The number of unimodular zeros of self-reciprocal polynomials with coefficients in a finite set

Tamás Erdélyi
Department of Mathematics
Texas A\&M University
College Station, Texas 77843

July 15, 2016

[^0]
Abstract

Let $\mathrm{NZ}\left(T_{n}\right)$ denote the number of real zeros of a trigonometric polynomial

$$
T_{n}(t)=\sum_{j=0}^{n} a_{j, n} \cos (j t), \quad a_{j, n} \in \mathbb{C},
$$

in a period $[a, a+2 \pi), a \in \mathbb{R}$. Let $\mathrm{NZ}\left(P_{n}\right)$ denote the number of zeros of an algebraic polynomial

$$
P_{n}(z)=\sum_{j=0}^{n} p_{j, n} z^{j}, \quad p_{j, n} \in \mathbb{C}
$$

on the unit circle of \mathbb{C}. Let

$$
\mathrm{NC}_{k}\left(P_{n}\right):=\left|\left\{u: 0 \leq u \leq n-k+1, \sum_{j=u}^{u+k-1} p_{j, n} \neq 0\right\}\right|
$$

One of the highlights of this paper states that $\lim _{n \rightarrow \infty} \mathrm{NZ}\left(T_{n}\right)=\infty$ whenever the set

$$
\left\{a_{j, n}: j \in\{0,1, \ldots, n\}, n \in \mathbb{N}\right\} \subset[0, \infty)
$$

is finite and

$$
\lim _{n \rightarrow \infty}\left|\left\{j \in\{0,1, \ldots, n\}: a_{j, n} \neq 0\right\}\right|=\infty .
$$

This follows from a more general result stating that

$$
\lim _{n \rightarrow \infty} \mathrm{NZ}\left(P_{2 n}\right)=\infty
$$

whenever $P_{2 n}$ is self-reciprocal, the set

$$
\left\{p_{j, 2 n}: j \in\{0,1, \ldots, 2 n\}, n \in \mathbb{N}\right\} \subset \mathbb{R}
$$

is finite, and $\lim _{n \rightarrow \infty} \mathrm{NC}_{k}\left(P_{2 n}\right)=\infty$ for every $k \in \mathbb{N}$.

1 Introduction and Notation.

Research on the distribution of the zeros of algebraic polynomials has a long and rich history. In fact all the papers [A-02]-[T-07] in our list of references are just some of the papers devoted to this topic. The study of the number of real zeros trigonometric polynomials and the number of unimodular zeros (that is, zeros lying on the unit circle of the complex plane) of algebraic polynomials with various constraints on their coefficients are the subject of quite a few of these. We do not try to survey these in our introduction.

Let $S \subset \mathbb{C}$. Let $\mathcal{P}_{n}^{c}(S)$ be the set of all algebraic polynomials of degree at most n with each of their coefficients in S. A polynomial

$$
\begin{equation*}
P_{n}(z)=\sum_{j=0}^{n} p_{j, n} z^{j}, \quad p_{j, n} \in \mathbb{C} \tag{1.1}
\end{equation*}
$$

is called conjugate-reciprocal if

$$
\begin{equation*}
\bar{p}_{j, n}=p_{n-j, n}, \quad j=0,1, \ldots, n \tag{1.2}
\end{equation*}
$$

A polynomial P_{n} of the form (1.1) is called plain-reciprocal or self-reciprocal if

$$
\begin{equation*}
p_{j, n}=p_{n-j, n}, \quad j=0,1, \ldots, n \tag{1.3}
\end{equation*}
$$

If a conjugate reciprocal polynomial P_{n} has only real coefficients, then it is obviously plain-reciprocal. We note also that if

$$
P_{2 n}(z)=\sum_{j=0}^{2 n} p_{j, 2 n} z^{j}, \quad p_{j, 2 n} \in \mathbb{C}
$$

is conjugate-reciprocal, then there are $\theta_{j} \in \mathbb{R}, j=1,2, \ldots n$, such that

$$
T_{n}(t):=P_{2 n}\left(e^{i t}\right) e^{-i n t}=p_{n, 2 n}+\sum_{j=1}^{n} 2\left|p_{j, 2 n}\right| \cos \left(j t+\theta_{j}\right)
$$

If the polynomial $P_{2 n}$ above is plain-reciprocal, then

$$
T_{n}(t):=P_{2 n}\left(e^{i t}\right) e^{-i n t}=p_{n, 2 n}+\sum_{j=1}^{n} 2 p_{j, 2 n} \cos (j t)
$$

In this paper, whenever we write " $P_{n} \in \mathcal{P}_{n}^{c}(S)$ is conjugate-reciprocal" we mean that P_{n} is of the form (1.1) with each $p_{j, n} \in S$ satisfying (1.2). Similarly, whenever we write " $P_{n} \in \mathcal{P}_{n}^{c}(S)$ is self-reciprocal" we mean that
P_{n} is of the form (1.1) with each $p_{j, n} \in S$ satisfying (1.3). This is going to be our understanding even if the degree of $P_{n} \in \mathcal{P}_{n}^{c}(S)$ is less than n. Associated with an algebraic polynomial P_{n} of the form (1.1) we introduce the numbers

$$
\mathrm{NC}\left(P_{n}\right):=\left|\left\{j \in\{0,1, \ldots, n\}: p_{j, n} \neq 0\right\}\right| .
$$

Here, and in what follows $|A|$ denotes the number of elements of a finite set A. Let $\mathrm{NZ}\left(P_{n}\right)$ denote the number of real zeros (by counting multiplicities) of an algebraic polynomial P_{n} on the unit circle. Associated with a trigonometric polynomial

$$
T_{n}(t)=\sum_{j=0}^{n} a_{j, n} \cos (j t)
$$

we introduce the numbers

$$
\mathrm{NC}\left(T_{n}\right):=\left|\left\{j \in\{0,1, \ldots, n\}: a_{j, n} \neq 0\right\}\right|
$$

Let $\operatorname{NZ}\left(T_{n}\right)$ denote the number of real zeros (by counting multiplicities) of a trigonometric polynomial T_{n} in a period $[a, a+2 \pi), a \in \mathbb{R}$. The quotation below is from [B-07].
"Let $0 \leq n_{1}<n_{2}<\cdots<n_{N}$ be integers. A cosine polynomial of the form $T_{N}(\theta)=\sum_{j=1}^{N} \cos \left(n_{j} \theta\right)$ must have at least one real zero in a period $[a, a+2 \pi), a \in \mathbb{R}$. This is obvious if $n_{1} \neq 0$, since then the integral of the sum on a period is 0 . The above statement is less obvious if $n_{1}=0$, but for sufficiently large N it follows from Littlewood's Conjecture simply. Here we mean the Littlewood's Conjecture proved by S. Konyagin [K-81]. and independently by McGehee, Pigno, and Smith [M-81] in 1981. See also pages 285-288 in [D-93] for a book proof. It is not difficult to prove the statement in general even in the case $n_{1}=0$ without using Littlewood's Conjecture. One possible way is to use the identity

$$
\sum_{j=1}^{n_{N}} T_{N}\left((2 j-1) \pi / n_{N}\right)=0
$$

See [K-04], for example. Another way is to use Theorem 2 of [M-06a]. So there is certainly no shortage of possible approaches to prove the starting observation of this paper even in the case $n_{1}=0$.

It seems likely that the number of zeros of the above sums in a period must tend to ∞ with N. In a private communication B. Conrey asked how fast the number of real zeros of the above sums in a period tends
to ∞ as a function N. In [C-00] the authors observed that for an odd prime p the Fekete polynomial $f_{p}(z)=\sum_{k=0}^{p-1}\binom{k}{p} z^{k}$ (the coefficients are Legendre symbols) has $\sim \kappa_{0} p$ zeros on the unit circle, where $0.500813>$ $\kappa_{0}>0.500668$. Conrey's question in general does not appear to be easy.

Littlewood in his 1968 monograph 'Some Problems in Real and Complex Analysis' [L-68] (problem 22) poses the following research problem, which appears to still be open: 'If the n_{m} are integral and all different, what is the lower bound on the number of real zeros of $\sum_{m=1}^{N} \cos \left(n_{m} \theta\right)$? Possibly $N-1$, or not much less.' Here real zeros are counted in a period. In fact no progress appears to have been made on this in the last half century. In a recent paper [B-08a] we showed that this is false. There exists a cosine polynomials $\sum_{m=1}^{N} \cos \left(n_{m} \theta\right)$ with the n_{m} integral and all different so that the number of its real zeros in the period is $O\left(N^{9 / 10}(\log N)^{1 / 5}\right)$ (here the frequencies $n_{m}=n_{m}(N)$ may vary with $\left.N\right)$. However, there are reasons to believe that a cosine polynomial $\sum_{m=1}^{N} \cos \left(n_{m} \theta\right)$ always has many zeros in the period."

One of the highlights of this paper, Corollary 2.7, shows that the number of real zeros of the sums $T_{N}(\theta)=\sum_{j=1}^{N} \cos \left(n_{j} \theta\right)$ in a period $[a, a+2 \pi), a \in \mathbb{R}$, tends to ∞ whenever $0 \leq n_{1}<n_{2}<\cdots<n_{N}$ are integers and N tends to ∞, even though the part "How fast" in Conrey's question remains open. In fact, we will prove more general results of this variety. Let

$$
\mathcal{L}_{n}:=\left\{P: P(z)=\sum_{j=0}^{n} p_{j, n} z^{j}, \quad p_{j, n} \in\{-1,1\}\right\} .
$$

Elements of \mathcal{L}_{n} are often called Littlewood polynomials of degree n. Let

$$
\mathcal{K}_{n}:=\left\{P: P(z)=\sum_{j=0}^{n} p_{j, n} z^{j}, \quad p_{j, n} \in \mathbb{C},\left|p_{0, n}\right|=\left|p_{n, n}\right|=1,\left|p_{j, n}\right| \leq 1\right\}
$$

