Math 410.500
Exam 3
4/29/05

There are problems on both sides of this sheet!

1. (10 pts.) True or false? (no explanation is needed)
 (a) If f is differentiable at $a \in \mathbb{R}^n$ then f is continuous at a.
 (b) If all first order partials of f exist at a then f is differentiable at a.
 (c) If all first order partials of f exist at a then f is continuous at a.
 (d) If all first order partials of f are continuous in an open set containing a then f is differentiable at a.
 (e) If f is differentiable at a then all first order partials of f are continuous at a.

2. Define:
 (a) (5 pts.) The norm of a linear operator T. (We saw a couple of definitions: either one is fine.)
 (b) (5 pts.) A convex set.

3. Suppose that $f(a, b, c, d)$ and $g(a, b, c, d)$ are continuously differentiable on \mathbb{R}^4 and that (a_0, b_0, c_0, d_0) solves the system

 $f(a, b, c, d) = 0$
 $g(a, b, c, d) = 0$.

 (a) (10 pts.) What additional condition do we need to conclude by the Implicit Function Theorem that the above system defines a and b implicitly as differentiable functions of c and d in an open set containing (c_0, d_0)?
 (b) (10 pts.) If that condition is met, find $\frac{\partial a}{\partial c}(c_0, d_0)$ in terms of partial derivatives of f and g.

1
4. For \(f(x, y) = \frac{1}{x + 2y} \) at \(a = (1, 1) \),

(a) (5 pts.) write Taylor’s formula with \(p = 1 \).

(b) (15 pts.) write Taylor’s formula with \(p = 2 \).

5. Define \(f(x, y) \) by

\[
 f(x, y) = \begin{cases}
 \frac{x|x|}{\sqrt{x^2 + y^2}}, & \text{if } (x, y) \neq (0, 0); \\
 0, & \text{if } (x, y) = (0, 0).
\end{cases}
\]

(a) (5 pts.) Find \(f_x(0, 0) \) and \(f_y(0, 0) \). (Notice that I’m not asking for these partials at any other point!)

(b) (15 pts.) Prove that \(f \) is not differentiable at \((0, 0)\).

6. (20 pts.) Determine

\[
 \lim_{y \to 0} \frac{\int_1^2 (x^3 + y)^{1/3} \, dx - \frac{3}{2}}{y},
\]

verifying the hypotheses of the theorems that you’re using.