Read Chapter 7

(1) An infinite set with the cofinite topology is compact.

(2) Let X be a compact space and $f : X \to \mathbb{R}$ be continuous. Show that f assumes its supremum, i.e. $s = \sup_{x \in X}(f(x)) < \infty$ and there is an $x_0 \in X$ so that $f(x_0) = s$.

(3) 3/page 95.

(4) 10/ page 95

(5) (*) Show that if X and Y are compact spaces that $X \times Y$ (with the product topology) is also compact.

(6) (*) Let \mathcal{M} be the Michael line.
 (a) Show that if a set $A \subset \mathcal{M}$ is \mathcal{M}-closed. Then $A \cap \mathbb{Q}$ is closed in \mathbb{Q} with respect to the restriction topology of the usual topology on \mathbb{R}.
 (b) Show that \mathcal{M} is normal.