Observe that $\mathcal{L}_{n} \subset \mathcal{K}_{n}$. In [B-08b] we proved that any polynomial $P \in \mathcal{K}_{n}$ has at least $8 n^{1 / 2} \log n$ zeros in any open disk centered at a point on the unit circle with radius $33 n^{-1 / 2} \log n$. Thus polynomials in \mathcal{K}_{n} have a few zeros near the unit circle. One may naturally ask how many unimodular roots a polynomial in \mathcal{K}_{n} can have. Mercer [M-06a] proved that if a Littlewood polynomial $P \in \mathcal{L}_{n}$ of the form (1.1) is skew reciprocal, that is, $p_{j, n}=(-1)^{j} p_{n-j, n}$ for each $j=0,1, \ldots, n$, then it has no zeros on the unit circle. However, by using different elementary methods it was observed in both [E-01] and [M-06a] that if a Littlewood polynomial P of the form (1.1) is self-reciprocal, that is, $p_{j, n}=p_{n-j, n}$ for each $j=0,1, \ldots, n, n \geq 1$,
then it has at least one zero on the unit circle. Mukunda [M-06b] improved this result by showing that every self-reciprocal Littlewood polynomial of odd degree at least 3 has at least 3 zeros on the unit circle. Drungilas [D-08] proved that every self-reciprocal Littlewood polynomial of odd degree $n \geq 7$ has at least 5 zeros on the unit circle and every self-reciprocal Littlewood polynomial of even degree $n \geq 14$ has at least 4 zeros on the unit circle. In [B-15] two types of Littlewood polynomials are considered: Littlewood polynomials with one sign change in the sequence of coefficients and Littlewood polynomials with one negative coefficient, and the numbers of the zeros such Littlewood polynomials have on the unit circle and inside the unit disk, respectively, are investigated. Note that the Littlewood polynomials studied in [B-15] are very special. In [B-08a] we proved that the average number of zeros of self-reciprocal Littlewood polynomials of degree n is at least $n / 4$. However, it is much harder to give decent lower bounds for the quantities

$$
\mathrm{NZ}_{n}:=\min _{P} \mathrm{NZ}(P)
$$

where $\mathrm{NZ}(P)$ denotes the number of zeros of a polynomial P lying on the unit circle and the minimum is taken for all self-reciprocal Littlewood polynomials $P \in \mathcal{L}_{n}$. It has been conjectured for a long time that $\lim _{n \rightarrow \infty} \mathrm{NZ}_{n}=$ ∞. In this paper we show that $\lim _{n \rightarrow \infty} \mathrm{NZ}\left(P_{n}\right)=\infty$ whenever $P_{n} \in \mathcal{L}_{n}$ is self-reciprocal and $\lim _{n \rightarrow \infty}\left|P_{n}(1)\right|=\infty$. This follows as a consequence of a more general result, see Corollary 2.3, in which the coefficients of the selfreciprocal polynomials P_{n} of degree at most n belong to a fixed finite set of real numbers. In [B-07] we proved the following result.

Theorem 1.1. If the set $\left\{a_{j}: j \in \mathbb{N}\right\} \subset \mathbb{R}$ is finite, the set $\left\{j \in \mathbb{N}: a_{j} \neq 0\right\}$ is infinite, the sequence $\left(a_{j}\right)$ is not eventually periodic, and

$$
T_{n}(t)=\sum_{j=0}^{n} a_{j} \cos (j t)
$$

then $\lim _{n \rightarrow \infty} \mathrm{NZ}\left(T_{n}\right)=\infty$.
In [B-07] Theorem 1.1 is stated without the assumption that the sequence $\left(a_{j}\right)$ is not eventually periodic. However, as the following example shows, Lemma 3.4 in [B-07], dealing with the case of eventually periodic sequences $\left(a_{j}\right)$, is incorrect. Let

$$
\begin{aligned}
T_{n}(t) & :=\cos t+\cos ((4 n+1) t)+\sum_{k=0}^{n-1}(\cos ((4 k+1) t)-\cos ((4 k+3) t)) \\
& =\frac{1+\cos ((4 n+2) t)}{2 \cos t}+\cos t
\end{aligned}
$$

It is easy to see that $T_{n}(t) \neq 0$ on $[-\pi, \pi] \backslash\{-\pi / 2, \pi / 2\}$ and the zeros of T_{n} at $-\pi / 2$ and $\pi / 2$ are simple. Hence T_{n} has only two (simple) zeros in the period. So the conclusion of Theorem 1.1 above is false for the sequence $\left(a_{j}\right)$ with $a_{0}:=0, a_{1}:=2, a_{3}:=-1, a_{2 k}:=0, a_{4 k+1}:=1, a_{4 k+3}:=-1$ for every $k=1,2, \ldots$. Nevertheless, Theorem 1.1 can be saved even in the case of eventually periodic sequences $\left(a_{j}\right)$ if we assume that $a_{j} \neq 0$ for all sufficiently large j. See Lemma 3.11. So Theorem 1 in [B-07] can be corrected as

Theorem 1.2. If the set $\left\{a_{j}: j \in \mathbb{N}\right\} \subset \mathbb{R}$ is finite, $a_{j} \neq 0$ for all sufficiently large j, and

$$
T_{n}(t)=\sum_{j=0}^{n} a_{j} \cos (j t)
$$

then $\lim _{n \rightarrow \infty} \mathrm{NZ}\left(T_{n}\right)=\infty$.
It was expected that the conclusion of the above theorem remains true even if the coefficients of T_{n} do not come from the same sequence, that is

$$
T_{n}(t)=\sum_{j=0}^{n} a_{j, n} \cos (j t)
$$

where the set

$$
S:=\left\{a_{j, n}: j \in\{0,1, \ldots, n\}, n \in \mathbb{N}\right\} \subset \mathbb{R}
$$

is finite and

$$
\lim _{n \rightarrow \infty}\left|\left\{j \in\{0,1, \ldots, n\}, a_{j, n} \neq 0\right\}\right|=\infty
$$

The purpose of this paper is to prove such an extension of Theorem 1.1. This extension is formulated as Theorem 2.1, which is the main result of this paper.

The already mentioned Littlewood Conjecture, proved by [K-81] and independently by McGehee, Pigno, and B. Smith [M-81], plays a key role in the proof of the main results in this paper. This states the following.

Theorem 1.3. There is an absolute constant $c>0$ such that

$$
\int_{0}^{2 \pi}\left|\sum_{j=1}^{m} a_{j} e^{i \lambda_{j} t}\right| d t \geq c \gamma \log m
$$

whenever $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are distinct integers and $a_{1}, a_{2}, \ldots, a_{m}$ are complex numbers of modulus at least $\gamma>0$.

This is an obvious consequence of the following result a book proof of which has been worked out by Lorentz in [D-93], pages 285-288.

Theorem 1.4. If $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{m}$ are integers and $a_{1}, a_{2}, \ldots, a_{m}$ are complex numbers, then

$$
\int_{0}^{2 \pi}\left|\sum_{j=1}^{m} a_{j} e^{i \lambda_{j} t}\right| d t \geq \frac{1}{30} \sum_{j=1}^{m} \frac{\left|a_{j}\right|}{j}
$$

2 New Results.

Associated with an algebraic polynomial

$$
P_{n}(z)=\sum_{j=0}^{n} p_{j, n} z^{j}, \quad p_{j, n} \in \mathbb{C}
$$

let

$$
\mathrm{NC}_{k}\left(P_{n}\right):=\left|\left\{u: 0 \leq u \leq n-k+1, \sum_{j=u}^{u+k-1} p_{j, n} \neq 0\right\}\right|
$$

Recall that if

$$
P_{2 n}(z)=\sum_{j=0}^{2 n} p_{j, 2 n} z^{j}, \quad p_{j, 2 n} \in \mathbb{R}
$$

is self-reciprocal, then

$$
T_{n}(t):=P_{2 n}\left(e^{i t}\right) e^{-i n t}=p_{n, 2 n}+\sum_{j=1}^{n} 2 p_{j, 2 n} \cos (j t)
$$

It is also clear that

$$
\mathrm{NZ}\left(P_{2 n}\right)=\mathrm{NZ}\left(T_{n}\right)
$$

Theorem 2.1. If $S \subset \mathbb{R}$ is a finite set, $P_{2 n} \in \mathcal{P}_{2 n}^{c}(S)$ are self-reciprocal polynomials,

$$
T_{n}(t):=P_{2 n}\left(e^{i t}\right) e^{-i n t}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathrm{NC}_{k}\left(P_{2 n}\right)=\infty \tag{2.1}
\end{equation*}
$$

for every $k \in \mathbb{N}$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathrm{NZ}\left(P_{2 n}\right)=\lim _{n \rightarrow \infty} \mathrm{NZ}\left(T_{n}\right)=\infty \tag{2.2}
\end{equation*}
$$

Corollary 2.2. If $S \subset \mathbb{R}$ is a finite set, $P_{2 n} \in \mathcal{P}_{2 n}^{c}(S)$ are self-reciprocal polynomials,

$$
T_{n}(t):=P_{2 n}\left(e^{i t}\right) e^{-i n t},
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|P_{2 n}(1)\right|=\infty, \tag{2.3}
\end{equation*}
$$

then (2.2) holds, that is,

$$
\lim _{n \rightarrow \infty} N Z\left(P_{2 n}\right)=\lim _{n \rightarrow \infty} N Z\left(T_{n}\right)=\infty .
$$

Our next result is slightly more general than Corollary 2.2 , and it follows from Corollary 2.2 simply.

Corollary 2.3. If $S \subset \mathbb{R}$ is a finite set, $P_{n} \in \mathcal{P}_{n}^{c}(S)$ are self-reciprocal polynomials, and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|P_{n}(1)\right|=\infty, \tag{2.4}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} N Z\left(P_{n}\right)=\infty . \tag{2.5}
\end{equation*}
$$

We say that $S \subset \mathbb{R}$ has property (2.6) if (for every $k \in \mathbb{N}$)
$s_{1}+s_{2}+\cdots+s_{k}=0, s_{1}, s_{2}, \ldots, s_{k} \in S$, implies $s_{1}=s_{2}=\cdots=s_{k}=0$, that is, any sum of nonzero elements of S is different from 0 .

Corollary 2.4. If the finite set $S \subset \mathbb{R}$ has property (2.6), $P_{2 n} \in \mathcal{P}_{2 n}^{c}(S)$ are self-reciprocal polynomials,

$$
T_{n}(t):=P_{2 n}\left(e^{i t}\right) e^{-i n t},
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathrm{NC}\left(P_{2 n}\right)=\infty, \tag{2.7}
\end{equation*}
$$

then (2.2) holds, that is,

$$
\lim _{n \rightarrow \infty} \mathrm{NZ}\left(P_{2 n}\right)=\lim _{n \rightarrow \infty} \mathrm{NZ}\left(T_{n}\right)=\infty
$$

Our next result is slightly more general than Corollary 2.4 , and it follows from Corollary 2.4 simply.

