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Abstract. For z0 ∈ C and r > 0, let

D(z0, r) := {z ∈ C : |z − z0| < r} .

In this paper we show that a polynomial p of the form

(*) p(x) =
n∑

j=0

ajx
j , |a0| = 1 , |aj | ≤ 1 , aj ∈ C ,

has at most (c1/α) log(1/α) zeros in the disk D(0, 1− α) for every α ∈ (0, 1), where
c1 > 0 is an absolute constant. This is a simple consequence of Jensen’s formula.
However it is not so simple to show that this estimate for the number of zeros in
D(0, 1− α) is sharp. We will present two examples to show the existence of polyno-
mials pα (α ∈ (0, 1)) of the form (*) (with a suitable n ∈ N depending on α) with
at least ⌊(c2/α) log(1/α)⌋ zeros in D(0, 1 − α) (c2 > 0 is an absolute constant). In
fact, we will show the existence of such polynomials from much smaller classes with
more restrictions on the coefficients. Our first example has probabilistic background
and shows the existence of polynomials pα (α ∈ (0, 1)) with complex coefficients of
modulus exactly 1 and with at least ⌊(c2/α) log(1/α)⌋ zeros in D(0, 1−α) (c2 > 0 is
an absolute constant). Our second example is constructive and defines polynomials
pα (α ∈ (0, 1)) with real coefficients of modulus at most 1, with constant term 1, and
with at least ⌊(c2/α) log(1/α)⌋ zeros in D(0, 1− α) (c2 > 0 is an absolute constant).

1. Introduction

There is a huge literature on the zeros of polynomials with restricted coefficients.
See, for example, Amoroso [Am], Bloch and Pólya [BP], Beaucoup, Borwein, Boyd,
and Pinner [BBBP], Bombieri and Vaaler [BV], Hua [Hu], Erdős and Turán [ET],
Borwein and Erdélyi [BE1] and [BE2], Borwein, Erdélyi, and Kós [BEK], Littlewood
[Li], Odlyzko and Poonen [OP], Schur [Schu], and Szegő [Sze].

In [BE2] we prove the three essentially sharp theorems below.

1991 Mathematics Subject Classification. Primary: 41A17.
Key words and phrases. zeros of polynomials, coefficient constraints, flatness of polynomials.
Research is supported, in part, by NSF under Grant No. DMS–9623156.

Typeset by AMS-TEX

1
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Theorem 1.1. Every polynomial p of the form

p(x) =

n
∑

j=0

ajx
j , |a0| = 1 , |aj | ≤ 1 , aj ∈ C ,

has at most c
√
n zeros inside any polygon with vertices on the unit circle, where the

constant c > 0 depends only on the polygon.

Theorem 1.2. There is an absolute constant c > 0 such that every polynomial p
of the form

p(x) =

n
∑

j=0

ajx
j , |a0| = |an| = 1 , |aj | ≤ 1 , aj ∈ C ,

has at most c(nα+
√
n) zeros in the strip

{z ∈ C : |Im(z)| ≤ α} ,

and in the sector
{z ∈ C : |arg(z)| ≤ α} .

Theorem 1.3. Let α ∈ (0, 1). Every polynomial p of the form

p(x) =
n
∑

j=0

ajx
j , |a0| = 1 , |aj | ≤ 1 , aj ∈ C ,

has at most c/α zeros inside any polygon with vertices on the circle

{z ∈ C : |z| = 1− α} ,

where the constant c > 0 depends only on the number of the vertices of the polygon.

For z0 ∈ C and r > 0, let

D(z0, r) := {z ∈ C : |z − z0| < r} .

