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Abstract. For n ∈ N , L > 0, and p ≥ 1 let κp(n, L) be the largest possible value of k for
which there is a polynomial P 6= 0 of the form

P (x) =
n
∑

j=0

ajx
j , |a0| ≥ L

(

n
∑

j=1

|aj |
p

)

1/p

, aj ∈ C ,

such that (x − 1)k divides P (x). For n ∈ N and L > 0 let κ∞(n, L) be the largest possible
value of k for which there is a polynomial P 6= 0 of the form

P (x) =

n
∑

j=0

ajx
j , |a0| ≥ L max

1≤j≤n
|aj | , aj ∈ C ,

such that (x− 1)k divides P (x).

We prove that there are absolute constants c1 > 0 and c2 > 0 such that

c1
√

n/L− 1 ≤ κ∞(n, L) ≤ c2
√

n/L

for every L ≥ 1. The above result complements an earlier result of the authors showing that

there is an absolute constant c3 > 0 such that

min

{

1

6

√

(n(1− logL)− 1 , n

}

≤ κ∞(n, L) ≤ min
{

c3
√

n(1− logL) , n
}

for every n ∈ N and L ∈ (0, 1]. Essentially sharp results on the size of κ2(n, L) are also

proved.

1. Notation

For n ∈ N, L > 0, and p ≥ 1 we define the following numbers. Let κp(n, L) be the
largest possible value of k for which there is a polynomial P 6= 0 of the form

P (x) =
n
∑

j=0

ajx
j , |a0| ≥ L

(

n
∑

j=1

|aj |p
)1/p

, aj ∈ C ,
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such that (x − 1)k divides P (x). For n ∈ N and L > 0 let κ∞(n, L) the largest possible
value of k for which there is a polynomial P 6= 0 of the form

P (x) =

n
∑

j=0

ajx
j , |a0| ≥ L max

1≤j≤n
|aj| , aj ∈ C ,

such that (x− 1)k divides P (x). In [3] we proved that there is an absolute constant c3 > 0
such that

min

{

1

6

√

(n(1− logL)− 1 , n

}

≤ κ∞(n, L) ≤ min
{

c3
√

n(1− logL) , n
}

for every n ∈ N and L ∈ (0, 1]. However, we were far from being able to establish the
right result in the case of L ≥ 1. It is our goal in this paper to prove the right order of
magnitude of κ∞(n, L) and κ2(n, L) in the case of L ≥ 1. Our results in [3] have turned
out to be related to a number of recent papers from a rather wide range of research areas.
See [1,6-15,17-23], for example.

2. New Results

We extend some of our main results in [3] to the case L ≥ 1. Our main result is the
following.

Theorem 2.1. There are absolute constants c1 > 0 and c2 > 0 such that

c1
√

n/L− 1 ≤ κ∞(n, L) ≤ c2
√

n/L

for every n ∈ N and L ≥ 1/2.

To prove the above theorem, its lower bound, in particular, requires some subtle new
ideas. An interesting connection to number theory is explored. Namely, the fact that the
density of square free integers is positive (in fact, it is π2/6), appears in our proof in an
elegant fashion.

While we consider Theorem 2.1 to be our main result in this paper we also prove the
following.

Theorem 2.2. There are absolute constants c1 > 0 and c2 > 0 such that

c1
√
n/L− 1 ≤ κ2(n, L) ≤ c2

√
n/L

for every n ∈ N and L > 2−1/2, and

min
{

c1
√

n(− logL)− 1 , n
}

≤ κ2(n, L) ≤ min
{

c2
√

n(− logL) , n
}

for every n ∈ N and L ∈ (0, 2−1/2].

We think that the right result on the size of κ2(n, L) offered by Theorem 2.2 is also of
some interest.
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3. Lemmas

In this section we list our lemmas needed in the proofs of Theorems 2.1 and 2.2. These
lemmas are proved in Section 4.

Lemma 3.1. For any L ≥ 1 there are polynomials Pn of the form

Pn(x) =
n
∑

j=0

aj,nx
j , aj,n ∈ R , a0,n =

6L

π2
+ o(L) ,

|aj,n| ≤ 2, j = 1, 2, . . . , n , n = 1, 2, . . . ,

such that Pn has at least ⌊
√

n/L⌋ zeros at 1.