Corollary 2.5. If the finite set $S \subset \mathbb{R}$ has property (2.5), $P_{n} \in \mathcal{P}_{n}^{c}(S)$ are self-reciprocal polynomials, and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathrm{NC}\left(P_{n}\right)=\infty \tag{2.8}
\end{equation*}
$$

then (2.5) holds, that is,

$$
\lim _{n \rightarrow \infty} \mathrm{NZ}\left(P_{n}\right)=\infty
$$

Our next result is an obvious consequence of Corollary 2.2.

Corollary 2.6. If

$$
T_{n}(t)=\sum_{j=0}^{n} a_{j, n} \cos (j t)
$$

where the set

$$
S:=\left\{a_{j, n}: j \in\{0,1, \ldots, n\}, n \in \mathbb{N}\right\} \subset \mathbb{R}
$$

is finite and

$$
\lim _{n \rightarrow \infty}\left|\sum_{j=0}^{n} a_{j, n}\right|=\infty
$$

then

$$
\lim _{n \rightarrow \infty} \mathrm{NZ}\left(T_{n}\right)=\infty
$$

Our next result is an obvious consequence of Corollary 2.6.
Corollary 2.7. If

$$
T_{n}(t)=\sum_{j=0}^{n} a_{j, n} \cos (j t),
$$

where the set

$$
S:=\left\{a_{j, n}: j \in\{0,1, \ldots, n\}, n \in \mathbb{N}\right\} \subset[0, \infty)
$$

is finite, and

$$
\lim _{n \rightarrow \infty} \mathrm{NC}\left(T_{n}\right)=\infty
$$

then

$$
\lim _{n \rightarrow \infty} \mathrm{NZ}\left(T_{n}\right)=\infty
$$

3 Lemmas.

Let \mathcal{P}_{n}^{c} denote the set of all algebraic polynomials of degree at most n with complex coefficients.

Lemma 3.1. If $S \subset \mathbb{C}$ is a finite set, $P_{2 n} \in \mathcal{P}_{2 n}^{c}(S)$, and $H \in \mathcal{P}_{m}^{c}$ is a polynomial of minimal degree m such that

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \mathrm{NC}\left(P_{2 n} H\right)<\infty \tag{3.1}
\end{equation*}
$$

then each zero of H is a root of unity, and each zero of H is simple.

Proof of Lemma 3.1.

Let $H \in \mathcal{P}_{m}^{c}$ satisfy the assumptions of the lemma and suppose to the contrary that $H(\alpha)=0$, where $0 \neq \alpha \in \mathbb{C}$ is not a root of unity. Let $G \in \mathcal{P}_{m-1}^{c}$ be defined by

$$
\begin{equation*}
G(z):=\frac{H(z)}{z-\alpha} . \tag{3.2}
\end{equation*}
$$

Let S_{n}^{*} be the set of the coefficients of $P_{2 n} G$, and let

$$
S^{*}:=\bigcup_{n \in \mathbb{N}} S_{n}^{*}
$$

As $P_{2 n} \in \mathcal{P}_{2 n}(S)$ and the set S is finite, the set S^{*} is also finite. Let

$$
\begin{equation*}
\left(P_{2 n} H\right)(z)=\sum_{j=0}^{2 n+m} a_{j, n} z^{j} \quad \text { and } \quad\left(P_{2 n} G\right)(z)=\sum_{j=0}^{2 n+m} b_{j, n} z^{j} \tag{3.3}
\end{equation*}
$$

Note that $b_{2 n+m, n}=0$. Due to the minimality of H we have

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \mathrm{NC}\left(P_{2 n} G\right)=\infty \tag{3.4}
\end{equation*}
$$

Observe that (3.2) implies

$$
\begin{equation*}
a_{j, n}=b_{j-1, n}-\alpha b_{j, n}, \quad j=1,2, \ldots, 2 n+m \tag{3.5}
\end{equation*}
$$

Let

$$
A_{n}:=\left\{j: 1 \leq j \leq 2 n+m, b_{j-1, n} \neq \alpha b_{j, n}\right\} .
$$

Combining (3.1), (3.3), and (3.5), we can deduce that

$$
\mu:=\sup _{n \in \mathbb{N}}\left|A_{n}\right|<\infty
$$

Hence we have

$$
A_{n}=\left\{j_{1, n}<j_{2, n}<\cdots<j_{u_{n}, n}\right\}
$$

where $u_{n} \leq \mu$ for each $n \in \mathbb{N}$. We introduce the numbers $j_{0, n}:=1$ and $j_{u_{n}+1, n}:=2 n+m$. As $\alpha \in \mathbb{C}$ is not a root of unity, the inequality

$$
j_{l+1, n}-j_{l, n} \geq\left|S^{*}\right|
$$

for some $l=0,1, \ldots, u_{n}$ implies

$$
b_{j, n}=0, \quad j=j_{l, n}, j_{l, n}+1, j_{l, n}+2, \ldots, j_{l+1, n}-1
$$

But then $b_{j, n} \neq 0$ is possible only for $(\mu+1)\left|S^{*}\right|$ values of $j=1,2, \ldots, 2 n+m$, which contradicts (3.4). This finishes the proof of the fact that each zero of H is a root of unity.

Now we prove that each zero of H is simple. Without loss of generality it is sufficient to prove that $H(1)=0$ implies that $H^{\prime}(1) \neq 0$, the general case can easily be reduced to this. Assume to the contrary that $H(1)=0$ and $H^{\prime}(1)=0$. Let $G_{1} \in \mathcal{P}_{m-1}^{c}$ and $G_{2} \in \mathcal{P}_{m-2}^{c}$ be defined by

$$
\begin{equation*}
G_{1}(z):=\frac{H(z)}{z-1} \quad \text { and } \quad G_{2}(z):=\frac{H(z)}{(z-1)^{2}}=\frac{G_{1}(z)}{z-1} \tag{3.6}
\end{equation*}
$$

respectively. Let

$$
\begin{gather*}
\left(P_{2 n} H\right)(z)=\sum_{j=0}^{2 n+m} a_{j, n} z^{j} \tag{3.7}\\
\left(P_{2 n} G_{1}\right)(z)=\sum_{j=0}^{2 n+m} b_{j, n} z^{j} \quad \text { and } \quad\left(P_{2 n} G_{2}\right)(z)=\sum_{j=0}^{2 n+m} c_{j, n} z^{j}
\end{gather*}
$$

Due to the minimality of the degree of H we have

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \mathrm{NC}\left(P_{2 n} G_{1}\right)=\infty \tag{3.8}
\end{equation*}
$$

Observe that (3.6) implies

$$
\begin{equation*}
a_{j, n}=b_{j-1, n}-b_{j, n}, \quad j=1,2, \ldots, 2 n+m \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{j, n}=c_{j-1, n}-c_{j, n}, \quad j=1,2, \ldots, 2 n+m \tag{3.10}
\end{equation*}
$$

Combining (3.1), (3.7), and (3.9), we can deduce that

$$
\begin{equation*}
\mu:=\sup _{n \in \mathbb{N}}\left|j: 1 \leq j \leq 2 n+m, b_{j-1, n} \neq b_{j, n}\right|<\infty . \tag{3.11}
\end{equation*}
$$

By using (3.8) and (3.11), for every $N \in \mathbb{N}$ there are $n \in \mathbb{N}$ and $L \in \mathbb{N}$ such that

$$
0 \neq b:=b_{L, n}=b_{L+1, n}=\cdots=b_{L+N, n} .
$$

Combining this with (3.10), we get

$$
c_{j-1, n}=c_{j, n}+b, \quad j=L, L+1, \ldots, L+N .
$$

Hence

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \max _{j=0,1, \ldots, 2 n+m}\left|c_{j, n}\right|=\infty \tag{3.12}
\end{equation*}
$$

On the other hand $P_{2 n} \in \mathcal{P}_{2 n}^{c}(S)$ together with the fact that the set S is finite implies that the set

$$
\left\{\left|c_{j, n}\right|: j \in\{0,1, \ldots, 2 n+m\}, n \in \mathbb{N}\right\}
$$

is also finite. This contradicts (3.12), and the proof of the fact that each zero of H is simple is finished.

Lemma 3.2. If $S \subset \mathbb{C}$ is a finite set, $P_{2 n} \in \mathcal{P}_{2 n}^{c}(S), H(z):=z^{k}-1$,

$$
\begin{equation*}
\mu:=\sup _{n \in \mathbb{N}} \mathrm{NC}\left(P_{2 n} H\right)<\infty \tag{3.13}
\end{equation*}
$$

then there are constants $c_{1}>0$ and $c_{2}>0$ depending only on μ, k, and S and independent of n and δ such that

$$
\int_{-\delta}^{\delta}\left|P_{2 n}\left(e^{i t}\right)\right| d t>c_{1} \log \left(\mathrm{NC}_{k}\left(P_{2 n}\right)\right)-c_{2} \delta^{-1}
$$

for every $\delta \in(0, \pi)$, and hence assumption (2.1) implies

$$
\lim _{n \rightarrow \infty} \int_{-\delta}^{\delta}\left|P_{2 n}\left(e^{i t}\right)\right| d t=\infty
$$

for every $\delta \in(0, \pi)$.

Proof of Lemma 3.2.

