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Abstract. The fairly recent proofs of the irrationality of log 2, π2, ζ(3) and
various values of polylogarithms are re-examined by using a particular family
of orthogonal forms. This allows us to give a uniform and arguably more
natural treatment of these results.

1. Introduction

Apéry’s astonishing proof of the irrationality of ζ(3) amounts to showing that

0 < |d3kakζ(3)− bk| −→ 0

where bk is an integer,

ak :=

k∑

i=0

(
i+ k

k

)2(
k

i

)2

and

dk := lcm{1, 2, . . . , k}.
Here and throughout the paper lcm denotes the least common multiple. This is
entertainingly proved in van der Poorten [15] and given a very elegant treatment by
Beukers [4], [5]. In [5] Beukers puts the proof in the context of Padé approximants.

Many, maybe most, irrationality proofs may be based on approximation by Padé
approximants and related orthogonal polynomials ([8], [9], [14]). Sometimes this is
very natural, as with e, where the Padé approximants generate convergents of the
simple continued fraction. This is, however, an exceptional case.

It is the intention of this paper to try to put the well known proofs of the
irrationality of the constants log 2, ζ(2), and ζ(3), as well as certain values of poly-
logarithms into the framework of orthogonality. This reproduces results of Apéry,
Alladi and Robinson, and Chudnovsky in a unified fashion ([15], [2], [10]).

In [7], the authors considered orthogonalization of the system

{xλ0 , xλ1 , xλ2 , . . . },
and from this point of view orthogonalization of the system

{x0, x0, . . . , x0

︸ ︷︷ ︸

n times

, x1, x1, . . . , x1

︸ ︷︷ ︸

n times

, . . . }
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is very natural to study (the repeated indices are taken to be in a limiting sense).
This leads to orthogonal functions that generalize Legendre polynomials and are of
the form

n−1∑

j=0

Aj,l(x) log
j x

where each Aj,l(x) is a polynomial of degree l.
Legendre polynomials are closely tied to irrationality questions concerning log-

arithms ([2], [6, Chapter 11]) and higher order analogues prove to be the basis for

dealing with the irrationality of the polylogarithm
∑

n

zn

nm
([12]).

We argue that the irrationality proofs flow quite naturally from this point of
view. A nice feature of this approach is that the non-vanishing of the estimates,
which is essential for the proofs, comes very easily from the orthogonality.

This paper is organized in the following way. First we produce a contour integral
which generalizes the Legendre polynomials and consider the properties of this
function. We then specialize this form for particular cases in order to prove the
irrationality of log 2, ζ(2), ζ(3), and some values of the polylogarithm in general.
The approach to ζ(2), ζ(3), and log(2) eventually reproduces the estimates of Apéry
and Alladi and Robinson [2]. In the case of ζ(2) and ζ(3) we end up with the
integrals of Beukers [4]. The results for irrationality of polylogarithms are very
similar to those of Chudnovsky [10] but the estimates are different.

In all cases, the estimate allow for inequalities of the form
∣
∣
∣
∣
α− p

q

∣
∣
∣
∣
>

1

qc

for all integers p and q > 0 for some c > 0. So in all cases the stronger conclusion,
that the numbers in question are not Liouville is possible.

2. The Contour Integral

The orthogonalization of repeated monomials can be expressed by contour inte-
grals.

Theorem 1. Let k, l, m, and n be positive integers satisfying (l + 1)n− km ≥ 1.
Define

F (x; k, l;m,n) :=
(n− 1)!

2πi

(l!)n

(k!)m

∮

γ

∏k
j=1(t+ j)m

∏l
j=0(t− j)n

xtdt

where γ is any simple contour containing the poles at t = 0, 1, . . . , l. Then

F (x; k, l;m,n) = (−1)nl
n−1∑

j=0

Aj,l(x) log
j x

where Ai,l := Ai,l,k,m,n is a polynomial of degree l. So,

An−1,l(x) :=

l∑

i=0

(−1)ni
(
i+ k

k

)m(
l

i

)n

xi
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and

An−2,l(x) :=

l∑

i=0

(−1)ni
(
i+ k

k

)m(
l

i

)n

(n− 1)





k∑

j=1

m

i+ j
−

l∑

j=0,j 6=i

n

i − j



 xi

Furthermore, this function enjoys the orthogonality relations
∫ 1

0

F (x; k, l;m,n)xi logj xdx = 0, i = 0, 1, . . . , k − 1, j = 0, 1, . . . ,m− 1.