Lemma 3.2. For any L > 0 there are polynomials Pn of the form

Pn(x) =
n
∑

j=0

aj,nx
j , aj,n ∈ R , a0,n = 1 ,

n
∑

j=1

a2j,n ≤ L−2 , n = 1, 2, . . . ,

such that
(a) Pn has at least ⌊1

4

√
n/L⌋ zeros at 1 if 2−1/2 ≤ L.

(b) Pn has at least ⌊14
√

n(− logL)⌋ zeros at 1 if 4−n ≤ L ≤ 2−1/2.
(c) Pn has at least n zeros at 1 if 0 < L ≤ 4−n.

To prove Lemma 3.2 our tool is the next lemma due to Halász [24]. Let Pm denote the
collection of all polynomials of degree at most m with real coefficients. Let Pc

m denote the
collection of all polynomials of degree at most m with complex coefficients.

Lemma 3.3. For every m ∈ N, there exists a polynomial Qm ∈ Pm such that

Qm(0) = 1 , Qm(1) = 0 , |Qm(z)| < e2/m, |z| ≤ 1 .

The observation below is well known, easy to prove, and recorded in several papers. See
[3], for example.

Lemma 3.4. Let P 6= 0 be a polynomial of the form P (x) =
∑n

j=0 ajx
j. Then (x − 1)k

divides P if and only if
∑n

j=0 ajQ(j) = 0 for all polynomials Q ∈ Pc
k−1.

For n ∈ N, 1 < q ≤ ∞, and L > 0 we define the following numbers. Let µq(n, L) be the
smallest value of k for which there is a polynomial of degree k with complex coefficients
such that

|Q(0)| > 1

L

(

n
∑

j=1

|Q(j)|q
)1/q

.

Let µ∞(n, L) be the smallest value of k for which there is a polynomial of degree k with
complex coefficients such that

|Q(0)| > 1

L
max
1≤j≤n

|Q(j)| .

Our next lemma is a simple consequence of Hölder’s inequality.
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Lemma 3.5. Let 1 ≤ p, q ≤ ∞ and 1/p+ 1/q = 1. Then for every n ∈ N and L > 0, we
have

κp(n, L) ≤ µq(n, L) .

The next lemma is stated as Lemma 3.4 and proved in [18].

Lemma 3.6. For arbitrary real numbers A,M > 0, there exist a polynomial g such that
f = g2 is a polynomial of degree

m <
√
π
√
A

4
√
M + 2

with real coefficients such that f(0) = M and

|f(x)| ≤ min

{

M,
1

x2

}

, x ∈ (0, A] .

We also need Lemma 5.7 from [3] which may be stated as follows.

Lemma 3.7. Let n and R be a positive integers with 1 ≤ R ≤ √
n. Then there exists a

polynomial f ∈ Pm with

m ≤ 4
√
n+ 9

7R
√
n+R + 4 ≤ 44

7 R
√
n+ 4

such that
f(1) = f(2) = · · · = f(R2) = 0

and

|f(0)| > exp(R2)
(

|f(R2 + 1)|+ |f(R2 + 2)|+ · · ·+ |f(n)|
)

≥ exp(R2)

(

n
∑

j=1

|f(j)|2
)1/2

.

Lemmas 3.6 and 3.7 imply the following results needed in the proof of Theorems 2.1
and 2.2.

Lemma 3.8. For every n ∈ N and 0 < K ≤ exp(n− 2
√
n), there exists a polynomial h of

degree m with real coefficients satisfying

|h(0)| > K
n
∑

j=1

|h(j)| , and m ≤
{

c4
√
nK , K < 2 ,

c4
√
n logK , K ≥ 2 ,

with an absolute constant c4 > 0.