We define

$$
G(z):=\sum_{j=0}^{k-1} z^{j}
$$

so that $H(z)=G(z)(z-1)$. Let S_{n}^{*} be the set of the coefficients of $P_{2 n} G$. We define

$$
S^{*}:=\bigcup_{n=1}^{\infty} S_{n}^{*}
$$

As $P_{2 n} \in \mathcal{P}_{2 n}^{c}(S)$ and the set S is finite, the set S^{*} is also finite. So by Theorem 1.3 there is an absolute constant $c>0$ such that

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\left(P_{2 n} G\right)\left(e^{i t}\right)\right| d t \geq c \gamma \log \left(\mathrm{NC}\left(P_{2 n} G\right)\right) \geq c \gamma \log \left(\mathrm{NC}_{k}\left(P_{2 n}\right)\right. \tag{3.14}
\end{equation*}
$$

for every $n \in \mathbb{N}$ with

$$
\gamma:=\min _{z \in S^{*} \backslash\{0\}}|z| .
$$

Observe that

$$
\begin{aligned}
\left|\left(P_{2 n} G\right)\left(e^{i t}\right)\right| & =\frac{1}{\left|e^{i t}-1\right|}\left|\left(P_{2 n} H\right)\left(e^{i t}\right)\right| \leq \frac{\mu M}{\left|e^{i t}-1\right|}=\frac{\mu M}{\sin (t / 2)} \\
& \leq \frac{\pi \mu M}{t}, \quad t \in(-\pi, \pi)
\end{aligned}
$$

where μ is defined by (3.13) and $M:=\max \left\{|z|: z \in S^{*}\right\}$ depends only on the set S^{*}, and hence $M>0$ depends only on k and the set S. It follows that

$$
\begin{equation*}
\int_{[-\pi, \pi] \backslash[-\delta, \delta]}\left|\left(P_{2 n} G\right)\left(e^{i t}\right)\right| d t \leq 2 \pi \frac{\pi \mu M}{2 \delta}=\frac{\pi^{2} \mu M}{\delta} \tag{3.15}
\end{equation*}
$$

Now (3.14) and (3.15) give

$$
\begin{aligned}
\int_{-\delta}^{\delta}\left|P_{2 n}\left(e^{i t}\right)\right| d t & \geq \frac{1}{k} \int_{-\delta}^{\delta}\left|\left(P_{2 n} G\right)\left(e^{i t}\right)\right| d t \\
& =\frac{1}{k}\left(\int_{0}^{2 \pi}\left|\left(P_{2 n} G\right)\left(e^{i t}\right)\right| d t-\int_{[-\pi, \pi] \backslash[-\delta, \delta]}\left|\left(P_{2 n} G\right)\left(e^{i t}\right)\right| d t\right) \\
& \geq \frac{1}{k} c \gamma \log \left(\mathrm{NC}_{k}\left(P_{2 n}\right)\right)-\frac{\pi^{2} \mu M}{k \delta} .
\end{aligned}
$$

Lemma 3.3. If $S \subset \mathbb{R}$ is a finite set, $P_{2 n} \in \mathcal{P}_{2 n}^{c}(S)$ are self-reciprocal, $H(z):=z^{k}-1$, (3.13) holds, that is,

$$
\begin{gathered}
\mu:=\sup _{n \in \mathbb{N}} \mathrm{NC}\left(P_{2 n} H\right)<\infty \\
T_{n}(t):=P_{2 n}\left(e^{i t}\right) e^{-i n t}, \quad R_{n}(x):=\int_{0}^{x} T_{n}(t) d t
\end{gathered}
$$

and $0<\delta \leq(2 k)^{-1}$, then

$$
\sup _{n \in \mathbb{N}} \max _{x \in[-\delta, \delta]}\left|R_{n}(x)\right|<\infty
$$

Proof of Lemma 3.3.

Let

$$
T_{n}(t)=a_{0, n}+\sum_{j=1}^{n} 2 a_{j, n} \cos (j t), \quad a_{j, n} \in S .
$$

Observe that (3.13) implies that

$$
\begin{equation*}
\sup _{n \in \mathbb{N}}\left|\left\{j: k \leq j \leq n, a_{j-k, n} \neq a_{j, n}\right\}\right| \leq \mu:=\sup _{n \in \mathbb{N}} \mathrm{NC}\left(P_{2 n} H\right)<\infty . \tag{3.16}
\end{equation*}
$$

We have

$$
R_{n}(x)=a_{0, n} x+\sum_{j=1}^{n} \frac{2 a_{j, n}}{j} \sin (j x) .
$$

Now (3.16) implies that

$$
R_{n}(x)=a_{0, n} x+\sum_{m=1}^{u_{n}} F_{m, n}(x),
$$

where

$$
F_{m, k, n}(x):=\sum_{j=0}^{n_{m}} \frac{2 A_{m, k, n} \sin \left(\left(j_{m}+j k\right) x\right)}{j_{m}+j k}
$$

with some $A_{m, k, n} \in S, m=1,2, \ldots, u_{n}, j_{m} \in \mathbb{N}$, and $n_{m} \in \mathbb{N}$, where

$$
\sup _{n \in \mathbb{N}} u_{n} \leq k \mu<\infty
$$

(we do not know much about j_{m} and n_{m}). Since the set $S \subset \mathbb{R}$ is finite, and hence it is bounded, it is sufficient to prove that

$$
\max _{x \in[-\delta, \delta]}\left|F_{m, k, n}(x)\right| \leq M,
$$

where M is a uniform bound valid for all $n \in \mathbb{N}, j_{m} \in \mathbb{N}, n_{m} \in \mathbb{N}, m=$ $1,2, \ldots, u_{n}$, that is, it is sufficient to prove that if

$$
F(x):=\sum_{j=0}^{\nu} \frac{\sin \left(\left(j_{0}+j k\right) x\right)}{j_{0}+j k}
$$

then

$$
\begin{equation*}
\max _{x \in[-\delta, \delta]}|F(x)|=\max _{x \in[0, \delta]}|F(x)| \leq M, \tag{3.17}
\end{equation*}
$$

where M is a uniform bound valid for all $\nu \in \mathbb{N}$ and $j_{0} \in \mathbb{N}$. Note that the equality in (3.17) holds as F is odd. To prove the inequality in (3.17) let $x \in(0, \delta]$, where $0<\delta \leq(2 k)^{-1}$. We break the sum as

$$
\begin{equation*}
F=R+S \tag{3.18}
\end{equation*}
$$

where

$$
R(x):=\sum_{\substack{j=0 \\ j_{0}+j k \leq x^{-1}}}^{\nu} \frac{\sin \left(\left(j_{0}+j k\right) x\right)}{j_{0}+j k}
$$

and

$$
S(x):=\sum_{\substack{j=0 \\ x^{-1}<j_{0}+j k}}^{\nu} \frac{\sin \left(\left(j_{0}+j k\right) x\right)}{j_{0}+j k} .
$$

Here

$$
\begin{align*}
|R(x)| & \leq \sum_{\substack{j=0 \\
j_{0}+j k \leq x^{-1}}}^{\nu}\left|\frac{\sin \left(\left(j_{0}+j k\right) x\right)}{j_{0}+j k}\right| \leq\left(x^{-1}+1\right)|x| \tag{3.19}\\
& \leq 1+|x| \leq 1+\delta=1+(2 k)^{-1} \leq \frac{3}{2}
\end{align*}
$$

where each term in the sum in the middle is estimated by

$$
\left|\frac{\sin \left(\left(j_{0}+j k\right) x\right)}{j_{0}+j k}\right| \leq\left|\frac{\left.\left(j_{0}+j k\right) x\right)}{j_{0}+j k}\right|=|x|,
$$

and the number of terms in the sum in the middle is clearly at most $x^{-1}+1$. Further, using Abel rearrangement, we have

$$
S(x)=-\frac{B_{v}(x)}{j_{0}+v k}+\frac{B_{u}(x)}{j_{0}+u k}+\sum_{\substack{j=0 \\ x^{-1}<j_{0}+j k}}^{\nu} B_{j}(x)\left(\frac{1}{j_{0}+j k}-\frac{1}{j_{0}+(j+1) k}\right)
$$

with

$$
B_{j}(x):=B_{j, k}(x):=\sum_{h=0}^{j} \sin \left(\left(j_{0}+h k\right) x\right)
$$

and with some $u, v \in \mathbb{N}_{0}$ for which $x^{-1}<j_{0}+(u+1) k$ and $x^{-1}<j_{0}+(v+1) k$.
Hence,

$$
\begin{align*}
|S(x)| \leq\left|\frac{B_{v}(x)}{j_{0}+v k}\right| & +\left|\frac{B_{u}(x)}{j_{0}+u k}\right| \\
& +\sum_{\substack{j=0 \\
x^{-1}<j_{0}+j k}}\left|B_{j}(x)\right|\left(\frac{1}{j_{0}+j k}-\frac{1}{j_{0}+(j+1) k}\right) \tag{3.20}
\end{align*}
$$

Observe that $x \in(0, \delta], 0<\delta \leq(2 k)^{-1}, x^{-1}<j_{0}+(w+1) k$, and $w \in \mathbb{N}_{0}$ imply

$$
x^{-1}<j_{0}+(w+1) k<2\left(j_{0}+w k\right) \quad \text { if } w \geq 1
$$

and

$$
2 k \leq \delta^{-1} \leq x^{-1}<j_{0}+k \quad \text { if } w=0
$$

and hence

$$
\begin{equation*}
\frac{1}{j_{0}+w k} \leq 2 x, \quad w \in \mathbb{N}_{0} \tag{3.21}
\end{equation*}
$$

Observe also that $x \in(0, \delta]$ and $0<\delta \leq(2 k)^{-1}$ imply that $0<x<\pi k^{-1}$. Hence, with $z=e^{i x}$ we have

$$
\begin{align*}
\left|B_{j}(x)\right| & =\left|\frac{1}{2} \operatorname{Im}\left(\sum_{h=0}^{j} z^{j_{0}+h k}\right)\right| \leq\left|\frac{1}{2} \sum_{h=0}^{j} z^{j_{0}+h k}\right|=\left|\frac{1}{2} \sum_{h=0}^{j} z^{h k}\right| \\
& =\left|\frac{1}{2} \frac{1-z^{(j+1) k}}{1-z^{k}}\right| \leq \frac{1}{2}\left|1-z^{(j+1) k}\right| \frac{1}{\left|1-z^{k}\right|} \leq \frac{1}{\left|1-z^{k}\right|} \tag{3.22}\\
& \leq \frac{1}{\sin (k x / 2)} \leq \frac{\pi}{k x}
\end{align*}
$$

Combining (3.20), (3.21), and (3.22), we conclude

$$
\begin{equation*}
|S(x)| \leq \frac{\pi}{k x} 2 x+\frac{\pi}{k x} 2 x+\frac{\pi}{k x} 2 x \leq \frac{6 \pi}{k} . \tag{3.23}
\end{equation*}
$$

Now (3.18), (3.19), and (3.23) give the inequality in (3.17) with $M:=$ $6 \pi / k \leq 6 \pi$.

Our next lemma is well known and may be proved simply by contradiction.

Lemma 3.4. If R is a continuously differentiable function on the interval $[-\delta, \delta], \delta>0$,

$$
\int_{-\delta}^{\delta}\left|R^{\prime}(x)\right| d x=L \quad \text { and } \quad \max _{x \in[-\delta, \delta]}|R(x)|=M
$$

then there is an $\eta \in[-M, M]$ such that $R-\eta$ has at least $L(2 M)^{-1}$ zeros in $[-\delta, \delta]$.

