Conversion from spherical to cartesian coordinates:
\[x = \rho \sin \phi \cos \theta \]
\[y = \rho \sin \phi \sin \theta \]
\[z = \rho \cos \phi \]
\[dV = \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi \]

1. (12 pts.) A lamina is in the shape of the triangle with vertices \((0,0), (1,0)\) and \((1,2)\). Find \(\bar{y}\) of the center of mass, if density at any point is proportional to the distance to the \(y\) axis.

\textbf{Solution:} First off, notice that the distance of a point \((x,y)\) to the \(y\) axis is the \(x\) coordinate, so that \(\rho = kx\). Then,

\[\bar{y} = \frac{\int_0^1 \int_0^{2x} kxy \, dy \, dx}{\int_0^1 \int_0^{2x} kx \, dy \, dx} = \frac{3}{4}. \]

2. (16 pts.) Suppose that \(E\) is the region in space bounded below by the paraboloid \(z = x^2 + 4y^2 - 3\) and above by the plane \(z = 1\). Set up (but do not evaluate) \(\iiint_E z \, dV\) as an iterated integral

 \textbf{(a) in the order } dz \, dy \, dx. \textbf{ Solution:} The \(z\) limits are pretty clear. To get the \(x\) and \(y\) limits, you have to project the intersection of the paraboloid and the plane \(z = 1\) into the \(xy\) plane, to get the ellipse \(x^2 + 4y^2 = 4\). Therefore the integral is
 \[\int_{-2}^{2} \int_{-\sqrt{1 - \frac{x^2}{4}}}^{\sqrt{1 - \frac{x^2}{4}}} \int_{\frac{z^2}{x^2 + 4y^2 - 3}}^{1} z \, dz \, dy \, dx. \]

 \textbf{(b) in the order } dx \, dy \, dz. \textbf{ Solution:} For the inner limits, you go from one part of the paraboloid to the other. The projection into the \(y\), \(z\) plane is bounded by the parabola \(z = 4y^2 - 3\) and the line \(z = 1\). So, in the order \(dx \, dy \, dz\) the integral is
 \[\int_{-3}^{1} \int_{-\sqrt{z + 3 - 4y^2}}^{\sqrt{z + 3 - 4y^2}} \int_{\frac{z^2}{x^2 + 4y^2 - 3}}^{1} z \, dx \, dy \, dz. \]

3. (10 pts.) Use Green’s theorem to evaluate \(\oint_C \left(e^{x^2} + 2y^3 \right) \, dx + \left(e^{y^2} - 2x^3 \right) \, dy\), where \(C\) is the upper half of the circle \(x^2 + y^2 = R^2\), followed by the line segment from \((-R,0)\) to \((R,0)\), oriented positively. \textbf{Solution:} By Green’s theorem, the line integral must equal
\[\iint_D \frac{\partial}{\partial x} \left(e^{y^2} - 2x^3 \right) - \frac{\partial}{\partial y} \left(e^{x^2} + 2y^3 \right) \, dA = \iint_D (-6x^2 - 6y^2) \, dA, \]
where \(D\) is the upper half disk of radius \(R\). This is best done in polar:
\[\int_0^\pi \int_0^R (-6r^2 \, dr \, d\theta = -3 \pi R^4. \]
4. (16 pts.) Convert \(\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{x^2+y^2}} x^2 \, dz \, dy \, dx \) to an integral in:

(a) cylindrical coordinates. *Solution:* That \(z \) goes from \(z = r \) to \(z = 1 \) is pretty clear. The \(x \) and \(y \) limits correspond to a quarter of the unit circle, so in cylindrical coordinates the integral is
\[
\int_0^{\pi/2} \int_0^1 \int_r^1 r^4 \cos^2 \theta \sin \theta \, dz \, dr \, d\theta,
\]
not forgetting that \(dV = r \, dz \, dr \, d\theta \).