The polynomial An−1,l has integer coefficients. If k = l and n ≥ 2 then the
polynomial dkAn−2,l also has integer coefficients (dk := lcm{1, 2, . . . , k}).
Proof. The representation of F is just the evaluation of the integral at the poles
t = 0, 1, . . . , l by the Residue Theorem. The orthogonality conditions follow by
interchanging the order of integrations and observing the behaviour as the contour
is allowed to become arbitrarily large.

The fact that An−1,l has integer coefficients is obvious from the above forms. To
show that An−2,l has integer coefficients whenever k = l and n ≥ 2, we need to
observe that if p is a prime and α is a positive integer so that k ≤ pα ≤ k + i then
p divides

(
i+k
k

)
. This is straightforward from Euler’s formula for the largest power

of a prime dividing a factorial. �

It is interesting to note that the orthogonality relation stated above encompasses
an m-dimensional orthogonality conditions on the m-dimensional cube Im. That
is,

∫

Im

F (πm(x); k, l;m,n)

m∏

i=1

xsi
i dx = 0, si ∈ {0, 1, . . . , k − 1}

where πm(x) :=

m∏

i=1

xi and where x := (x1, x2, . . . , xm). Here and throughout

∫

Im

g(x)dx =

∫ 1

0

· · ·
∫ 1

0

∫ 1

0

g(x)dx1dx2 · · · dxm.

This can be deduced from the following theorem.

Theorem 2. We have
∫

In

F (πn(x))dx =
1

(n− 1)!

∫ 1

0

F (u)| log u|n−1du.

Proof. It is straightforward to verify by using the change of variables

u := xy, v :=
1

2
(x2 − y2)

that the double integral can be transformed as
∫ 1

0

∫ 1

0

F (xy)dxdy = −
∫ 1

0

F (u) log udu.

In the general case, the proof follows recursively. �

Various specializations of the parameters give us the results we are looking for.
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3. Irrationality of log 2 and ζ(3)

For these cases we set l = k and n = m in Theorem 1, so

F (x; k, k;m,m) =
(m− 1)!

2πi

∮

γ

∏k
j=1(t+ j)m

∏k
j=0(t− j)m

xtdt

which are orthogonal in the sense that
∫ 1

0

F (x; k, k;m,m)F (x; k′, k′;m,m)dx = 0

for any two distinct positive integers k and k′. Also

dj

dxj
F |x=1 = 0, j = 0, 1, . . . ,m− 2

and
dm−1

dxm−1
F |x=1 = (m− 1)!.

The above equations can be easily verified by using the results of Theorem 1.
When we set m = 1 and m = 2 these are in fact the polynomials needed in the

proof of the irrationality of log 2 and ζ(3) respectively. Both proofs are very similar
and we outline them below.

Theorem 3. We have

0 <

∣
∣
∣
∣

∫ 1

0

F (x; k, k; 1, 1)

1 + x
dx

∣
∣
∣
∣
= |A0,k(−1) log 2 +Rk| ≤ (

√
2− 1)2k log 2

where A0,k(−1) is an integer, Rk is a rational number, and dkRk is an integer
(dk := lcm{1, 2, . . . , k}).

Proof. We decompose the rational function as follows

F (x; k, k; 1, 1)

1 + x
= (−1)k

{
A0,k(−1)

1 + x
+

A0,k(x) −A0,k(−1)

1 + x

}

.

The first term of the right-hand side integrates to A0,k(−1) log 2 while the second
integrates to a rational number which can be integralized by the factor dk introduced
by the integration process. To establish the inequality we note that

A0,k(x) =
k∑

i=0

(−1)i
(
i+ k

k

)(
k

i

)

xi =
dk

dxk

xk(1 − x)k

k!

which is the shifted Legendre polynomial of degree k. By making use of the above
Rodrigues’ formula for these polynomials, and integrating by parts, we find

0 <

∣
∣
∣
∣

∫ 1

0

F (x; k, k; 1, 1)

1 + x
dx

∣
∣
∣
∣
=

∣
∣
∣
∣

∫ 1

0

xk(1− x)k

(1 + x)k+1
dx

∣
∣
∣
∣
≤
∣
∣
∣
∣

∫ 1

0

dx

1 + x

∣
∣
∣
∣
· (
√
2− 1)2k

since

0 <
x(1− x)

1 + x
≤ (

√
2− 1)2

for every x ∈ (0, 1). �
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The irrationality of log 2 now simply follows by multiplying both sides of the
inequality by dk, which by the prime number theorem is of O(e(1+δ)k) for any
δ > 0.

