Math 251.512
Exam 1, version A
9/19/08

1. For the function \(f(x, y) = \sqrt{16 - 4x^2} + \sqrt{9 - y^2}, \)
 (a) \(6 \text{ pts.} \) sketch the domain.
 (b) \(6 \text{ pts.} \) find the range.

2. \(8 \text{ pts.} \) Find two unit vectors perpendicular to both \(\langle 2, 1, -1 \rangle \) and \(\langle -1, 2, 1 \rangle \).

3. \(10 \text{ pts.} \) Find the equation of the plane which contains the line \(x = 1 + 2t, \)
 \(y = 2 - t, z = 3t \) and is perpendicular to the plane \(3x + y + 2z = 5. \)

4. \(10 \text{ pts.} \) At what point(s) (if any) on the curve \(x = t, \ y = t^2, \ z = t^3 \) is
 the tangent vector perpendicular to \(\mathbf{i} + \mathbf{j} - \mathbf{k} \)?

5. \(8 \text{ pts.} \) What is the area of the triangle with vertices \((1, 0, 3), \ (0, 1, 2), \)
 and \((4, 1, 2) \)?

6. A particle starts at the point \((0, 0, 0) \) with initial velocity \(\mathbf{v}(0) = \mathbf{j} + 2\mathbf{k} \)
 and moves with acceleration \(\mathbf{a}(t) = -\mathbf{i} + \mathbf{j} \).
 (a) \(6 \text{ pts.} \) What is its position as a function of \(t? \)
 (b) \(6 \text{ pts.} \) Where does it cross the plane \(x = -1? \) (Consider only \(t \geq 0. \))

7. \(10 \text{ pts.} \) Find the equation of a sphere, given that one of its diameters
 has endpoints \((1, 1, 3) \) and \((3, -3, 7) \).

8. \(8 \text{ pts.} \) Sketch the polar curve \(r = \cos 2\theta, \ 0 \leq \theta \leq \pi. \) (Note the restriction
 on \(\theta! \))

9. \(10 \text{ pts.} \) What is the length of the curve \(x = 2t, \ y = 3\sin t + \cos t, \)
 \(z = \sin t - 3\cos t \) from \((0, 1, -3) \) to \((\pi, 3, 1) \)? (If you’re trying to do a
 difficult integral, you’ve made a mistake.)
10. (12 pts.) For each of the following equations, determine which surface on the following page is its graph. In all the graphs, the axes are oriented as shown:

(a) \(x^2 + y^2 = z^2 \)
(b) \(x^2 - y^2 + z^2 = 1 \)
(c) \(z = x^2 - y^2 \)
(d) \(z = x^2 + y^2 \)
(e) \(x^2 = y^2 + z^2 \)
(f) \(x^2 + y^2 - z^2 = 1 \)