Problem 1. (Old Qualifying Exam) Assume we consider on \mathbb{R} the Lebesgue measure.

a) Prove for $1 \leq p < \infty$ that the continuous functions on \mathbb{R} with compact support are dense in $L_p(\mathbb{R})$.

b) For $1 < p, q < \infty$, with $\frac{1}{p} + \frac{1}{q} = 1$, $f \in L_p(\mathbb{R})$, and $g \in L_q(\mathbb{R})$ define

$$f \ast g(x) = \int f(z) \cdot g(x-z)dz, \ x \in \mathbb{R}.$$

The map $f \ast g$ is called the convolution of f and g. Show that the function $x \mapsto f \ast g(x)$ is continuous on \mathbb{R} and that $\sup_{x \in \mathbb{R}} |f \ast g(x)| \leq ||f||_p \cdot ||g||_q$.

Problem 2. (The case $p = \infty$) Let (X, \mathcal{M}, μ) be a measure space. For measurable $f : X \to \mathbb{R}$ (or \mathbb{C} instead of \mathbb{R}), we define

$$||f||_{\infty} = \inf \{r \geq 0 : \mu(\{x \in X : |f(x)| > a\}) = 0\},$$

and let

$$L_\infty(X, \mathcal{M}, \mu) = L_\infty(\mu) = \{f : X \to \mathbb{R} : \mbox{mble.} ||f||_{\infty} < \infty\}$$

a) (Theorem of Hölder for $p = \infty$ and $q = 1$) For $f \in L_\infty(\mu)$ and $g \in L_1(\mu)$, we have $f \cdot g \in L_1(\mu)$, and $\|fg\|_1 \leq \|f\|_{\infty} \cdot \|g\|_1$. Characterize when $\|fg\|_1 = \|f\|_{\infty} \cdot \|g\|_1$.

b) $||\cdot||_{\infty}$ is norm on L_∞.

c) For $(f_n) \subset L_\infty(\mu)$, and $f \in L_\infty(\mu)$, we have that $f_n \rightarrow f$ in $||\cdot||_{\infty}$ if and only if there is a μ-null set E so that f_n converges uniformly to f outside of E.

d) $L_\infty(\mu)$ is a Banach space.

e) Simple functions are dense in $L_\infty(\mu)$.

f) Continuous bounded functions on \mathbb{R} are not dense in $L_\infty(\mathbb{R})$

Problem 3. Let $1 < p < \infty$. Find a function $f : [0,1] \to \mathbb{R}$ which is in $\bigcup_{r<p} L_r[0,1]$, but not in $L_p[0,1]$, and find a function $g \to \mathbb{R}$ which is in $L_p[0,1]$ but not in $\bigcap_{r>p} L_r[0,1]$. Hint: $\frac{1}{x} \not\in L_1[0,1]$.

Problem 4. Let $1 \leq p < \infty$. For sequence $(f_n) \subset L_p(\mu)$ ((X, \mathcal{M}, μ) measure space) and $f \in L_p(\mu)$ it follows that

$$f_n \rightarrow_{n \to \infty} f \ \text{in} \ L_p \iff f_n \rightarrow f \ \text{in measure and} \ ||f_n||_p \rightarrow_{n \to \infty} ||f||_p.$$

Hint: First show that $\lim_{n \to \infty} ||f + f_n||_p = 2||f||_p$ and then show that for any $\varepsilon > 0$ there is a $C > 0$ so that $||f_n\chi_{\{|f_n| > C|f|\}}||_p < \varepsilon$.

Problem 5. A linear functional on a normed linear space is bounded if and only if $f^{-1}(\{0\})$ is closed.
Problem 6. Suppose X and Y are normed linear spaces and $T \in L(X,Y)$. Define $T^t : Y^* \to X^*$ by $y^* \mapsto y^* \circ T$ (which must be in X^* since y^* and T are both bounded and linear).

a) $T \in L(Y^*,X^*)$ and $\|T^t\| = \|T\|$.

b) Let $I_X : X \to X^{**}$ and $I_Y : Y \to Y^{**}$ be the canonical embeddings, then $T^{tt} \circ I_X = I_Y \circ T$.

c) T^t injective $\iff \overline{T(X)} = Y$.

d) If the range of T^t is dense in X^*, then T is injective. If X is reflexive the converse holds.

Problem 7. Problem 18/page 159 Let X be a normed linear space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C}.

a) If Y is a closed subspace and $x \in X \setminus Y$ then $x\mathbb{F} + Y$ is closed

b) Every finite dimensional subspace of X is closed.

Problem 8. Problem 19/page 160 Let X be an infinite-dimensional normed vector space.

a) There is a sequence $(x_n) \subset X$, with $\|x_n\| = 1$, for all $j \in \mathbb{N}$, and $\|x_j - x_i\| \geq \frac{1}{2}$, if $i \neq j$.

b) The unit ball $B_X = \{x \in X, \|x\| \leq 1\}$ is not compact.

Remark. By a much deeper Theorem due to Dor and Odell the following is true: For very infinite dimensional Banach space X there is an $\varepsilon = \varepsilon_X > 0$, so that there is a sequence $(x_j) \in S_X = \{x \in X : \|x\| = 1\}$ so that $\|x_i - x_j\| \geq 1 + \varepsilon$, if $i \neq j$.

See if you can prove the following weaker statement: There is a sequence $(x_j) \subset S_X$ so that $\|x_i - x_j\| > 1$, if $i \neq j$ (this is not a required homework).