Lemma 3.5. If $S \subset \mathbb{R}$ is a finite set, $P_{2 n} \in \mathcal{P}_{2 n}^{c}(S)$ are self-reciprocal,

$$
T_{n}(t):=P_{2 n}\left(e^{i t}\right) e^{-i n t}
$$

$H(z):=z^{k}-1,(3.13)$ holds, that is,

$$
\mu:=\sup _{n \in \mathbb{N}} \mathrm{NC}\left(P_{2 n} H\right)<\infty
$$

and (2.1) holds, that is,

$$
\lim _{n \rightarrow \infty} \mathrm{NC}_{k}\left(P_{2 n}\right)=\infty
$$

then (2.2) holds, that is,

$$
\lim _{n \rightarrow \infty} \mathrm{NZ}\left(T_{n}\right)=\infty
$$

Proof of Lemma 3.5.

Let $0<\delta \leq(2 k)^{-1}$. Let R_{n} be defined by

$$
R_{n}(x):=\int_{0}^{x} T_{n}(t) d t
$$

Observe that $\left|T_{n}(x)\right|=\left|P_{2 n}\left(e^{i x}\right)\right|$ for all $x \in \mathbb{R}$. By Lemmas 3.2 and 3.3 we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{-\delta}^{\delta}\left|R_{n}^{\prime}(x)\right| d x=\lim _{n \rightarrow \infty} \int_{-\delta}^{\delta}\left|T_{n}(x)\right| d x=\lim _{n \rightarrow \infty} \int_{-\delta}^{\delta}\left|P_{2 n}\left(e^{i x}\right)\right| d x=\infty \tag{3.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \max _{x \in[-\delta, \delta]}\left|R_{n}(x)\right|<\infty \tag{3.25}
\end{equation*}
$$

(Note that to obtain (3.24) from Lemma 3.2 we use the second statement of Lemma 3.2, which is valid under the assumption (2.1), that is why (2.1) is also assumed in this lemma.) Therefore, by Lemma 3.4 there are $c_{n} \in \mathbb{R}$ such that

$$
\lim _{n \rightarrow \infty} \mathrm{NZ}\left(R_{n}-c_{n}\right)=\infty
$$

However, $T_{n}(x)=\left(R_{n}-c_{n}\right)^{\prime}(x)$ for all $x \in \mathbb{R}$, and hence

$$
\lim _{n \rightarrow \infty} \mathrm{NZ}\left(T_{n}\right)=\infty
$$

follows by Rolle's Theorem.
Our next lemma follows immediately from Lemmas 3.1 and 3.5.
Lemma 3.6. If $S \subset \mathbb{R}$ is a finite set, $P_{2 n} \in \mathcal{P}_{2 n}^{c}(S)$ are self-reciprocal,

$$
T_{n}(t):=P_{2 n}\left(e^{i t}\right) e^{-i n t}
$$

(2.1) holds, that is,

$$
\lim _{n \rightarrow \infty} \mathrm{NC}_{k}\left(P_{2 n}\right)=\infty
$$

and there is a polynomial $H \in \mathcal{P}_{m}$ such that (3.13) holds, that is,

$$
\mu:=\sup _{n \in \mathbb{N}} \mathrm{NC}\left(P_{2 n} H\right)<\infty
$$

then (2.2) holds, that is,

$$
\lim _{n \rightarrow \infty} \mathrm{NZ}\left(T_{n}\right)=\infty
$$

Moreover, we have the following observation.

Lemma 3.7. Let $\left(n_{\nu}\right)$ be a strictly increasing sequence of positive integers. If $S \subset \mathbb{R}$ is a finite set, $P_{2 n_{\nu}} \in \mathcal{P}_{2 n_{\nu}}^{c}(S)$ are self-reciprocal,

$$
\begin{gathered}
T_{n_{\nu}}(t):=P_{2 n_{\nu}}\left(e^{i t}\right) e^{-i n_{\nu} t}, \\
\lim _{\mu \rightarrow \infty} \mathrm{NC}_{k}\left(P_{2 n_{\mu}}\right)=\infty
\end{gathered}
$$

for every $k \in \mathbb{N}$, and there is a polynomial $H \in \mathcal{P}_{m}$ such that

$$
\sup _{\nu \in \mathbb{N}} \mathrm{NC}\left(P_{2 n_{\nu}} H\right)<\infty,
$$

then

$$
\lim _{\nu \rightarrow \infty} \mathrm{NZ}\left(T_{n_{\nu}}\right)=\infty
$$

Proof of Lemma 3.7.

Without loss of generality we may assume that $0 \in S$. We define the selfreciprocal polynomials $P_{2 n} \in \mathcal{P}_{2 n}^{c}(S)$ by

$$
P_{2 n}(z):=z^{n-n_{\nu}} P_{2 n_{\nu}}(z), \quad n_{\nu} \leq n<n_{\nu+1}
$$

and apply Lemma 3.6.
The next lemma is straightforward consequences of Theorem 1.4.
Lemma 3.8. Let $\lambda_{0}<\lambda_{1}<\cdots<\lambda_{m}$ be nonnegative integers and let

$$
Q_{m}(t)=\sum_{j=0}^{m} A_{j} \cos \left(\lambda_{j} t\right), \quad A_{j} \in \mathbb{R}, j=0,1, \ldots, m
$$

Then

$$
\int_{-\pi}^{\pi}\left|Q_{m}(t)\right| d t \geq \frac{1}{60} \sum_{j=0}^{m} \frac{\left|A_{m-j}\right|}{j+1}
$$

We will also need the lemma below in the proof of Theorem 2.1.
Lemma 3.9. Let $\lambda_{0}<\lambda_{1}<\cdots<\lambda_{m}$ be nonnegative integers and let

$$
Q_{m}(t)=\sum_{j=0}^{m} A_{j} \cos \left(\lambda_{j} t\right), \quad A_{j} \in \mathbb{R}, \quad j=0,1, \ldots, m
$$

Let $A:=\max _{j=0,1, \ldots, m}\left|A_{j}\right|$. Suppose Q_{m} has at most $K-1$ zeros in the period $[-\pi, \pi)$. Then

$$
\int_{-\pi}^{\pi}\left|Q_{m}(t)\right| d t \leq 2 K A\left(\pi+\sum_{j=1}^{m} \frac{1}{\lambda_{j}}\right) \leq 2 K A(5+\log m)
$$

Proof of Lemma 3.9.

We may assume that $\lambda_{0}=0$, the case $\lambda_{0}>0$ can be handled similarly. Associated with Q_{m} in the lemma let

$$
R_{m}(t):=A_{0} t+\sum_{j=0}^{m} \frac{A_{j}}{\lambda_{j}} \sin \left(\lambda_{j} t\right)
$$

Clearly

$$
\max _{t \in[-\pi, \pi]}\left|R_{m}(t)\right| \leq A\left(\pi+\sum_{j=1}^{m} \frac{1}{\lambda_{j}}\right)
$$

Also, for every $c \in \mathbb{R}$ the function $R_{m}-c$ has at most K zeros in the period $[-\pi, \pi)$, otherwise Rolle's Theorem implies that $Q_{m}=\left(R_{m}-c\right)^{\prime}$ has at least K zeros in the period $[-\pi, \pi)$. Hence

$$
\begin{aligned}
\int_{-\pi}^{\pi}\left|Q_{m}(t)\right| d t & =\int_{-\pi}^{\pi}\left|R_{m}^{\prime}(t)\right| d t=V_{-\pi}^{\pi}\left(R_{m}\right) \leq 2 K \max _{t \in[-\pi, \pi]}\left|R_{m}(t)\right| \\
& \leq 2 K A\left(\pi+\sum_{j=1}^{m} \frac{1}{\lambda_{j}}\right) \leq 2 K A(5+\log m)
\end{aligned}
$$

where $V_{-\pi}^{\pi}\left(R_{m}\right)$ is the total variation of R_{m} on the interval $[-\pi, \pi]$, and the lemma is proved.

The lemma below is needed only in the proof of Lemma 3.11.
Lemma 3.10. Suppose $k \in \mathbb{N}$. Let

$$
z_{j}:=\exp \left(\frac{2 \pi j i}{k}\right), \quad j=0,1, \ldots, k-1
$$

be the kth roots of unity. Suppose

$$
\left\{b_{0}, b_{1}, \ldots, b_{k-1}\right\} \subset \mathbb{R}, \quad b_{0} \neq 0
$$

and

$$
Q(z):=\sum_{j=0}^{k-1} b_{j} z^{j}
$$

Then there is a value of $j \in\{0,1, \ldots k-1\}$ for which $\operatorname{Re}\left(Q\left(z_{j}\right)\right) \neq 0$.

Proof of Lemma 3.10.

If the statement of the lemma were false, then

$$
z^{k-1}(Q(z)+Q(1 / z))=\left(z^{k}-1\right) \sum_{\nu=0}^{k-2} \alpha_{\nu} z^{\nu}
$$

with some $\alpha_{\nu} \in \mathbb{R}, \nu=0,1, \ldots, k-2$. Observe that the coefficient of z^{k-1} on the right hand side is 0 , while the coefficient of z^{k-1} on the left hand side is $2 b_{0} \neq 0$, a contradiction.

Our final lemma has already been used in Section 1 of this paper, where Theorem 1 in [B-07] has been corrected Theorem 1.2.

Lemma 3.11. If $0 \notin\left\{b_{0}, b_{1}, \ldots, b_{k-1}\right\} \subset \mathbb{R},\left\{a_{0}, a_{1}, \ldots, a_{m-1}\right\} \subset \mathbb{R}$, where $m=u k$ with some integer $u \geq 0$,

$$
a_{m+l k+j}=b_{j}, \quad l=0,1, \ldots, \quad j=0,1, \ldots, k-1
$$

and $n=m+l k+r$ with integers $m \geq 0, l \geq 0, k \geq 1$, and $0 \leq r \leq k-1$, then there is a constant $c_{3}>0$ depending only on the sequence $\left(a_{j}\right)$ but independent of n such that

$$
T_{n}(t):=\operatorname{Re}\left(\sum_{j=0}^{n} a_{j} e^{i j t}\right)
$$

has at least $c_{3} n$ zeros in $[-\pi, \pi)$.

Proof of Lemma 3.11.

