Read Chapter 2 (finish)

1. Let \((X, d)\) be a metric space. For \(A, B \subset X\) show that
 \[\overline{A \cup B} = \overline{A} \cup \overline{B}\]
 and \(\overline{A \cap B} \subset \overline{A} \cap \overline{B}\)
 and find an example for which \(\overline{A \cap B} \neq \overline{A \cap B}\).

2. For \(x, y \in \mathbb{R}\) define
 \[\rho(x, y) = |\arctan(x) - \arctan(y)|\]
 a) Show that \(\rho\) is a metric on \(\mathbb{R}\) which has the same open sets
 as the usual metric.
 b) Show that \((\mathbb{R}, \rho)\) is not complete.

3. Problem 13, page 31

4. Give an example of a metric space \((X, d)\) and closed sets \(F_n \subset X, n \in \mathbb{N}\),
 for which \(\bigcup F_n\) is not closed.

5. (*) Find a metric \(\rho\) on \((0, 1)\) which has the same open sets as
 for the usual metric, but for which \(((0, 1), \rho)\) is complete.