Problems in Functional Analysis (Math655)
Prof.: Thomas Schlumprecht

Please attempt 6 out the following 12 problems.
From Book
page 86 ff: 3.63, 3.70, 3.83, 3.90
page 130ff: 4.4, 4.19

1. Show that the unit ball in ℓ_∞^* is not sequentially compact in w^*, i.e. not every sequence has a converging subsequence.

2. Prove the non linear Hahn Banach Theorem:
 X is a metric space $Y \subset X$ and $f : Y \to \mathbb{R}$ Lipschitz continuous.
 Then f can be extended to a Lipschitz function $F : X \to Y$ having the same Lipschitz constant as f.

3. (*) Prove above non linear Hahn Banach Theorem without using the axiom of choice.

4. Let X be a Banach space, we call a set $A \subset X$ limited in X if every sequence (x_n^*) in X^* converging w^* to 0 converges uniformly to 0 on A.
 Prove that relatively compact sets are limited and that if X is separable every limited set is relatively compact.

5. (*) Find a Banach space X which admits limited sets which are not relatively compact.

6. Let X be a Banach space. Show that $(X^*, w^*)^* = (X, w)$.