For ζ(3) we proceed as follows.

Theorem 4. We have

0 <

∣
∣
∣
∣

∫ 1

0

∫ 1

0

F (xy; k, k; 2, 2)

1− xy
dxdy

∣
∣
∣
∣
= |2A1,k(1)ζ(3) +Rk| ≤ 2ζ(3)(

√
2− 1)4k

where A1,k(1) is an integer, Rk is a rational number, and d3kRk is an integer.

Proof. As in the proof of Theorem 3 we write

F (xy; k, k; 2, 2)

1− xy
= A1,k(1)

log(xy)

1− xy
+

A1,k(xy) −A1,k(1)

1− xy
log(xy) +

A0,k(xy)

1− xy
.

Note that F (1; k, k; 2, 2) = 0 implies that A0,k(1) = 0. Hence the third term above
is a polynomial in xy, while the second term is log(xy) times a polynomial in xy.
(Both polynomials are of degree k − 1.) Now recall that

−1

2

∫ 1

0

∫ 1

0

log(xy)

1− xy
= ζ(3)

since ∫ 1

0

∫ 1

0

(xy)n log(xy)dx dy =
−2

(n+ 1)3
.

This accounts for the form of the double integral above. The right-hand inequality
and the non-vanishing follow from the next lemmas and the comment after them.

The next detail is that dk3Rk is an integer. For this we use the explicit form of
A1,k and A0,k in Theorem 1 to see that A1,k and dkA0,k have integer coefficients
and observe that each integration introduces a dk.

The final detail is to verify the inequalities of the theorem. This can be easily
done by Lemma 3 below. This yields

0 <

∣
∣
∣
∣

∫ 1

0

∫ 1

0

F (xy; k, k; 2, 2)

1− xy
dxdy

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ 1

0

∫ 1

0

∫ 1

0

dxdydv

(1− (1− xy)v)

∣
∣
∣
∣
· (
√
2− 1)4k

= 2ζ(3) · (
√
2− 1)4k

since

0 <
xyv(1 − x)(1 − y)(1− v)

1− (1− xy)v
≤ (

√
2− 1)4

for every x, y, v ∈ (0, 1).
The irrationality of ζ(3) now follows directly by multiplying by d3k and invoking

the estimate dk = O(e(1+δ)k) for every δ > 0. �

Lemma 1. (Padé Approximation.) For each n there exist polynomials pn and qn
of degree n so that

(n!)2

2πi

∮

γ

xtdt
∏n

j=0(t− j)2
= (x− 1)2n+1

∫ 1

0

vn(1− v)ndv

(1− (1 − x)v)n+1

= pn(x) log x+ qn(x) = O((x − 1)2n+1)

where γ is a simple contour containing all the poles. (In fact pn/qn is the (n, n)
Padé approximant to log x at x = 1.)
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Proof. An expansion of both integrals about the point x = 1, and a comparison of
coefficients verifies the identity. �

Lemma 2. (Rodrigues-Type Formula.) With γ as in Lemma 1,

F (xy; k, k; 2, 2) =
dk

dyk
dk

dxk

xkyk

2πi

∮

γ

(xy)tdt
∏k

j=0(t− j)2

=
1

(k!)2
dk

dyk
dk

dxk

∫ 1

0

(xy)k(xy − 1)2k+1vk(1− v)k

(1− (1− xy)v)k+1
dv.

Proof. This follows directly from the definition of F (x; k, k; 2, 2) and differentiation
in Lemma 1. �

Lemma 3. We have
∫ 1

0

∫ 1

0

F (xy; k, k; 2, 2)

1− xy
dxdy = −

∫ 1

0

∫ 1

0

∫ 1

0

(xyv(1 − x)(1 − y)(1− v))k

(1 − (1− xy)v)k+1
dxdydv.

Proof. For i, k nonnegative integers
∫ 1

0

∫ 1

0

(xy)k+i[(1 − x)(1 − y)]kdxdy

=
−1

(k!)2

∫ 1

0

∫ 1

0

1

1− xy

dk

dyk
dk

dxk
(xy)k+i(xy − 1)2k+1dxdy.

(Both sides are equal to
[

k!(k + i)!

(2k + i + 1)!

]2

though this is not completely transparent. One can verify this by induction.) So

1

(k!)2

∫ 1

0

∫ 1

0

1

1− xy

dk

dyk
dk

dxk
(xy)k(xy − 1)2k+1+idxdy

= −
∫ 1

0

∫ 1

0

(xy(1 − x)(1 − y))k(xy − 1)idxdy.