In this paper we show that a polynomial p of the form

(1.1) p(x) =

n
∑

j=0

ajx
j , |a0| = 1 , |aj | ≤ 1 , aj ∈ C ,

has at most (c1/α) log(1/α) zeros in the disk D(0, 1−α) for every α ∈ (0, 1), where
c1 > 0 is an absolute constant. This is a simple consequence of Jensen’s formula.
However it is not so simple to show that this estimate for the number of zeros
in D(0, 1 − α) is sharp. We will present two examples to show the existence of
polynomials pα (α ∈ (0, 1)) of the form (1.1) (with a suitable n ∈ N depending
on α) with at least ⌊(c2/α) log(1/α)⌋ zeros in D(0, 1 − α) (c2 > 0 is an absolute
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constant). In fact, we will show the existence of such polynomials from much smaller
classes with more restrictions on the coefficients. Our first example has probabilistic
background and shows the existence of polynomials pα (α ∈ (0, 1)) with complex
coefficients of modulus exactly 1 and with at least ⌊(c2/α) log(1/α)⌋ zeros inD(0, 1−
α) (c2 > 0 is an absolute constant). Our second example is constructive and
defines polynomials pα (α ∈ (0, 1)) with real coefficients of modulus at most 1, with
constant term 1, and with at least ⌊(c2/α) log(1/α)⌋ zeros in D(0, 1 − α) (c2 > 0
is an absolute constant). So, in particular, the constant in Theorem 1.3 cannot be
made independent of the number of vertices of the polygon.

Some other observations on polynomials with restricted coefficients are also for-
mulated.

New Results

Theorem 2.1. Let α ∈ (0, 1). Every polynomial of the form

(2.1) p(x) =

n
∑

j=0

ajx
j , |a0| = 1 , |aj | ≤ 1 , aj ∈ C ,

has at most (2/α) log(1/α) zeros in the disk D(0, 1− α).

Theorem 2.2. For every α ∈ (0, 1) there is a polynomial Q := Qα of the form

(2.2) Qα(x) =

n
∑

j=0

aj,αx
j , |aj,α| = 1 , aj,α ∈ C ,

such that Qα has at least ⌊(c2/α) log(1/α)⌋ zeros in the disk D(0, 1 − α), where
c2 > 0 is an absolute constant.

Theorem 2.2 will follow from

Theorem 2.3. For every n ∈ N there is a polynomial pn of the form

(2.3) pn(x) =

n
∑

j=0

aj,nx
j , |aj,n| = 1 , aj,n ∈ C ,

such that pn has no zeros in the annulus
{

z ∈ C : 1− c3 logn

n
< |z| < 1 +

c3 logn

n

}

,

where c3 > 0 is an absolute constant.

To formulate some interesting corollaries of Theorems 2.1 and 2.3 we introduce
some notation. Let Kn be the collection of polynomials of the form

p(x) =

n
∑

j=0

ajx
j , |a0| = |an| = 1 , aj ∈ [−1, 1] .
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Let Kc
n be the collection of polynomials of the form

p(x) =

n
∑

j=0

ajx
j , |a0| = |an| = 1 , aj ∈ C , |aj | ≤ 1 .

Let Ln be the collection of polynomials of the form

p(x) =

n
∑

j=0

ajx
j , aj ∈ {−1, 1} .

Finally let Lc
n be the collection of polynomials of the form

p(x) =

n
∑

j=0

ajx
j , aj ∈ C , |aj| = 1 .

For a polynomial p, let

d(p) := min{|1− |z|| : z ∈ C , p(z) = 0} .

For a class of polynomials A we define

γ(A) := sup{d(p) : p ∈ A}

Theorem 2.4. There are absolute constants c4 > 0 and c5 > 0 such that

c4 logn

n
≤ γ(Lc

n) ≤ γ(Kc
n) ≤

c5 logn

n
.

Theorem 2.5. There is an absolute constant c6 > 0 such that

γ(Ln) ≤ γ(Kn) ≤
c6 logn

n
.

There is an absolute constant c7 > 0 such that for infinitely many values of n ∈ N

we have
c7
n

≤ γ(Ln) ≤ γ(Kn) .

Theorem 2.6. For every α ∈ (0, 1) there is a polynomial P := Pα of the form

(2.4) P (x) =

n
∑

j=0

aj,αx
j , a0,α = 1 , aj,α ∈ [−1, 1] ,

that has at least ⌊(c8/α) log(1/α)⌋ zeros in the disk D(0, 1−α), where c8 > 0 is an
absolute constant.
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Conjecture 2.7. Every polynomial p ∈ Ln has at least one zero in the annulus

{

z ∈ C : 1− c9
n

< |z| < 1 +
c9
n

}

,

where c9 > 0 is an absolute constant.

In the case when a polynomial p ∈ Ln is self-reciprocal, we can prove more than
the conclusion of Conjecture 2.7. Namely

Theorem 2.8. Every self-reciprocal polynomial p ∈ Ln has at least one zero on
the unit circle {z ∈ C : |z| = 1}.