Note that

$$
\begin{aligned}
\sum_{j=0}^{n} a_{j} z^{j} & =\sum_{j=0}^{m-1} a_{j} z^{j}+z^{m}\left(\sum_{j=0}^{k-1} b_{j} z^{j}\right) \frac{z^{(l+1) k}-1}{z^{k}-1}+z^{m+l k} \sum_{j=0}^{r} b_{j} z^{j} \\
& =P_{1}(z)+P_{2}(z),
\end{aligned}
$$

where

$$
P_{1}(z):=\sum_{j=0}^{m-1} a_{j} z^{j}+z^{m+l k} \sum_{j=0}^{r} b_{j} z^{j}
$$

and

$$
P_{2}(z):=z^{u k} \sum_{j=0}^{k-1} b_{j} z^{j} \frac{z^{(l+1) k}-1}{z^{k}-1}=Q(z) z^{u k} \frac{z^{(l+1) k}-1}{z^{k}-1}
$$

with

$$
Q(z):=\sum_{j=0}^{k-1} b_{j} z^{j}
$$

By Lemma 3.10 there is a k th root of unity $\xi=e^{i \tau}$ such that $\operatorname{Re}(Q(\xi)) \neq$ 0 . Then, for every $K>0$ there is a $\delta \in(0,2 \pi / k)$ such that $\operatorname{Re}\left(P_{2}\left(e^{i t}\right)\right)$ oscillates between $-K$ and K at least $c_{4}(l+1) k \delta$ times on the interval
[$\tau-\delta, \tau+\delta]$, where $c_{4}>0$ is a constant independent of n. Now we choose $\delta \in(0,2 \pi / k)$ for

$$
K:=1+\sum_{j=0}^{m-1}\left|a_{j}\right|+\sum_{j=0}^{k-1}\left|b_{j}\right|
$$

Then

$$
T_{n}(t):=\operatorname{Re}\left(\sum_{j=0}^{n} a_{j} e^{i j t}\right)=\operatorname{Re}\left(P_{1}\left(e^{i t}\right)\right)+\operatorname{Re}\left(P_{2}\left(e^{i t}\right)\right)
$$

has at least one zero on each interval on which $\operatorname{Re}\left(P_{2}\left(e^{i t}\right)\right)$ oscillates between $-K$ and K, and hence it has at least $c_{10}(l+1) k \delta>c_{3} n$ zeros on $[-\pi, \pi)$, where $c_{3}>0$ is a constant independent of n.

4 Proofs of the Theorems.

We denote the set of all real trigonometric polynomials of degree at most k by \mathcal{T}_{k}.

Proof of Theorem 2.1.

Suppose the theorem is false. Then there are $k \in \mathbb{N}$, a strictly increasing sequence $\left(n_{\nu}\right)_{\nu=1}^{\infty}$ of positive integers, and even trigonometric polynomials $Q_{n_{\nu}} \in \mathcal{T}_{k}$ with maximum norm 1 such that $T_{n_{\nu}}$ has a sign change on the period $[-\pi, \pi)$ exactly at

$$
t_{1, n_{\nu}}<t_{2, n_{\nu}}<\cdots<t_{m_{\nu}, n_{\nu}}
$$

where m_{ν} are nonnegative even integers and $m_{\nu} \leq k$ for each ν, and hence the even trigonometric polynomials $Q_{n_{\nu}} \in \mathcal{T}_{k}$ defined by

$$
Q_{n_{\nu}}(t):=h_{n_{\nu}} \prod_{j=1}^{m_{\nu}} \sin \frac{t-t_{j, n_{\nu}}}{2}
$$

with an appropriate choice of $h_{n_{\nu}} \in \mathbb{R}$ have maximum norm 1 on the period $[-\pi, \pi)$ and

$$
\begin{equation*}
T_{n_{\nu}}(t) Q_{n_{\nu}}(t) \geq 0, \quad t \in \mathbb{R} . \tag{4.1}
\end{equation*}
$$

Picking a subsequence of $\left(n_{\nu}\right)_{\nu=1}^{\infty}$ if necessary, without loss of generality we may assume that $Q_{n_{\nu}}$ converges to a $Q \in \mathcal{T}_{k}$ uniformly on the period $[-\pi, \pi)$. That is,

$$
\begin{equation*}
\lim _{\nu \rightarrow \infty} \varepsilon_{\nu}=0 \quad \text { with } \quad \varepsilon_{\nu}:=\max _{t \in[-\pi, \pi]}\left|Q(t)-Q_{n_{\nu}}(t)\right| \tag{4.2}
\end{equation*}
$$

We introduce the notation

$$
\begin{gather*}
T_{n_{\nu}}(t)=\sum_{j=0}^{n_{\nu}} a_{j, \nu} \cos (j t) \\
T_{n_{\nu}}(t) Q(t)^{3}=\left(\sum_{j=0}^{n_{\nu}} a_{j, \nu} \cos (j t)\right) Q(t)^{3}=\sum_{j=0}^{K_{\nu}} b_{j, \nu} \cos \left(\beta_{j, \nu} t\right) \tag{4.3}\\
b_{j \nu} \neq 0, \quad j=0,1, \ldots, K_{\nu}
\end{gather*}
$$

and

$$
\begin{gather*}
T_{n_{\nu}}(t) Q(t)^{4}=\left(\sum_{j=0}^{n_{\nu}} a_{j, \nu} \cos (j t)\right) Q(t)^{4}=\sum_{j=0}^{L_{\nu}} d_{j, \nu} \cos \left(\delta_{j, \nu} t\right), \tag{4.4}\\
d_{j, \nu} \neq 0, \quad j=0,1, \ldots, L_{\nu},
\end{gather*}
$$

where $\beta_{0, \nu}<\beta_{1, \nu}<\cdots<\beta_{K_{\nu}, \nu}$ and $\delta_{0, \nu}<\delta_{1, \nu}<\cdots<\delta_{L_{\nu}, \nu}$ are nonnegative integers. Since the set $S^{*}:=\left\{a_{j, \nu}: j \in\left\{0,1, \ldots, n_{\nu}\right\}, \nu \in \mathbb{N}\right\} \subset \mathbb{R}$ is finite, the sets

$$
\left\{b_{j, \nu}: j \in\left\{0,1, \ldots, K_{\nu}\right\}, \nu \in \mathbb{N}\right\} \subset \mathbb{R}
$$

and

$$
\left\{d_{j, \nu}: j \in\left\{0,1, \ldots, L_{\nu}\right\}, \nu \in \mathbb{N}\right\} \subset \mathbb{R}
$$

are finite as well. Hence there are $\rho, M \in(0, \infty)$ such that

$$
\begin{gather*}
\left|a_{j, \nu}\right| \leq M, \quad j=0,1, \ldots, n_{\nu}, \quad \nu \in \mathbb{N} \tag{4.5}\\
\rho \leq\left|b_{j, \nu}\right| \leq M, \quad j=0,1, \ldots, K_{\nu}, \quad \nu \in \mathbb{N} \tag{4.6}
\end{gather*}
$$

and

$$
\begin{equation*}
\rho \leq\left|d_{j, \nu}\right| \leq M, \quad j=0,1, \ldots, L_{\nu}, \quad \nu \in \mathbb{N} \tag{4.7}
\end{equation*}
$$

As

$$
T_{n_{\nu}}(t)=\sum_{j=0}^{n_{\nu}} a_{j, \nu} \cos (j t)
$$

and the set $S^{*}:=\left\{a_{j, \nu}: j \in\left\{0,1, \ldots, n_{\nu}\right\}, \nu \in \mathbb{N}\right\} \subset \mathbb{R}$ is finite, orthogonality and $Q_{n_{\nu}} \in \mathcal{T}_{k}$ imply that

$$
\begin{equation*}
\int_{-\pi}^{\pi} T_{n_{\nu}}(t) Q_{n_{\nu}}(t) d t \leq 2 \pi M(k+1) \max _{t \in[-\pi, \pi]}\left|Q_{n, \nu}(t)\right|=2 \pi M(k+1) \tag{4.8}
\end{equation*}
$$

where $M:=\max \left\{|z|: z \in S^{*}\right\} \leq 2 \max \{|z|: z \in S\}$ depends only on the finite set S.

Observe that our indirect assumption together with Lemma 3.7 implies that

$$
\begin{equation*}
\lim _{\nu \rightarrow \infty} K_{\nu}=\infty \quad \text { and } \quad \lim _{\nu \rightarrow \infty} L_{\nu}=\infty \tag{4.9}
\end{equation*}
$$

Indeed, if

$$
\lim _{\nu \rightarrow \infty} K_{\nu}<\infty
$$

then Lemma 3.7 with $H \in \mathcal{P}_{m}$ defined by $H\left(e^{i t}\right):=e^{i m t / 2} Q(t)^{3}, m:=$ $6 \operatorname{deg}(Q)$, while if

$$
\lim _{\nu \rightarrow \infty} L_{\nu}<\infty
$$

then Lemma 3.7 with $H \in \mathcal{P}_{m}$ defined by $H\left(e^{i t}\right):=e^{i m t / 2} Q(t)^{4}, m:=$ $8 \operatorname{deg}(Q)$, gives (2.2), that is,

$$
\lim _{n \rightarrow \infty} \mathrm{NZ}\left(T_{n}\right)=\infty
$$

which is the conclusion of the theorem contradicting our indirect assumption that the theorem is false.