Hence
1

(k!)2

∫ 1

0

∫ 1

0

1

1− xy

dk

dyk
dk

dxk

(xy)k(xy − 1)2k+1

(1− (1− xy)v)k+1
dxdy

= −
∫ 1

0

∫ 1

0

(xy(1 − x)(1 − y))k

(1− (1 − xy)v)k+1
dxdy

which together with Lemma 2 completes the proof. �

4. Irrationality of ζ(2)

In this section the values of the parameters are l = k, m = 1, and n = 2. Then

F (x; k, k′; 1, 2) =
k!

2πi

∮

γ

∏k
j=1(t+ j)

∏k
j=0(t− j)2

xtdt

and the orthogonality relations
∫ 1

0

F (x; k, k; 1, 2)F (x; k′, k′; 1, 2, )dx = 0

hold for any two distinct positive integers k and k′.
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Theorem 5. We have

0 <

∣
∣
∣
∣

∫ 1

0

F (x; k, k; 1, 2)

1− x
dx

∣
∣
∣
∣
= |A1,k(1)ζ(2) +Rk| ≤ C

(√
5− 1

2

)5k

where A1,k−1(1) is an integer, Rk is a rational number, d2kRk is an integer, and C
is an absolute constant.

Proof. The proof proceeds in an entirely analogous manner as the two previous
ones. The inequality of the theorem is derived by making use of Lemma 1 again.
Here, the Rodrigues-type formula has the form

F (x; k, k; 1, 2) = − 1

k!

dk

dxk

[

xk(1 − x)2k+1

∫ 1

0

vk(1− v)k

(1 − (1− x)v)k+1
dv.

]

.

This yields

0 <

∣
∣
∣
∣

∫ 1

0

F (x; k, k; 1, 2)

1− x
dx

∣
∣
∣
∣
=

∫ 1

0

∫ 1

0

xk(1− x)kvk(1− v)k

(1 − (1− x)v)k+1
dvdx

and the inequality of the theorem follows by estimating the the maximum of the
integrand on the unit square. �

The irrationality of ζ(2) now follows easily as it did for ζ(3).

5. Irrationality of Polylogarithms

The parameters we use in this case arem = N and n = 1 where N is an arbitrary
positive integer N . We also set k = ⌈l/N⌉ throughout this section, that is k is the
smallest integer not less than l/N . Using the results of Theorem 1, we now write
the contour integral as

Fl(x) := F (x; k, l;N, 1) =
1

2πi

l!

(k!)N

∮

γ

∏k
i=1(t+ i)N
∏l

i=0(t− i)
xtdt

= (−1)l
l∑

i=0

(−1)i
(
i+ k

k

)N(
l

i

)

xi.

We use this form to prove the irrationality of some values of the polylogarithm
function [13] defined as

LiN (z) :=

∞∑

j=1

zj

jN
, |z| < 1.

Theorem 6. Let N and α be fixed positive integers. With πN (x) := x1x2 · · ·xN

and k := ⌈l/N⌉, we have
∣
∣
∣
∣

∫

IN

Fl(πN (x))

πN (x)− α
dx

∣
∣
∣
∣

=

∣
∣
∣
∣

1

α
Fl(α) LiN

(
1

α

)

+RN,k

∣
∣
∣
∣

≤ 1

2

(
1√
α
+

1√
α− 1

)2(
2N(N+2)

(
√
α+

√
α− 1)2

)k

.

where RN,k is a rational number and (dl)
NRN,k is an integer. The integral does

not vanish for infinitely many positive integers l. Note that Fl(α) is an integer.
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Proof. Using our standard decomposition, we write

Fl(πN (x))

πN (x)− α
=

Fl(α)

πN (x)− α
+

Fl(πN (x))− Fl(α)

πN (x)− α
.

Integration of this form shows the structure of the terms as stated in the equality
of the theorem.

To prove the inequality of the theorem, note that the orthogonality conditions
satisfied by F and Theorem 2 imply that

∫

IN

Fl(πN (x))

πN (x)− α
dx =

∫

IN

(
1

πN (x)− α
− Pk−1(πN (x))

)

Fl(πN (x))dx

where Pk−1(x) is any polynomial of degree k − 1. Proceeding on, we obtain
∣
∣
∣
∣

∫

IN

Fl(πN (x))

πN (x)− α
dx

∣
∣
∣
∣

≤ max
0≤x≤1

∣
∣
∣
∣

1

x− α
− Pk−1(x)

∣
∣
∣
∣
max
x∈IN

|Fl(πN (x))|

≤ 2(l+k)N+l max
0≤x≤1

∣
∣
∣
∣

1

x− α
− Pk−1(x)

∣
∣
∣
∣

≤ 2N(N+2)k max
0≤x≤1

∣
∣
∣
∣

1

x− α
− Pk−1(x)

∣
∣
∣
∣

where the upper bound of the second maximum is derived from the explicite form
of the coefficients of the polynomial Fl.