We will also show that Conjecture 2.7 implies the conjecture below.

Conjecture 2.9. There is no sequence (pnm
)∞m=1 of “ultra-flat” polynomials pnm

∈
Lnm

satisfying

(1− εm)(nm + 1)1/2 ≤ |pnm
(z)| ≤ (1 + εm)(nm + 1)1/2

for all z ∈ C with |z| = 1 and for all m ∈ N, where (εm)∞m=1 is a sequence of
positive numbers converging to 0.

Theorem 2.10. Conjecture 2.7 implies Conjecture 2.9.

3 Auxiliary Results

The proof of Theorem 2.1 is based on the following result. For a proof, see, for
example, E.10 c] of Section 4.2 in [BE1].

Theorem 3.1 (Jensen’s Formula). Suppose h is a nonnegative integer and

f(z) =

∞
∑

k=h

ckz
k , ch 6= 0 ,

is analytic on a disk of radius greater than R, and suppose that the zeros of f in
D(0, R) \ {0} = {z ∈ C : 0 < |z| < R} are a1, a2, . . . , am, where each zero is listed
as many times as its multiplicity. Then

log |ch|+ h logR+

m
∑

k=1

log
R

|ak|
=

1

2π

∫ 2π

0

log |f(Reiθ)| dθ .

To prove Theorem 2.2 we will need the following deep result of Kahane [Ka].
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Theorem 3.2. There is a sequence (pn)
∞
n=1 of polynomials pn ∈ Lc

n of the form

(3.1) pn(x) =

n
∑

j=0

aj,nx
j , |aj,n| = 1 , aj,n ∈ C ,

that satisfy
n1/2 − n0.31 < |pn(z)| < n1/2 + n0.31

for every z ∈ C with |z| = 1 and for every sufficiently large n.

In the proof of Theorem 2.2 we will also need the following simple polynomial
inequality. For its proof see, for example, E.17 of Section 5.1 in [BE1]. Let D(0, 1)
and D(0, 1) denote the open and closed complex unit disks, respectively.

Theorem 3.3. We have

|p(z)| ≤ |z|n max
u∈D(0,1)

|p(u)|

for every polynomial p of degree at most n with complex coefficients, and for every
z ∈ C with |z| > 1.

To prove Theorem 2.6 the key step is the following lemma. We denote the class
of all real trigonometric polynomials of degree at most n by Tn.

Lemma 3.4. For every r ∈ (0, 1) there is a real trigonometric polynomial Pn ∈ Tn
of the form

Pn(x) =

n
∑

k=−n

ake
ikx, a0 = 1, ak ∈ [−r, r] , k = ±1,±2, . . . ,±n ,

with n ≤ c1r
−13 (c1 > 0 is an absolute constant) for which

m({x ∈ [−π, π] : |Pn(x)| > r} ≤ r .

We denote by Pn the collection of all polynomials of degree at most n with real
coefficients. From Lemma 3.4 we will easily obtain

Lemma 3.5. For every r ∈ (0, 1) we can find an integer n ∈ N, a polynomial
Q2n ∈ P2n of the form

z−nQ2n(z) =

n
∑

k=−n

akz
k, a0 = 1, ak ∈ [−r, r] , k = ±1,±2, . . . ,±n

with n ≤ c1r
−13 (c1 > 0 is an absolute constant) and a set UE ⊂ C such that

|Q2n(z)| ≤ 2r , z ∈ UE ,

where UE is of the form

UE :=
{

z = αeiθ : α ∈
[

1− c2r
26, 1

]

, θ ∈ E
}

,

E ⊂ [0, 2π] is the union of at most 2n+1 intervals, and the Lebesgue measure m(E)
of E is at least 2π − r (c2 > 0 is an absolute constant).

The following simple observation is due to Van der Corput. We will need it in
the proof of Lemma 3.4. See page 197 of [Zy].
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Lemma 3.6 (Van der Corput Lemma). Let A 6= 0 and B ∈ R. Let I ⊂ R be
an interval. Then

∣

∣

∣

∣

∫

I

exp
(

i(Ax2 +Bx)
)

dx

∣

∣

∣

∣

≤ C|A|−1/2 ,

where C is a constant independent of A, B, and I.

