Problem 1. Assume \(X \) and \(Y \) are topological spaces, \(Y \) being Hausdorff, and \(f, g : X \to Y \) are continuous.

a) \(\{ x \in X : f(x) = g(x) \} \) is closed in \(X \).

b) The claim in (a) is not necessarily true without the assumption that \(Y \) is Hausdorff.

c) If \(f(x) = g(x) \) for all \(x \) out of a dense subset of \(X \), then \(f = g \).

Problem 2. Let \(\mathcal{F} \) be a set of real-valued function on a set \(X \) and let \(T \) be the weak topology on \(X \) generated by \(\mathcal{F} \). Then

\[(X, T) \text{ Hausdorff } \iff \forall x, y \in X, x \neq y, \exists f \in \mathcal{F} \quad f(x) \neq f(y).\]

Problem 3. Only using the definition of net, convergent net and subnet, show

a) The subnet of a subnet is a subnet.

b) The subnet of a convergent net converges to the same limit.

Problem 4. If \(A \) is a directed set, a subset \(B \) of \(A \) is called co final if for each \(\alpha \in A \) there exists \(\beta \in B \) so that \(\beta \geq \alpha \).

a) If \(B \) is co final in \(A \) and \((x_\alpha)_{\alpha \in A} \) is a net, the inclusion map \(B \to A \) makes \((x_\beta)_{\beta \in B} \) a subnet of \((x_\alpha)_{\alpha \in A} \).

b) If \((x_\alpha)_{\alpha \in A} \) is a net in a topological space \(X \) and \(x \in X \) then \((x_\alpha)_{\alpha \in A} \) converges to \(x \iff \forall B \subset A \text{ co final } \exists C \subset B \text{ co final } (x_\gamma)_{\gamma \in C} \text{ converges to } x. \)

Remark: Note that (b) is the analogous statement of: ”a sequence in a metric space converges to \(x \) if and only if every subsequence has a further subsequence which converges to \(x \).”

Problem 5. If \(X \) is Hausdorff, then any net in \(X \) converges to a at most one element.

Problem 6. Let \(X = [0, 1]^{[0,1]} \) and consider on \(X \) the product topology. Define

\[A := \left\{ (x_t)_{t \in [0,1]} \in X : \{t \in [0,1] : x_t \neq 0 \} \text{ is countable} \right\}. \]

Show that every sequence in \(A \) has a convergent subsequence whose limit is still in \(A \).

Problem 7. Show that the set \(A \) in Problem 6 is not compact.

Problem 8. Assume that \((\mathbb{N}, <)\) is the wellordered set from Problem 6 in first Homework. Show that every closed interval is compact in the order topology.