To have the best possible upper bound for the remaining maximum in the above
estimate, we wish to find a polynomial of degree k−1 such that the deviation of 1

x−α

from Pk−1 is minimized. This problem was solved by Tchebysheff and is discussed
by Akhieser [1] as in the next lemma from which the right hand-side inequality of
the theorem follows.

The non-vanishing of the integral follows from the orthogonality conditions. Each
Fl is a polynomial of exact degree l. So, with g(x) := 1/(x− α),

∫

IN

Fl(πN (x))g(πN (x))dx = 0

implies
∫ 1

0

Fl(x)g(x)(log x)
N−1dx = 0.

So vanishing at all large l implies that g(x)(log x)N−1 is a polynomial, which is a
contradiction. �

Lemma 4. The (k − 1)-th degree polynomial

Pk−1(x) =
1

x− α
− M

2

[

vk−1 a− v

1− av
+ v−(k−1) 1− av

a− v

]

where

x :=
1

2

(

v +
1

v

)

, α :=
1

2

(

a+
1

a

)

, |a| < 1, M :=
4ak+1

(1 − a2)2

and

max
|x|≤1

∣
∣
∣
∣

1

x− α
− Pk−1(x)

∣
∣
∣
∣
= M,

deviates the least from 1
x−α on the interval [−1, 1] in the uniform norm.

Proof. See [1]. �
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¿From these we obtain, on using k = ⌈l/N⌉, and transforming the above Lemma
to [0, 1], that

∣
∣
∣
∣

∫

IN

Fl(πN (x))

πN (x)− α
dx

∣
∣
∣
∣
≤ 1

2

(
1√
α
+

1√
α− 1

)2(
2N(N+2)

(
√
α+

√
α− 1)2

)k

.

Theorem 7. For positive integers α the polylogarithm function values LiN (1/α)
are irrational provided

α >

(
1

2

(
√

β +
1√
β

))2

where β := 2N(N+2)e(1.0388... )N
2

.

Proof. We multiply the form in Theorem 6 by (dl)
N and demand for large k that

(
2N(N+2)

(
√
α+

√
α− 1)2

)k

(dl)
N ≤

(
2N(N+2)

(
√
α+

√
α− 1)2

)k

e((1.0388... )lN/k)k

≤
(

2N(N+2)e(1.0388... )N
2

(
√
α+

√
α− 1)2

)k

< 1.

For this is suffices that
2N(N+2)e(1.0388... )N

2

(
√
α+

√
α− 1)2

< 1

where we have used the sharp global estimate dl ≤ e(1.0388... )l (see [15]). The
theorem now follows by solving the above inequality for α �

We can extend our results in Theorem 6 to show the irrationality of the function

Φ(z,N, u) :=

∞∑

j=0

zj

(u+ j)N
, |z| < 1, u 6= 0,−1,−2, . . .

(several properties of Φ may be found in [11]) whenever N is an integer, u is a
rational number, and z = 1/α, where α is an integer greater than a constant
depending only on N and u. This follows from

Theorem 8. Let N and α be fixed positive integers. Let u = q/p be a rational
mumber where p and q are nonzero integers. Then there exists a constant CN,u

depending only on N and u so that
∣
∣
∣
∣

∫

IN

Fl(πN (x))p/q)dx

(πN (x))p/q − α

∣
∣
∣
∣

=

∣
∣
∣
∣
∣

1

α

(
q

p

)N

Fl(α)Φ

(
1

α
,N,

q

p

)

+RN,k

∣
∣
∣
∣
∣

≤ (CN,u)
k max
0≤x≤1

∣
∣
∣
∣

1

x− α
− Pk−1(x)

∣
∣
∣
∣

where RN,k is a rational number, dNpl+qRN,k is an integer, and Pk−1(x) is an arbi-
trary polynomial of degree k−1. The integral is not zero for infinitely many positive
integers l. Note that Fl(α) is an integer.

Proof. This follows analogously to the proof of Theorem 6 with the substitution

πN (x) → (πN (x))p/q.

�
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