The Nikolskii-type inequality below (see [DL], Theorem 2.6 on page 102) deals
with the class Tn of all real trigonometric polynomials of degree at most n. This
inequality will be needed in the proof of Theorem 2.8. To formulate the lemma we
need the following notation. Let K := R (mod 2π). For f ∈ C(K) let

‖f‖∞ := max
θ∈K

|f(θ)|

and

‖f‖p :=

(∫ 2π

0

|f(θ)|p dθ
)1/p

, 0 < p < ∞ .

Lemma 3.7 (Nikolskii-Type Inequality for Tn). We have

‖Tn‖p ≤
(

2rn+ 1

2π

)1/q−1/p

‖Tn‖q

for all Tn ∈ Tn and 0 < q ≤ p ≤ ∞, where r := r(q) is the smallest integer not less
than q/2.

Another two basic polynomial inequalities that we will need in the proof of
Lemmas 3.4 and 3.5 are the following. We denote by T c

n the set of all trigonometric
polynomials of degree at most n with complex coefficients. The set of all algebraic
polynomials of degree at most n with complex coefficients will be denoted by Pc

n.

Lemma 3.8 (Bernstein’s Inequality for Trigonometric Polynomials). We
have

max
t∈[0,2π]

|T ′
n(t)| ≤ n max

t∈[0,2π]
|Tn(t)|

for every Tn ∈ T c
n .

Lemma 3.9 (Bernstein’s Inequality for Algebraic Polynomials on the Unit
Disk). We have

max
z∈D(0,1)

|P ′
n(z)| ≤ n max

z∈D(0,1)
|Pn(z)|

for every Pn ∈ Pc
n.

In the proof of Lemma 3.4 we will also need the following classical direct theorem
of approximation. See, for example, Theorem 2.2 of [DL] on page 204.

Lemma 3.10 (A version of Jackson’s Theorem). Suppose that f is a contin-
uously differentiable periodic function on R. Then there is a Tn ∈ Tn such that

max
t∈[0,2π]

|f(t)− Tn(t)| ≤ Cn−1 max
t∈[0,2π]

|f ′(t)| ,

where C > 0 is an absolute constant.
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4. Proofs

Proof of Theorem 2.1. Let α ∈ (0, 1). Let p be a polynomial of the form (2.1). It
is easy to see that if α > 1/2, then p does not have any zeros in D(0, 1− α), hence
the conclusion of the theorem is true. So assume that 0 < α ≤ 1/2. Then

|p(z)| ≤ 1

1− |z| , z ∈ D(0, 1) .

Applying Jensen’s formula with R := 1− α/2, we obtain

0 +

m
∑

k=1

log
1− α/2

|ak|
≤ 1

2π
2π log

2

α
,

where the zeros of p in D(0, 1 − α/2) \ {0} = {z ∈ C : 0 < |z| < 1 − α/2}
are a1, a2, . . . , am, and where each zero is listed as many times as its multiplicity.
Therefore

m
∑

k=1

|ak|<1−α

log
1− α/2

|ak|
≤ log

2

α
,

and hence
Mα

2
≤ M log

1− α/2

1− α
≤ log

2

α
,

where M is the number of zeros of p in D(0, 1− α). �

Proof of Theorem 2.3. Associated with a polynomial

p(z) =

n
∑

j=0

ajz
j , aj ∈ C ,

we define

(4.1) p∗(z) = znp(1/z) =

n
∑

j=0

an−jz
j .

Let

pn(x) =

n
∑

j=0

aj,nx
j , |aj,n| = 1 , aj,n ∈ C ,

be the Kahane polynomials of Theorem 3.2 that satisfy

n1/2 − n0.31 < |pn(z)| < n1/2 + n0.31

for every z ∈ C with |z| = 1 and for every sufficiently large n. Then

(n1/2 − n0.31)2 < z−npn(z)p
∗
n(z) = |pn(z)|2 < (n1/2 + n0.31)2

for every z ∈ C with |z| = 1 and for every sufficiently large n. We define

(4.2) qn(z) = pn(z)p
∗
n(z)− nzn .
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Then qn is a polynomial of degree 2n and

−3n0.81 < z−nqn(z) = |pn(z)|2 − n < 3n0.81

for every z ∈ C with |z| = 1 and for every sufficiently large n. From this we conclude
that

