) | . (4)

Indeed, let RΓn ∈ M(Γn) interpolate TΛn at the zeros of TΛn , and be normal-
ized so that RΓn(0) = TΛn(0). Then the Improvement Theorem of Pinkus
and Smith [4, Theorem 2] yields

| RΓn(x) |≤| TΛn(x) |≤ 1, x ∈ [a, b].

Hence, using (2) with Λn replaced by Γn, we obtain

| TΛn(0) |=| RΓn(0) |≤| TΓn(0) |,

which proves (4). Using the defining properties of TΛn and TΓn , we deduce
that TΛn −TΓn has at least n+1 zeros in [a, b] (we count every zero without
sign change twice). Now assume that (3) does not hold, then

| T ′
Λn

(a) |>| T ′
Γn

(a) | .

This, together with (4), implies that TΛn−TΓn has at least one zero in (0, a).
Hence TΛn − TΓn has at least n + 2 zeros in (0, b]. This is a contradiction,
since

TΛn − TΓn ∈ span{1, xλ1 , xλ2 , · · · , xλn , xγm},
and every function from the above span can have only at most n + 1 zeros
in (0,∞) (see [3]). ✷

Proof of Theorem 1. It is sufficient to prove only the second statement of
the theorem, the first one can be obtained by the change of variable x = et.
We obtain from (1) and Lemma 3 that

| p′(a) |
‖p‖[a,b]

≤ lim
δ→0+

| T ′
Λn,δ

(a) |
‖TΛn,δ

‖[a,b]
= lim

δ→0+
| T ′

Λn,δ
(a) |
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for every p of the form

p(x) = a0 +
n
∑

j=1

ajx
λj , aj ∈ R, λj > 0,

where
Λn,δ := {δ, 2δ, 3δ, · · · , nδ}

and Tn,δ is the Chebyshev “polynomial” of M(Λn,δ) on [a, b]. From the
definition and uniqueness of TΛn,δ

it follows that

TΛn,δ
(x) = Tn

(

2

bδ − aδ
xδ − bδ + aδ

bδ − aδ

)

,

where Tn(y) := cos(n arccos y). Therefore

| T ′
Λn,δ

(a) | = | T ′
n(−1) | 2

bδ − aδ
δaδ−1

=
2n2

δ−1(bδ − 1)− δ−1(aδ − 1)
aδ−1 −→

δ → 0+

2n2

a(log b− log a)

and the theorem is proved. ✷

To prove Theorem 2 we need two lemmas.

Lemma 4. For every set Λn := {λ1 < λ2 < . . . λn} of nonzero real numbers

there is a point y ∈ [−1, 1] depending only on Λn so that

| p′(y) |≤ 2(n+ 2)3‖p‖L2[−1,1]

for every p ∈ E(Λn).

Proof. Take the orthonormal set {pk}nk=0 on [−1, 1] defined by

(i) pk ∈ span{1, eλ1t, eλ2t, · · · , eλkt}, k = 0, 1, . . . , n,

(ii)

∫ 1

−1
pipj = δi,j , 0 ≤ i ≤ j ≤ n.

Writing p ∈ E(Λn) as a linear combination of the functions pk, k = 0, 1, · · · , n,
and using the Cauchy-Schwartz inequality and the orthonormality of {pk}nk=0

on [−1, 1], we obtain in a standard fashion that

max
p∈E(Λn)

| p′(t0) |
‖p‖L2[−1,1]

=

(

n
∑

k=0

p′k(t0)
2

)1/2

, t0 ∈ R.

Let

Ak := {t ∈ [−1, 1] : | pk(t) |≥ (n+ 1)1/2}, k = 0, 1, · · · , n
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and

Bk := {t ∈ [−1, 1]\Ak : | p′k(t) |≥ 2(n + 2)5/2}, k = 0, 1, · · · , n.

Since
1
∫

−1
p2k = 1, we have

m(Ak) ≤ (n+ 1)−1, k = 0, 1, · · · , n.

Since span{1, eλ1t, eλ2t, · · · , eλkt} is a Chebyshev system, each Ãk := [−1, 1]\Ak

comprises of at most k+1 intervals, and each Bk comprises of at most 2(k+1)
intervals. Therefore

2(n + 2)5/2 m(Bk) ≤
∫

Bk

| p′k(t) | dt ≤ 4(k + 1)
√
n+ 1,

whence
n
∑

k=0

m(Bk) ≤
2
√
n+ 1

(n+ 2)5/2
(n+ 1)(n + 2)

2
< 1.

Now let

A := [−1, 1]\
n
⋃

k=0

(Ak ∪Bk).

Then

m(A) ≥ 2−
n
∑

k=0

m(Ak)−
n
∑

k=0

m(Bk)

> 2− (n + 1)(n+ 1)−1 − 1 > 0,

so there is a point y ∈ A ⊂ [−1, 1], where

| p′(y) |≤ 2(n + 1)5/2, k = 0, 1, · · · , n,

hence
(

n
∑

k=0

p′k(y)
2

)1/2

≤ 2(n + 2)3,

and the lemma is proved. ✷

Lemma 5. We have

| p′(0) |≤ 2(n + 2)3‖p‖L2[−2,2] ≤ 2(n+ 2)3‖p‖[−2,2]

for every p ∈ En.

6



Proof. Let Λn := {λ1 < λ2 < · · · , λn} be a fixed set of nonzero real
numbers, and let y ∈ [−1, 1] be chosen by Lemma 4. Let 0 6≡ p ∈ E(Λn).
Then

q(t) := p(t− y) ∈ E(Λn),

therefore, applying Lemma 4 to q, we obtain

| p′(0) |
‖p‖L2[−2,2]

≤ | p′(0) |
‖p‖L2[−1−y,1−y]

=
| q′(y) |

‖q‖L2[−1,1]
≤ 2(n + 2)3,

and the lemma is proved. ✷

Proof of Theorem 2. Let t0 ∈ [a + δ, b − δ]. Applying Lemma 5 to
q(t) := p(δt/2 + t0), we get the theorem. ✷
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