We claim that

$$
\begin{equation*}
K_{\nu} \leq c_{5} L_{\nu} \tag{4.10}
\end{equation*}
$$

with some $c_{5}>0$ independent of $\nu \in \mathbb{N}$. Indeed, using Parseval's formula (4.2), (4.3), and (4.7) we deduce

$$
\begin{align*}
\frac{1}{\pi} \int_{-\pi}^{\pi} T_{n_{\nu}}(t)^{2} Q(t)^{4} Q_{n_{\nu}}(t)^{2} d t & =\frac{1}{\pi} \int_{-\pi}^{\pi}\left(T_{n_{\nu}}(t) Q(t)^{2} Q_{n_{\nu}}(t)\right)^{2} d t \tag{4.11}\\
& \geq \frac{1}{2} \rho^{2} K_{\nu}
\end{align*}
$$

for every sufficiently large $\nu \in \mathbb{N}$. Also, (4.1)-(4.8) imply

$$
\begin{align*}
& \frac{1}{\pi} \int_{-\pi}^{\pi} T_{n_{\nu}}(t)^{2} Q(t)^{4} Q_{n_{\nu}}(t)^{2} d t \tag{4.12}\\
= & \frac{1}{\pi} \int_{-\pi}^{\pi}\left(T_{n_{\nu}}(t) Q_{n_{\nu}}(t)\right)\left(T_{n_{\nu}}(t) Q(t)^{4}\right) Q_{n_{\nu}}(t) d t \\
\leq & \frac{1}{\pi}\left(\int_{-\pi}^{\pi} T_{n_{\nu}}(t) Q_{n_{\nu}}(t) d t\right)\left(\max _{t \in[-\pi, \pi]}\left|T_{n_{\nu}}(t) Q(t)^{4}\right|\right)\left(\max _{t \in[-\pi, \pi]}\left|Q_{n_{\nu}}(t)\right|\right) \\
\leq & \frac{1}{\pi}\left(\int_{-\pi}^{\pi} T_{n_{\nu}}(t) Q_{n_{\nu}}(t) d t\right) L_{\nu} M\left(\max _{t \in[-\pi, \pi]}\left|Q_{n_{\nu}}(t)\right|\right) \\
\leq & c_{6} L_{\nu}
\end{align*}
$$

with a constant $c_{6}>0$ independent of ν for every $\nu \in \mathbb{N}$. Now (4.10) follows from (4.11) and (4.12). From Lemma 3.8 we deduce

$$
\begin{equation*}
\int_{-\pi}^{\pi}\left|T_{n_{\nu}}(t) Q(t)^{4}\right| d t \geq c_{7} \rho \log L_{\nu} \tag{4.13}
\end{equation*}
$$

with some constant $c_{7}>0$ independent of $\nu \in \mathbb{N}$. On the other hand, using (4.1), Lemma 3.9, (4.2), (4.4), (4.8), and (4.10), we obtain

$$
\begin{align*}
& \int_{-\pi}^{\pi}\left|T_{n_{\nu}}(t) Q(t)^{4}\right| d t \tag{4.14}\\
\leq & \int_{-\pi}^{\pi}\left|T_{n_{\nu}}(t) Q(t)^{3}\right|\left|Q_{n_{\nu}}(t)\right| d t+\int_{-\pi}^{\pi}\left|T_{n_{\nu}}(t) Q(t)^{3}\right|\left|Q(t)-Q_{n_{\nu}}(t)\right| d t \\
= & \int_{-\pi}^{\pi}\left|T_{n_{\nu}}(t) Q_{n_{\nu}}(t)\right|\left|Q(t)^{3}\right| d t+\int_{-\pi}^{\pi}\left|T_{n_{\nu}}(t) Q(t)^{3}\right|\left|Q(t)-Q_{n_{\nu}}(t)\right| d t \\
\leq & \left(\int_{-\pi}^{\pi}\left|T_{n_{\nu}}(t) Q_{n_{\nu}}(t)\right| d t\right)\left(\max _{t \in[-\pi, \pi]}|Q(t)|^{3}\right) \\
& +\left(\int_{-\pi}^{\pi}\left|T_{n_{\nu}}(t) Q(t)^{3}\right| d t\right)\left(\max _{t \in[-\pi, \pi]}\left|Q(t)-Q_{n_{\nu}}(t)\right|\right) \\
= & \left(\int_{-\pi}^{\pi} T_{n_{\nu}}(t) Q_{n_{\nu}}(t) d t\right)\left(\max _{t \in[-\pi, \pi]}|Q(t)|^{3}\right)+\left(\int_{-\pi}^{\pi}\left|T_{n_{\nu}}(t) Q(t)^{3}\right| d t\right) \varepsilon_{\nu} \\
\leq & c_{8}+c_{9}\left(\log K_{\nu}\right) \varepsilon_{\nu} \leq c_{8}+c_{9}\left(\log \left(c_{5} L_{\nu}\right)\right) \varepsilon_{\nu} \\
\leq & c_{10}+c_{9}\left(\log L_{\nu}\right) \varepsilon_{\nu},
\end{align*}
$$

where c_{8}, c_{9}, and c_{10} are constants independent of $\nu \in \mathbb{N}$ and $\varepsilon_{\nu} \rightarrow 0$ as $\nu \rightarrow \infty$. Combining (4.13) and (4.14), we obtain

$$
c_{7} \rho \log L_{\nu} \leq c_{10}+c_{9}\left(\log L_{\nu}\right) \varepsilon_{\nu}
$$

which contradicts (4.9). Hence our indirect assumption is false, and the theorem is true.

Proof of Corollary 2.2.

Observe that assumption (2.3) implies assumption (2.1), and hence the corollary follows from Theorem 2.1

Proof of Corollary 2.3.

Corollary 2.2 implies

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \mathrm{NZ}\left(P_{2 k}\right)=\infty \tag{4.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \mathrm{NZ}\left(P_{2 k+1}\right)=\infty \tag{4.16}
\end{equation*}
$$

Note that (4.15) is an obvious consequence of Theorem 2.1. To see (4.16) observe that if $P_{2 k+1} \in \mathcal{P}_{2 k+1}^{c}(S)$ are self-reciprocal then $\widetilde{P}_{2 k+2}$ defined by

$$
\begin{equation*}
\widetilde{P}_{2 k+2}(z):=(z+1) P_{2 k+1}(z) \in \mathcal{P}_{2 k+2}^{c}(\widetilde{S}) \tag{4.17}
\end{equation*}
$$

are also self-reciprocal, where the fact that S is finite implies that the set

$$
\begin{equation*}
\widetilde{S}:=\left\{s_{1}+s_{2}: s_{1}, s_{2} \in S \cup\{0\}\right\} \subset \mathbb{R} \tag{4.18}
\end{equation*}
$$

is also finite. Also, (2.4), that is,

$$
\lim _{n \rightarrow \infty}\left|P_{n}(1)\right|=\infty
$$

implies

$$
\lim _{k \rightarrow \infty}\left|\widetilde{P}_{2 k+2}(1)\right|=\lim _{k \rightarrow \infty} 2\left|P_{2 k+1}(1)\right|=\infty
$$

Hence the polynomials $\widetilde{P}_{2 k+2} \in \mathcal{P}_{2 k+2}^{c}(\widetilde{S})$ satisfy the assumptions of Corollary 2.2, and it follows that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \mathrm{NZ}\left(\widetilde{P}_{2 k+2}\right)=\infty \tag{4.19}
\end{equation*}
$$

Combining this with

$$
\begin{equation*}
\mathrm{NZ}\left(P_{2 k+1}\right)=\mathrm{NZ}\left(\widetilde{P}_{2 k+2}\right)-1 \tag{4.20}
\end{equation*}
$$

we obtain (4.16). Combining (4.15) and (4.16), we obtain the (2.5), that is,

$$
\lim _{n \rightarrow \infty} \mathrm{NZ}\left(P_{n}\right)=\infty
$$

Proof of Corollary 2.4.

If (2.7) holds and the finite set $S \subset \mathbb{R}$ has property (2.6), then assumption (2.1) is satisfied, and (2.2), that is,

$$
\lim _{n \rightarrow \infty} \mathrm{NZ}\left(P_{2 n}\right)=\lim _{n \rightarrow \infty} \mathrm{NZ}\left(T_{n}\right)=\infty
$$

follows from Theorem 2.1.

Proof of Corollary 2.5.

Corollary 2.4 implies (4.15) and (4.16). Note that (4.15) is an obvious consequence of Corollary 2.4. To see (4.16) observe that if $P_{2 k+1} \in \mathcal{P}_{2 k+1}^{c}(S)$ are self-reciprocal, then $\widetilde{P}_{2 k+2}$ defined by (4.17) are also self-reciprocal, where the fact that S is finite implies that the set $\widetilde{S} \subset \mathbb{R}$ defined by (4.18) is also finite. It is easy to see that the fact that S satisfies (2.6) implies that \widetilde{S} also satisfies (2.6), that is, (for every $k \in \mathbb{N}$)
$s_{1}+s_{2}+\cdots+s_{k}=0, s_{1}, s_{2}, \ldots, s_{k} \in \widetilde{S}$, implies $s_{1}=s_{2}=\cdots=s_{k}=0$,
that is, any sum of nonzero elements of \widetilde{S} is different from 0 . Similarly, (2.6) implies that $\mathrm{NC}\left(\widetilde{P}_{2 k+2}\right) \geq \mathrm{NC}\left(P_{2 k+1}\right)$. Combining this with (2.8) it follows that

$$
\lim _{k \rightarrow \infty} \mathrm{NC}\left(\widetilde{P}_{2 k+2}\right)=\infty
$$

Hence the polynomials $\widetilde{P}_{2 k+2} \in \mathcal{P}_{2 k+2}^{c}(\widetilde{S})$ defined by (4.17) satisfy the assumptions of Corollary 2.4, and (4.19) follows. Combining this with (4.20) we obtain (4.16). Combining (4.15) and (4.16), we obtain (2.5), the conclusion of the corollary.

Proof of Corollary 2.6.

This is an obvious consequence of Corollary 2.2.

Proof of Corollary 2.7.

This is an obvious consequence of Corollary 2.6.

5 Acknowledgements.

The author wishes to thank Stephen Choi, Jonas Jankauskas, and an unknown referee for their reading earlier versions of my paper carefully, pointing out many misprints, and their suggestions to make the paper more readable.