(4.3) |qn(z)| < 3n0.81

for every z ∈ C with |z| = 1 and for every sufficiently large n. Using Theorem 3.3
and (4.3), we obtain that

(4.4) |qn(z)| ≤ |z|n3n0.81 < n

for every
{

z ∈ C : 1 ≤ |z| < 1 +
c logn

n

}

,

if 0 < c < 0.19 and n is sufficiently large. Suppose that pn has a zero in the annulus

{

z ∈ C : 1− c logn

2n
< |z| < 1 +

c logn

2n

}

,

where 0 < c < 1. Then pnp
∗
n has a zero z0 in the annulus

{

z ∈ C : 1 ≤ |z| < 1 +
c logn

n

}

.

Hence by (4.2) we have

|qn(z0)| = |pn(z0)p∗n(z0)− nzn0 | = n|z0|n ≥ n ,

which is impossible by (4.4) if 0 < c < 0.19 and n is sufficiently large. �

Proof of Theorem 2.2. By Theorem 2.3 there is a polynomial pn of the form (2.3)
such that pn has no zeros in the annulus

{

z ∈ C : 1− c logn

n
< |z| <

(

1− c logn

n

)−1
}

where c > 0 is an absolute constant. Since pn is of the form (2.3), p∗n (defined by
(4.1)) is also of the form (2.3). Since pn has exactly n complex zeros, either pn or
p∗n has at least n/2 zeros in the closed unit disk {z ∈ C : |z| ≤ 1}. Let qn := pn if
pn has at least n/2 zeros in the closed unit disk, and let qn := p∗n otherwise. Then
qn has at least n/2 zeros in the disk

{

z ∈ C : |z| < 1− c logn

n

}
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with an absolute constant c > 0. To prove the theorem we pay assume that α ∈
(0, 1/2]. For α ∈ (0, 1/2], let n be the smallest integer such that

c logn

n
≥ α .

Let Q = Qα := qn. Then Q is of the form (2.2) and it has at least

⌊(c2/α) log(1/α)⌋

zeros in the disk D(0, 1− α), where c2 > 0 is an absolute constant. �

Proof of Theorem 2.4. First we show the upper bound. Let pn ∈ Kc
n. Observe that

either pn ∈ Kc
n or p∗n ∈ Kc

n (defined by (4.1)) has at least n/2 zeros in the closed
unit disk {z ∈ C : |z| ≤ 1}. By Theorem 2.1 both pn ∈ Kc

n and p∗n ∈ Kc
n have at

most n/4 zeros in the disk D(0, 1 − (c logn)/n) with a sufficiently large absolute
constant c > 0. Hence either pn or p∗n has at least n/4 zeros in the annulus

{

z ∈ C : 1− c logn

n
≤ |z| ≤ 1

}

with a sufficiently large absolute constant c > 0. If pn has at least n/4 zeros in the
above annulus, then d(pn) ≤ (c logn)/n. If p∗n has at least n/4 zeros in the above
annulus, then pn has at least n/4 zeros in the annulus

{

z ∈ C : 1 ≤ |z| ≤
(

1− c logn

n

)−1
}

.

and this yields d(pn) ≤ (c5 logn)/n with a suitable absolute constant c5 again. So
the upper bound of the theorem is proved.

The lower bound of the theorem follows from Theorem 2.3 immediately. �

Proof of Theorem 2.5. The upper bound is a special case of Theorem 2.4. To see
the lower bound we define

P1(z) := z2 − z − 1 , Pk(z) = Pk−1(z
3)P1(z) , k = 2, 3, . . . .

Then it is easy to see that Pk ∈ L3k−1 and d(Pk) ≥ c3−k with an absolute constant
c > 0. This proves the lower bound of the theorem. �

Proof of Lemma 3.4. In this proof c1, c2, . . . will denote suitable positive absolute
constants. Let h ∈ (0, 1). (The relation between r in the lemma and h will be
specified later). Take a nonnegative-valued function g ∈ C1(R) satisfying

g(x) = 0 , x ∈ R \ (−1, 1) ,

0 ≤ g(x) ≤ 1 , x ∈ [−1, 1] ,

and
∫ π

−π

g(x) dx = 1 .
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Let gh(x) := g((x− π)/h). Then

(4.5) gh(x) = 0 , x ∈ R \ (π − h, π + h) ,

(4.6)

∫ 2π

0

gh(x) dx = h ,

and

(4.7) max
x∈[0,2π]

|g′h(x)| = h−1 max
x∈[0,2π]

|g′(x)| =: c1h
−1

(the function g is fixed in the proof so the constant c1 is absolute). By Lemma 3.10
(Jackson’s Theorem), there is a Qm ∈ Tm such that

max
x∈[0,2π]

|(Qm − gh)(x)| ≤ c2c1h
−1m−1 ≤ h2

4π

assuming that

(4.8) m = ⌊4πc1c2h−3⌋+ 1 .