(b) spherical coordinates. *Solution:* The plane \(z = 1 \) is \(\rho \cos \phi = 1 \), so \(\rho \) goes from the origin out to \(\rho = \sec \phi \). Since we’re in a quarter of a cone, the integral is
\[
\int_0^{\pi/2} \int_0^{\pi/4} \int_0^{\sec \phi} \left(\rho \sin \phi \cos \theta \right)^2 \left(\rho \sin \phi \sin \theta \right) \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta = \int_0^{\pi/2} \int_0^{\pi/4} \int_0^{\sec \phi} \rho^5 \sin^4 \phi \cos^2 \theta \sin \theta \, d\rho \, d\phi \, d\theta.
\]
You can do the \(d\phi \) and \(d\theta \) integrals in either order, but the \(d\rho \) integral really better be the inner one.

5. (12 pts.) Evaluate \(\int_C (2xy + \sin x) \, dx + (x^2 + 2e^y) \, dy \), where \(C \) is an arbitrary smooth curve starting at \((2,1)\) and ending at \((0,0)\). *Solution:* Since we aren’t given the curve, for the problem to make sense we’ve got to integrating \(\int (\nabla f) \cdot d\vec{r} \) for some function, and then we can use the fundamental theorem of line integrals. Just to be sure, though, we check that
\[
\frac{\partial}{\partial y} (2xy + \sin x) = \frac{\partial}{\partial x} (x^2 + 2e^y) = 2x.
\]
So it is a gradient, and we need to recover \(f \). Since \(f_x = 2xy+\sin x \), \(f(x,y) = x^2y-\cos x + g(y) \) for some function \(g \). Differentiating this with respect to \(y \), we get that \(f_y = x^2 + g'(y) \), and, comparing with what \(f_y \) is supposed to be, we see that \(g'(y) = 2e^y \), therefore \(g(y) = 2e^y + C \). Since \(C \) will cancel anyway, we drop it, to get \(f(x,y) = x^2y - \cos x + 2e^y \). Then the line integral must equal
\[
f(0,0) - f(2,1) = -1 + 2 - (4 - \cos 2 + 2e) = -3 + \cos 2 - 2e.
\]

6. (10 pts.) Convert \(\int_0^2 \int_0^{\sqrt[3]{x^2+y^2+1}} dy \, dx \) to an integral in polar coordinates (but do not evaluate it). *Solution:* \(r \) goes from the line \(x = 2 \) to the origin. But \(x = 2 \) is \(r \cos \theta = 2 \) or \(r = 2 \sec \theta \), so the integral is
\[
\int_0^{\pi/3} \int_0^{2 \sec \theta} \frac{r \, dr \, d\theta}{r^2 + 1},
\]
since the line \(y = x \sqrt{3} \) is given by \(\theta = \frac{\pi}{3} \).
7. (12 pts.) Evaluate the line integral \(\int_C x\,ds \), where \(C \) is the portion of the parabola \(y = x^2 \) from \((0, 0)\) to \((1, 1)\). Solution: Parameterize the parabola by \(x = t, \ y = t^2, \ 0 \leq t \leq 1 \). Then
\[
 ds = \sqrt{(x')^2 + (y')^2} \, dt = \sqrt{1 + 4t^2} \, dt,
\]
and the integral becomes
\[
 \int_0^1 t \sqrt{1 + 4t^2} \, dt = \left. \frac{1}{12} (1 + 4t^2)^{3/2} \right|_0^1 = \frac{1}{12} (5^{3/2} - 1),
\]
where I used the substitution \(u = 1 + 4t^2 \).

8. (12 pts.) Match each of the following vector fields with the plots below

(a) \(\langle \cos(5x), \sin(5y) \rangle \). Answer: III.
(b) \(\langle -x + y, x + 2y \rangle \). Answer: I.
(c) \(\langle \cos(5y), \sin(5x) \rangle \). Answer: V.
(d) \(\langle x^2, y^2 \rangle \). Answer: II.
(e) \(\langle y^2, x^2 \rangle \). Answer: IV.
(f) \(\langle x + y, -x + y \rangle \). Answer: VI.