Lemma 3.9. For every n ∈ N and 0 < K ≤ exp(n − 2
√
n), there exists a polynomial H

of degree m with real coefficients satisfying

|H(0)| >
√
K





n
∑

j=1

|H(j)|2




1/2

, and m ≤
{

c5
√
nK , K < 2 ,

c5
√
n logK , K ≥ 2 ,

with an absolute constant c5 > 0.
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4. Proofs

Proof of Lemma 3.1. Following page 138 of [2] we define

Hm(x) :=
(m!)2

2πi

∫

Γ

xt dt
∏m

k=0 (t− k2)
, m = 0, 1, . . . , x ∈ (0,∞) ,

where the simple closed contour Γ surrounds the zeros of the denominator of the integrand.
Then Hm is a polynomial of degree m2 with a zero at 1 with multiplicity at least m. (This
can be seen easily by repeated differentiation and then evaluation of the above contour
integral by expanding the contour to infinity.) Also, by the residue theorem,

Hm(x) = 1 +

m
∑

k=1

ck,mxk2

,

where

ck,m =
(−1)m(m!)2

∏m
j=0,j 6=k (k

2 − j2)
=

(−1)k2(m!)2

(m− k)!(m+ k)!
.

It follows that each ck,m is real and

|ck,m| ≤ 2 , k = 1, 2, . . . , m .

Let SL be the collection of all square free integers in [1, L]. Let m := ⌊
√

n/L⌋. We define

Pn(x) :=
∑

j∈SL

Hm(xj) .

Then Pn is of the form

Pn(x) =
n
∑

j=0

aj,nx
j , aj,n ∈ R , j = 0, 1, . . . , n .

Since ju2 6= lv2 whenever j, l ∈ SL, j 6= l, and u, v ∈ {1, 2, . . . , m}, we have

|aj,n| ≤ 2, j = 1, 2, . . . , n .

Also, a0,n = |SL|, where |SL| denotes the number of the elements in SL, and it is well
known that

|SL| =
6L

π2
+ o(L) ,

see [16, pp. 267-268], for example. Finally, observe that each term in Pn has a zero at 1

with multiplicity at least m = ⌊
√

n/L⌋ zeros at 1, and hence so does Pn. �
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Proof of Lemma 3.2. (a) Let 2−1/2 ≤ L. We define k := ⌊14
√
n/L⌋ and m := ⌊4√nL⌋.

Observe that m ≥ 1 holds. Let Pn := Qk
m ∈ Pn, where Qm ∈ Pm is a polynomial satisfying

the properties of Lemma 3.3. Then

Pn(x) =

n
∑

j=0

aj,nx
j , aj,n ∈ R , j = 0, 1, . . . , n ,

has at least k = ⌊14
√
n/L⌋ zeros at 1. Clearly, a0,n = Pn(0) = 1, and since k ≤ 1

4

√
n/L

and m ≥ 2
√
nL, we have

|Pn(z)| < exp(2k/m) ≤ exp

(

1

4L2

)

, |z| ≤ 1 .

Hence, it follows from the Parseval formula that

n
∑

j=1

a2j,n =

(

1

2π

∫ 2π

0

|Pn(e
it)|2 dt

)

− 1 ≤ exp

(

1

2L2

)

− 1 ≤ 1

L2
.

In the last step we used the inequality ex ≤ 1 + 2x valid for x ∈ [0, 1] with x =
1

2L2
.

(b) Let 2−1/2 ≤ L ≤ 4−n. Let k := ⌊12
√

n(− logL)⌋ and m := ⌊2
√

n/(− logL)⌋. Observe

that m ≥ 1 holds. Let Pn := Qk
m ∈ Pn, where Qm ∈ Pm is a polynomial satisfying the

properties of Lemma 3.3. Then

Pn(x) =

n
∑

j=0

aj,nx
j , aj,n ∈ R , j = 0, 1, . . . , n ,

has at least k = ⌊12
√

n(− logL)⌋ zeros at 1. Clearly, a0,n = Pn(0) = 1, and since k ≤
1
2

√

n(− logL) and m ≥
√

n/(− logL), we have

|Pn(z)| < exp(2k/m) ≤ exp(− logL) =
1

L
, |z| ≤ 1 .

Hence, it follows from the Parseval formula that

n
∑

j=1

a2j,n =

(

1

2π

∫ 2π

0

|Pn(e
it)|2 dt

)

− 1 ≤ 1

L2
.

(c) Observe that the polynomial Pn defined by Pn(z) = (z − 1)n has at least n zeros at 1,
P (0) = 1, and

n
∑

j=1

a2j,n =
n
∑

j=0

(

n

j

)2

≤ 4n .

�
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Proof of Lemma 3.5. Let m := µq(n, L). Let Q be a polynomial of degree m with complex
coefficients such that

|Q(0)| > 1

L

(

n
∑

j=1

|Q(j)|q
)1/q

.

