Problems in Real Analysis II (Math608)

Due: 4/7/10

Problem 1. There is a meager subset of \(\mathbb{R} \) whose complement has Lebesgue’s measure zero.

Problem 2. Assume that \(\| \cdot \| \) and \(||| \cdot ||| \) are two norms on a vector space \(X \) so that \(\| \cdot \| \leq ||| \cdot ||| \) an so that under both norms \(X \) is complete. Show that the norms are equivalent, i.e. that there is a constant \(c \geq 1 \) so that \(||| \cdot ||| \leq c \| \cdot \| \).

Problem 3. Let \(X \) and \(Y \) be Banach spaces. If \(T : X \to Y \) is a linear map such that \(f \circ T \in X^\ast \) for all \(f \in Y^\ast \). Show that \(T \) is bounded.

Problem 4. Let \((x_n) \) be a Schauder basis of a Banach space \(X \) (see Homework 7). For \(x \in X \) and \(n \in \mathbb{N} \) define

\[
P_n(x) = \sum_{j=1}^{n} a_j x_j, \text{ where } x \text{ has (unique) expansion } x = \sum_{i=1}^{\infty} a_i x_i.
\]

a) Prove that \(P_n \) is a linear bounded map, and that \(M := \sup_n \|P_n\| < \infty \).

Hint: consider the norm

\[
\|x\| = \sup_{n \in \mathbb{N}} \left\| \sum_{j=1}^{n} a_j x_j \right\|, \text{ where } x \text{ has (unique) expansion } x = \sum_{i=1}^{\infty} a_i x_i.
\]

b) Prove that for \(n \in \mathbb{N} \) the \(n \)-th coordinal functional

\[
x_n^* : X \to \mathbb{F}, \ x \mapsto a_n, \text{ where } x \text{ has (unique) expansion } x = \sum_{i=1}^{\infty} a_i x_i,
\]

is in \(X^\ast \) and if \(\inf_{n \in \mathbb{N}} \|x_n\| > 0 \) then \(\sup_{n \in \mathbb{N}} \|x_n^*\| < \infty \).

Problem 5. Let \(X \) be a non empty set. We call a set \(\mathcal{F} \subset \mathcal{P}(X) \setminus \{\emptyset\} \) a filter on \(X \) if for all \(A, B \in \mathcal{F} \) there is a \(C \in \mathcal{F} \) so that \(C \subset A \cap B \). Note that in a topological space \(X \) a neighborhood basis of some point \(x \in X \) is a filter. We call a filter \(\mathcal{F} \) and ultrafilter if it is maximal, i.e. if for any \(A \in \mathcal{P}(X) \setminus \mathcal{F} \mathcal{F} \cup \{A\} \) is not anymore a filter.

a) Show that every filter \(\mathcal{F} \) can be extended to an ultra filter.

b) Let \(\mathcal{F} \) be a filter. Then

(\(\mathcal{F} \) is an ultrafilter \(\iff \forall A \in \mathcal{P}(X) \quad A \in \mathcal{F} \) or \(A^c \in \mathcal{F} \).

c) If \(X \) is infinite there are nontrivial ultrafilter \(\mathcal{U} \), i.e. with the property that \(\mathcal{U} \) does not contain finite set (or equivalently, (why?) singletons).

d) Let \(x \in \ell_\infty \) and let \(\mathcal{U} \) be an ultrafilter on \(\mathbb{N} \). Then there exists an \(r = r(\mathcal{U}, x) \in \mathbb{R} \), so that for all \(\varepsilon > 0 \) there is an \(N \in \mathcal{U} \) so that \(|x_n - r| < \varepsilon \) for all \(n \in N \).
e) Think of an ultrafilter to be a directed set (reversed inclusion) and pick for every $N \in \mathcal{U}$ and element $k_N \in N$. Then for all $x = (x_n) \in \ell_\infty$,

$$r(\mathcal{U}, x) = \lim_{U \in \mathcal{U}} x_{k_U}.$$

f) Show that for every ultrafilter the map

$$\mathcal{U}(\cdot) : X \to \mathcal{F}, \quad x \to r(\mathcal{U}, x)$$

is bounded and linear (and thus an element of $\ell_\infty^*.$)

Problem 6. Let X be locally convex space over \mathbb{R}, $A \subset X$ closed and convex and $K \subset X$ compact and convex, and assume that A and K are disjoint and both non empty. Show that there is an $f \in X^*$ so that

$$\sup_{x \in A} f(x) < \inf_{x \in K} f(x).$$

Give an example which shows that one cannot replace K compact by only K closed (of course all other conditions are satisfied).

Problem 7. 45/page 170.

Problem 8. 49/page 170.