Hence the 2π-periodic Qm ∈ Tm satisfies

(4.9) |Qm(x)| ≤ h2

4π
, x ∈ [0, π − h] ∪ [π + h, 2π] ,

and

∫ 2π

0

Qm(x) dx =

∫ 2π

0

gh(x) dx +

∫ 2π

0

(Qm(x) − gh(x)) dx

≥ h− 2πh2

4π
≥ h

2
.

(4.10)

Denote the coefficients of Qm by bj , that is

Qm(x) =

m
∑

j=−m

bje
ijx , bj ∈ R .

Note that (4.9) implies

|bj | =
∣

∣

∣

∣

1

2π

∫ 2π

0

Qm(x)e−ijx dx

∣

∣

∣

∣

≤ 1

2π

∫ 2π

0

|Qm(x)| dx

≤ 1

2π

(

2h max
x∈[π−h,π+h]

|Qm(x)| + 2π
h2

4π

)

≤ 1

2π

(

2h

(

max
x∈[π−h,π+h]

|gh(x)| +
h2

4π

)

+
h2

2

)

≤ 1

2π

(

2h

(

max
x∈[0,2π]

|g(x)|
)

+ h2

)

≤ c3h

(4.11)
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(the function g is fixed in the proof so the constant c3 > 0 is absolute). Also, by
(4.10),

|b0| =
∣

∣

∣

∣

1

2π

∫ 2π

0

Qm(x) dx

∣

∣

∣

∣

≥ h

4π
.(4.12)

Now let Sn ∈ Tn be the best uniform approximation from Tn to f(x) := Qm(Ax2)
on [−π, π]. Since f is even, so is Sn. Denote the coefficients of Sn by dk, that is,

Sn(x) =
n
∑

k=−n

dke
ikx , dk ∈ R , d−k = dk , k = ±1,±2, . . . ,±n .

Combining Lemma 3.10 (Jackson’s Theorem) with Lemma 3.8 (Bernstein’s Inequal-
ity), we obtain

max
t∈[−π,π]

|f(t)− Sn(t)| ≤ c2

(

max
t∈[−π,π]

|f ′(t)|
)

n−1

≤ c22Aπ

(

max
t∈[−π,π]

|Q′
m(t)|

)

n−1

≤ c22Aπm

(

max
t∈[−π,π]

|Qm(t)|
)

n−1

≤ 2Aπ
(

⌊4πc1c2h−3⌋+ 1
)

2n−1 ≤ h2

(4.13)

for n := ⌊c4Ah−5⌋+ 1 with an absolute constant c4 > 0. We write the coefficients
dk of Sn as follows:

dk :=
1

2π

∫ π

−π

Sn(x)e
−ikx dx

=
1

2π

∫ π

−π

f(x)e−ikx dx+
1

2π

∫ π

−π

(Sn(x)− f(x))e−ikx dx

=
1

2π

∫ π

−π

Qm(Ax2)e−ikx dx+
1

2π

∫ π

−π

(Sn(x)− f(x))e−ikx dx

=
1

2π

∫ π

−π





m
∑

j=−m

bj exp
(

i(Ajx2 − kx)
)



 dx

+
1

2π

∫ π

−π

(Sn(x) − f(x))e−ikx dx

(4.14)

Now we choose A := c25h
−8, where the absolute constant c5 > 0 will be chosen later.