References

[A-02] V.V. Andrievskii and H-P. Blatt Discrepancy of Signed Measures and Polynomial Approximation, Springer, New York, 2002.
[B-32] A. Bloch and G. Pólya On the roots of certain algebraic equations, Proc. London Math. Soc. 33 (1932), 102-114.
[B-02] P. Borwein Computational Excursions in Analysis and Number Theory, Springer, New York, 2002.
[B-15] P. Borwein, S. Choi, R. Ferguson, and J. Jankauskas On Littlewood polynomials with prescribed number of zeros inside the unit disk, Canad. J. of Math. 67 (2015), 507-526.
[B-95] P. Borwein and T. Erdélyi Polynomials and Polynomial Inequalities, Springer, New York, 1995.
[B-97] P. Borwein and T. Erdélyi On the zeros of polynomials with restricted coefficients, Illinois J. Math. 41 (1997), 667-675.
[B-07] P. Borwein and T. Erdélyi Lower bounds for the number of zeros of cosine polynomials: a problem of Littlewood, Acta Arith. 128 (2007), 377-384.
[B-08a] P. Borwein, T. Erdélyi, R. Ferguson, and R. Lockhart On the zeros of cosine polynomials : solution to a problem of Littlewood, Ann. of Math. (2) 167 (2008), 1109-1117.
[B-99a] P. Borwein, T. Erdélyi, and G. Kós Littlewood-type problems on [0, 1], Proc. London Math. Soc. [79] (1999), 22-46.
[B-13] P. Borwein, T. Erdélyi, and G. Kós The multiplicity of the zero at 1 of polynomials with constrained coefficients, Acta Arith. 159 (2013) no. 4, 387-395.
[B-08b] P. Borwein, T. Erdélyi, and F. Littmann Polynomials with coefficients from a finite set, Trans. Amer. Math. Soc. 360 (2008), 51455154.
[B-97] D.W. Boyd On a problem of Byrnes concerning polynomials with restricted coefficients, Math. Comp. 66 (1997), 1697-1703.
[B-99b] H. Buhrman, R. Cleve, R. de Wolf, and C. Zalka Bounds for smallerror and zero-error quantum algorithms 40th Annual Symposium on Foundations of Computer Science, New York, 1999, 358-368, IEEE Computer Soc., Los Alamitos, CA.
[C-02] P.G. Casazza and N.J. Kalton Roots of complex polynomials and Weyl-Heisenberg frame sets, Proc. Amer. Math. Soc. 130 (2002) no. 8, 2313-2318.
[C-00] B. Conrey, A. Granville, B. Poonen, and K. Soundararajan Zeros of Fekete polynomials, Ann. Inst. Fourier (Grenoble) 50 (2000), 865-889.
[C-13] J.M. Cooper and A.M. Dutle Greedy Galois games, Amer. Math. Monthly 120 (2013) no. 5, 441451.
[C-92] D. Coppersmith and T.J. Rivlin The growth of polynomials bounded at equally spaced points SIAM J. Math. Anal. 23 (1992) no. 4, 970-983.
[C-10] E. Croot and D. Hart h-fold sums from a set with few products, SIAM J. Discrete Math. 24 (2010) no. 2, 505-519.
[D-93] R.A. DeVore and G.G. Lorentz, Springer-Verlag, Berlin, 1993.
[D-16] Y. Do, H. Nguyen, and V. Vu Real roots of random polynomials: expectation and repulsion, Proc. London Math. Soc. 111 (2015) no. 6, 1231-1260.
[D-08] P. Drungilas Unimodular roots of reciprocal Littlewood polynomials, J. Korean Math. Soc. 45 (2008) no. 3, 835-840.
[D-99] A. Dubickas On the order of vanishing at 1 of a polynomial, Lithuanian Math. J. 39 (1999), 365-370.
[D-01] A. Dubickas Three problems of polynomials of small measure, Acta Arith. 98 (2001), 279-292.
[D-13] A. Dubickas Polynomials with multiple roots at 1, Int. J. Number Theory 10 (2014) no. 2, 391-400.
[D-03] M. Dudik and L.J. Schulman Reconstruction from subsequences, Journal of Combinatorial Theory, Series A 103 (2003) no. 2, 337-348.
[E-96] A. Edelman and E. Kostlan How many zeros of a random polynomial are real?, Bull. Amer. Math. Soc. (N.S.) 32 (1995), 1-37. Erratum: Bull. Amer. Math. Soc. (N.S.) 33 (1996), 325.
[E-01] T. Erdélyi On the zeros of polynomials with Littlewood-type coefficient constraints, Michigan Math. J. 49 (2001), 97-111.
[E-02a] T. Erdélyi Markov-Bernstein type inequalities for polynomials under Erdős-type constraints, Paul Erdős and his Mathematics I, Bolyai Society Mathematical Studies, 11, Gábor Halász, László Lovász, Dezső Miklós, and Vera T. Sós (Eds.), Springer Verlag, New York, 2002, 219-239.
[E-02b] T. Erdélyi Polynomials with Littlewood-type coefficient constraints, Approximation Theory X: Abstract and Classical Analysis, Charles K. Chui, Larry L. Schumaker, and Joachim Stöckler (Eds.), Vanderbilt University Press, Nashville, TN, 2002, 153-196.
[E-08a] T. Erdélyi Extensions of the Bloch-Pólya theorem on the number of real zeros of polynomials, Journal de théorie des nombres de Bordeaux 20 (2008), 281-287.
[E-08b] T. Erdélyi An improvement of the Erdős-Turán theorem on the zero distribution of the zeros of polynomials, C. R. Acad. Sci. Paris Sér. I Math. 346 (2008), 267-270.
[E-13] T. Erdélyi Pseudo-Boolean functions and the multiplicity of the zeros of polynomials, Journal d'Analyse Math. 127 (2015), 91-108.
[E-16] T. Erdélyi Coppersmith-Rivlin type inequalities and the order of vanishing of polynomials at 1, Acta Arith 172 (2016) no. 3, 271-284.
[E-56] P. Erdős and A. C. Offord On the number of real roots of a random algebraic equation, Proc. London Math. Soc. 6 (1956), 139-160.
[E-50] P. Erdős and P. Turán On the distribution of roots of polynomials, Ann. Math. 57 (1950), 105-119.
[F-80] Le Baron O. Ferguson Approximation by Polynomials with Integral Coefficients, Amer. Math. Soc., Rhode Island, 1980.
[F-00] W. Foster and I. Krasikov An improvement of a Borwein-Erdélyi-Kós result, Methods Appl. Anal. 7 (2000) no. 4, 605-614.
[G-05] C.S. Güntürk Approximation by power series with ± 1 coefficients, Int. Math. Res. Not. (2005) no. 26, 1601-1610.
[H-38] G.H. Hardy and E.M. Wright An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1938.
[H-82] L.K. Hua Introduction to Number Theory, Springer-Verlag, Berlin Heidelberg, New York, 1982.
[K-43] M. Kac On the average number of real roots of a random algebraic equation, Bull. Amer. Math. Soc. 49 (1943), 314-320.
[K-49] M. Kac On the average number of real roots of a random algebraic equation. II, Proc. London Math. Soc. 50 (1949), 390-408.
[K-81] S.V. Konyagin On a problem of Littlewood, Mathematics of the USSR, Izvestia 18 (1981), 205-225.
[K-04] S.V. Konyagin and V.F. Lev Character sums in complex half planes, J. Theor. Nombres Bordeaux 16 (2004) no. 3, 587-606.
[K-03] G. Kós, P. Ligeti, and P. Sziklai Reconstruction of matrices from submatrices, Math. Comp. 78 (2009), 1733-1747.
[K-04] I. Krasikov Multiplicity of zeros and discrete orthogonal polynomials, Results Math. 45 (2004), 1-2, 59-66.

The number of unimodular zeros of self-reciprocal polynomials
[L-61] J.E. Littlewood On the mean values of certain trigonometrical polynomials, J. London Math. Soc. 36 (1961), 307-334.
[L-64] J.E. Littlewood On the real roots of real trigonometrical polynomials (II), J. London Math. Soc. 39 (1964), 511-552.
[L-66] J.E. Littlewood On polynomials $\sum \pm z^{m}$ and $\sum e^{\alpha_{m} i} z^{m}, z=e^{\theta i}$, J. London Math. Soc. 41 (1966), 367-376.
[L-68] J.E. Littlewood Some Problems in Real and Complex Analysis, Heath Mathematical Monographs, Lexington, Massachusetts, 1968.
[L-39] J.E. Littlewood and A.C. Offord On the number of real roots of a random algebraic equation. II, Proc. Cambridge Philos. Soc. 35 (1939), 133-148.
[L-43] J.E. Littlewood and A.C. Offord On the number of real roots of a random algebraic equation. III, Rec. Math. [Mat. Sbornik] N.S. 54 (1943), 277-286,
[M-81] O.C. McGehee, L. Pigno, and B. Smith Hardy's inequality and the L_{1} norm of exponential sums, Ann. Math. 113 (1981), 613-618.
[M-06a] I.D. Mercer Unimodular roots of special Littlewood polynomials, Canad. Math. Bull. 49 (2006) no. 3, 438-447.
[M-03] M.J. Mossinghoff Polynomials with restricted coefficients and prescribed noncyclotomic factors, London Math. Soc. J. Comput. Math. 6 (2003), 314-325 (electronic).
[M-06b] K. Mukunda, Littlewood Pisot numbers, J. Number Theory 117 (2006) no. 1, 106-121.
[N-16] H. Nguyen, O. Nguyen, and V. Vu On the number of real roots of random polynomials, Commun. Contemp. Math. 18 (2016), 1550052.
[O-93] A.M. Odlyzko and B. Poonen Zeros of polynomials with 0,1 coefficients, Enseign. Math. (2) 39 (1993), 317-348.
[P-99] C. Pinner Double roots of $[-1,1]$ power series and related matters, Math. Comp. 68 (1999), 1149-1178.
[P-13] I.E. Pritsker and A.A. Sola Expected discrepancy for zeros of random algebraic polynomials, Proc. Amer. Math. Soc. 142 (2014), 4251-4263.
[R-07] E.A. Rakhmanov Bounds for polynomials with a unit discrete norm, Ann. of Math. 165 (2007), 55-88.
[R-04] F. Rodier Sur la non-linéarité des fonctions booléennes, Acta Arith. 115 (2004) no. 1, 1-22.
bibitem[Sch-32]Sch E. Schmidt Über algebraische Gleichungen vom Pólya-Bloch-Typos, Sitz. Preuss. Akad. Wiss., Phys.-Math. Kl. (1932), 321.
[Sch-33] I. Schur Untersuchungen über algebraische Gleichungen, Sitz. Preuss. Akad. Wiss., Phys.-Math. Kl. (1933), 403-428.
[S-99] I.E. Shparlinski Finite Fields: Theory and Computation: the Meeting Point of Number Theory, Computer Science, Coding Theory and Cryptography, Dordrecht, London, 1999.
[S-95] B. Solomyak On the random series $\sum \pm \lambda^{n}$ (an Erdős problem), Ann. Math. 142 (1995), 611-625.
[Sz-34] G. Szegő Bemerkungen zu einem Satz von E. Schmidt uber algebraische Gleichungen, Sitz. Preuss. Akad. Wiss., Phys.-Math. Kl. (1934), 86-98.
[T-15] T. Tao and V. Vu Local universality of zeros of random polynomials, Int. Math. Res. Notices 2015 (2015) no. 13, 5053-5139.
[T-07] V. Totik and P. Varjú Polynomials with prescribed zeros and small norm, Acta Sci. Math. (Szeged) 73 (2007) no. 3-4, 593-611.

[^0]: 2010 Mathematics Subject Classification: 11C08, 41A17, 26C10, 30C15.
 Key words and phrases: self-reciprocal polynomials, trigonometric polynomials, restricted coefficients, number of zeros on the unit circle, number of real zeros in a period, Conrey's question

