1. Prove that e^{int} converges weakly to zero in $L^1[0, 1]$.

2. Let K be a bounded subset of $C[0, 1]$ such that every sequence of elements in K has a subsequence that converges pointwise to some function in $C[0, 1]$. Show that K has compact closure as a subset of $L^2[0, 1]$.

3. (a) A function $f : [0, 1] \to \mathbb{R}$ is said to be absolutely continuous provided . . .

(b) Prove or disprove: Every polynomial is absolutely continuous on $[0, 1]$.

4. Let (X, ρ) be a compact metric space.

 (a) Prove that there exists a compact subset K of $C(X)$ whose linear span is dense in $C(X)$.

 (b) Prove that if K is a compact subset of $C(X)$ whose linear span is dense in $C(X)$, then the pseudometric

 $$d(x, y) := \sup_{f \in K} |f(x) - f(y)|$$

 on X is actually a metric on X; moreover, show that d and ρ generate the same topology on X.

5. (a) State the Lemma of Fatou.

 (b) Let (X, \mathcal{M}, μ) be a measure space and suppose that (f_n) is a sequence of non-negative functions which converge pointwise to an integrable function f. Suppose that $\lim_{n \to \infty} \int_X f_n \, d\mu = \int_X f \, d\mu$. Show that

 $$\lim_{n \to \infty} \int_E f_n \, d\mu = \int_E f \, d\mu$$

 for any measurable $E \subset X$.

6. Let $2 < p \leq \infty$ and let X be a subspace of $L_p[0, 1]$ that is closed in $L_1[0, 1]$.

 (a) Prove that $(X, \| \cdot \|_p)$ is isomorphic to a Hilbert space.

 (b) Prove that if $p = \infty$, then X is finite dimensional.
7. Define $f_n : \mathbb{R} \rightarrow \mathbb{R}$ by $f(x) = x^{56n}$.

(a) Prove that the linear span of the functions $f_n|_{[0,1]}$ for $n = 1, 2, 3, \ldots$ is dense in $L^1[0,1]$.

(b) Prove that the linear span of the functions $f_n|_{[-1,1]}$ for $n = 1, 2, 3, \ldots$ is not dense in $L^1[-1,1]$.

8. Let X be a Banach space and Y a linear closed subspace of X. Show that an extreme point in the unit ball of Y^* can be extended to an extreme point in the unit ball of X^*.

9. Assume $f_n \in L^1(-\infty, \infty)$, for $n \in \mathbb{N}$, with

$$\int |f_n(x)| \, dx \leq 2^{-n}.$$

Show that $\lim_{n \to \infty} f_n(x) = 0$ a.e.. Is the same conclusion true if 2^{-n} is replaced by $\frac{1}{n}$?

10. Assume that $f \in L^1[0,1]$ satisfies for some $C > 0$

$$\int_E |f| \, dx \leq C m^{1/2}(E) \quad \text{whenever } E \subset [0,1] \text{ is measurable}.$$

Show that $f \in L^p[0,1]$ for any $1 \leq p < 2$. Give an example which is not in $L^2[0,1]$.