Applying Lemma 3.6 (Van-der-Corput Lemma) in (4.14) and using (4.13), (4.11),
and (4.8), we obtain

|dk| ≤ c6A
−1/2





m
∑

j=−m

|bj |



+ h2 ≤ c6A
−1/2c3h(2m+ 1) +

h2

2π

≤ c7A
−1/2h−2 + h2 ≤ c8h

2, k = ±1,±2, . . . ,±n ,

(4.15)
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where c6 > 0, c7 > 0, and c8 > 0 are suitable absolute constants. Also, applying
Lemma 3.6 (Van-der-Corput Lemma) in (4.14) and using (4.8), (4.13), and (4.12),
we obtain

|d0| ≥ |b0| − c6A
−1/2





−1
∑

j=−m

|bj |+
m
∑

j=1

|bj |



− h2

≥ |b0| − c6A
−1/2c3h(2m+ 1)− h2 ≥ |b0| − c9A

−1/2h−2 − h2

≥ h

4π
− c9h

2

c5
− h2 ≥ h

8π

(4.16)

with some absolute constant c9 > 0, where c5 > 0 is chosen so that the last
inequality in (4.16) is satisfied. Observe that (4.9) and f(x) = Qm(Ax2), x ∈
[−π, π] imply that

(4.17)

{

x ∈ [−π, π] : |f(x)| > h2

4π

}

⊂
N
⋃

k=0

([ak, bk] ∪ [−bk,−ak]) ,

where

[ak, bk] :=

[

(

(2k + 1)π − h

A

)1/2

,

(

(2k + 1)π + h

A

)1/2
]

and N := ⌊A/2⌋+ 1 .

A straightforward calculation gives that for h ∈ (−1, 1),

2

N
∑

k=0

(bk − ak) = 2

N
∑

k=0

(

(2k + 1)π + h

A

)1/2

−
(

(2k + 1)π − h

A

)1/2

≤ 2

N
∑

k=0

2h

2
(

A
(

2k + 1
2

)

π
)1/2

≤ 2c10hA
−1/2N1/2 ≤ c11h

(4.18)

with some absolute constants c10 > 0 and c11 > 0. Combining (4.17), (4.18), and
(4.13) gives for h ∈ (0, 1) that

(4.19) m
({

x ∈ [−π, π] : |Sn(x)| > 2h2
})

≤ c11h .

Now let Rn := d−1
0 Sn ∈ Tn, where, as before,

(4.20) n := ⌊c4Ah−5⌋+ 1 ≤ ⌊c12h−13⌋

with an absolute constants c12 > 0. Since Sn is even, so is Rn. Hence by (4.15)
and (4.16) we have

Rn(x) =

n
∑

k=−n

ake
ikx ,

a0 = 1, −8πc8h ≤ ak ≤ 8πc8h, k = ±1,±2, . . . ,±n .

(4.21)
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Finally we conclude from (4.19) that

(4.22) m ({x ∈ [0, 2π] : |Rn(x)| > 16πh}) ≤ c11h .

Now (4.20), (4.21), and (4.22) give the lemma. �

Proof of Lemma 3.5. For r ∈ (0, 1), let Pn ∈ Tn be the same as in Lemma 3.4
(n ≤ c1r

−13). Let
Q2n(e

it) := eintPn(t) .

Then Q2n ∈ P2n is of the required form. Also, there exists a set E ⊂ [0, 2π] with
m(E) ≥ 2π − r such that

(4.23) |Q2n(z)| ≤ r , z = eiθ, θ ∈ E .

Since the set
{z ∈ C : |z| = 1, |Q2n(z)| < r}

is the union of at most 2n sub-arcs, we may assume that E ⊂ [0, 2π] is the union of
at most 2n+ 1 intervals. Now let zα := αeiθ with α ∈ [1− c2r

26, 1]. Using Lemma
3.9 (Bernstein’s Inequality) and (4.23), we obtain

|Q2n(zα)| ≤ |Q2n(z1)|+ |Q2n(zα)−Q2n(z1)|
≤ r + |zα − z1| max

|w|≤1
|Q′

2n(w)|

≤ r + 2nc2r
26 max

|w|≤1
|Q2n(w)| ≤ r + 2nc2r

26(1 + 2nr)

≤ r + 2c1r
−13c2r

26(1 + 2c1r
−12) ≤ 2r

for a sufficiently small absolute constant c2 > 0. �

Proof of Theorem 2.6. Without loss of generality we may assume that α−1 is an
integer. Let M be defined by

(4.24) M := ⌊c3 log(1/α)⌋

with a sufficiently small absolute constant c3 > 0 that will be specified later. We
define

(4.25) R(z) := 2MzM/α − 1 .