Now let P be a polynomial of the form

P (x) =
n
∑

j=0

ajx
j , |a0| ≥ L

(

n
∑

j=1

|aj |p
)1/p

, aj ∈ C .

It follows from Hölder’s inequality that

∣

∣

∣

∣

∣

n
∑

j=1

ajQ(j)

∣

∣

∣

∣

∣

≤
(

n
∑

j=1

|aj|p
)1/p( n

∑

j=1

|Q(j)|q
)1/q

<
|a0|
L

L|Q(0)| = |a0Q(0)| .

Then
∑n

j=0 ajQ(j) 6= 0, and hence Lemma 3.4 implies that (x− 1)m+1 does not divide P .

We conclude that κp(n, L) ≤ m = µq(n, L). �

Proof of Lemma 3.8. Note that h ≡ 1 is a trivial choice in the case of K > 1/n. First we
consider the case of 2 ≤ K ≤ exp(n− 2

√
n). Let R := ⌊

√
logK⌋+1, and let h := f , where

f is the polynomial given in Lemma 3.7 with this R. Then

|h(0)| > K
n
∑

j=1

|h(j)| ,

and the degree m of h satisfies

m ≤ 44
7 R

√
n+ 4 ≤ c6

√
n logK

with an absolute constants c6 > 0.
Now let 1/n ≤ K < 2. Let f be the polynomial given in Lemma 3.6 with A := n and

M := 9K2. Let h := f . Then

n
∑

j=1

|h(j)| =
n
∑

j=1

|f(j)| ≤
∑

j≤(3K)−1

M +
∑

j>(3K)−1

1

j2

<
1

3K
9K2 + 2(3K) = 9K ,

|h(0)| = |f(0)| = M = 9K2 ,

and the degree m of h satisfies

m < π
√
n

4
√
M + 2 < c7

√
nK
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with an absolute constants c7 > 0. �

Proof of Lemma 3.9. Note that H ≡ 1 is a trivial choice again in the case of K < 1/n. In
the case of 2 ≤ K ≤ exp(n − 2

√
n) let H := h, where the polynomial h is the same as in

Lemma 3.8. Then

|H(0)| > K

(

n
∑

j=1

|H(j)|
)

≥ K

(

n
∑

j=1

|H(j)|2
)1/2

≥
√
K

(

n
∑

j=1

|H(j)|2
)1/2

,

and the degree m of H satisfies

m ≤ c6
√

n logK ,

where c6 > 0 is the same absolute constant as in the proof of Lemma 3.8.
Now let 1/n ≤ K < 2. Let g be the polynomial such that f = g2 is the polynomial

given in Lemma 3.6 with A := n and M := 9K2. Let H := g. Then h = H2, where the
polynomial h is the same as in Lemma 3.8. Then





n
∑

j=1

|H(j)|2




1/2

=





n
∑

j=1

|h(j)|





1/2

< 3
√
K , |H(0)| =

√

h(0) = 3K ,

and the degree m of H satisfies m < 1
2c7

√
nK, where c7 > 0 is the same absolute constant

as in the proof of Lemma 3.8. �

Proof of Theorem 2.1. The upper bound follows from Lemmas 3.5 and 3.8. Indeed, Lemma
3.5 implies κ∞(n, L) ≤ µ1(n, L), and it follows from Lemma 3.8 with K = L−1 that

µ1(n, L) ≤ c4
√

n/L . The lower bound of the theorem follows directly from Lemma 3.1. �

Proof of Theorem 2.2. The upper bound follows from Lemmas 3.5 and 3.9. Indeed, Lemma
3.5 implies κ2(n, L) ≤ µ2(n, L) and it follows from Lemma 3.9 with K = L−2 that

µ2(n, L) ≤
{

c5
√
n/L, L > 2−1/2 ,

c5
√

n(−2 logL) , exp(−n/2 +
√
n) ≤ L ≤ 2−1/2 .

Combining this with κ2(n, L) ≤ µ2(n, L) and the trivial estimate κ2(n, L) ≤ n, the upper
bound of the theorem follows. The lower bound of the theorem is a direct consequence of
Lemma 3.2. �
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2. P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Springer, New York, 1995.
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