Then R has M/α zeros on a circle centered at the origin with radius 2−α. These
are given explicitly by the formulas

zk := 2−α exp

(

2πki

M/α

)

, k = 0, 1, . . . ,M/α− 1 .

Let Bk, k = 0, 1, . . . , (M/α)− 1, be the regions that are described as the union of
the points z = βeiθ for which

β ∈
[

2−2α, 2−α/2
]

and θ ∈
[

(2k − 1)π

M/α
,
(2k + 1)π

M/α

]

.
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Then zk ∈ Bk and an easy calculation shows that

(4.26) |R(z)| ≥ c4 , z ∈ ∂Bk ,

where ∂Bk denotes the boundary of Bk and c4 > 0 is an absolute constant. As-
sociated with r := α1/52, let n, Q2n, E, and UE be as in Lemma 3.5. Then the
radial width of UE is c2α

1/2. Also, m(E) ≥ 2π − α1/52, E is the union of at most
2c1α

−1/4 +1 intervals, and |Q2n(z)| ≤ 2α1/52 on UE . From these we conclude that

(4.27) |2MQ2n(z)| < 2M2α1/52 < e(log 2)c3 log(1/α) < c4 , z ∈ UE ,

assuming that the absolute constant c3 > 0 in (4.24) is sufficiently small. Note that
by Lemma 3.5 we have n ≤ c1r

−13, so if α < c6 with a sufficiently small absolute
constant c6 > 0, then

M

α
− n ≥ M

α
− c1r

−13 =
M

α
− c1α

−1/4

≥ ⌊c3 log(1/α)⌋
α

− c1α
−1/4 > 0

(4.28)

Also, if c3 > 0 in (4.24) is sufficiently small, then

(4.29) 2Mr = e(log 2)⌊c3 log(1/α)⌋α1/52 ≤ 1 .

Now let
P (z) := R(z)− 2MzM/α−nQ2n(z) .

By (4.28) and (4.29) if α < c6 with a sufficiently small absolute constant c6 > 0, and
if the absolute constant c3 > 0 in (4.24) is sufficiently small, then the polynomial
P is of the form

P (z) =

N
∑

k=0

akz
k, a0 = −1, ak ∈ [−1, 1] , k = 1, 2, . . . , N .

It is also routine to observe that for α < c7 (with a sufficiently small absolute
constant c7 > 0) the number of the indices k = 0, 1, . . . , (M/α) − 1, for which
Bk ⊂ UE , is at least M/(2α). Using (4.26), (4.27), and Rouche’s Theorem, we
conclude that if α < c7 and the absolute constant c3 > 0 in (4.24) is sufficiently
small, then P has at least

M/(2α) = ⌊c3 log(1/α)⌋/(2α)

zeros in the disk centered at 0 with radius 2−α/2 ≤ 1 − α/4. The proof is now
finished. �

Proof of Theorem 2.8. Suppose p ∈ Ln is self-reciprocal and suppose p does not
have a zero on the unit circle. If n is odd, then p(−1) = 0, and the theorem is
proved. If n is even, then Tn(t) := e−nt/2p(eit) is a real trigonometric polynomial
of degree at most n/2, that is Tn ∈ Tn/2, and Tn does not have any real zeros.
Without loss of generality we may assume that Tn is positive on the real line (this
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implies that the constant term in Tn is 1). We fix an ε ∈ (0, 1) so that Tn − ε does
not have a real zero. Then we have

‖Tn − ε‖1 =

∫ 2π

0

|Tn(θ)− ε| dθ =

∫ 2π

0

(Tn(θ)− ε) dθ = 2π(1 − ε) .

Using the Parseval Formula, we also have

‖Tn − ε‖2 = (2π(n+ 1− 2ε+ ε2))1/2 .

But then by Lemma 3.7 (Nikolskii-Type Inequality for Tn) we have

(2π(n+ 1− 2ε+ ε2))1/2 = ‖Tn − ε‖2

≤
(

n+ 1

2π

)1/2

‖Tn − ε‖1 =

(

n+ 1

2π

)1/2

2π(1− ε) .

Hence, for ε ∈ (0, 1) we have
n(2ε− ε2) ≤ 0 ,

a contradiction. �

Proof of Theorem 2.10. The proof is similar to that of Theorem 2.2. We omit the
details. �
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